留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PVA-钢纤维对高强再生骨料混凝土梁抗弯性能的影响

牛海成 高锦龙 李博涵 范玉辉 王永贵

牛海成, 高锦龙, 李博涵, 等. PVA-钢纤维对高强再生骨料混凝土梁抗弯性能的影响[J]. 复合材料学报, 2021, 39(0): 1-13
引用本文: 牛海成, 高锦龙, 李博涵, 等. PVA-钢纤维对高强再生骨料混凝土梁抗弯性能的影响[J]. 复合材料学报, 2021, 39(0): 1-13
Haicheng NIU, Jinlong GAO, Bohan LI, Yuhui FAN, Yonggui WANG. Effect of PVA-steel fiber on the flexural performance of high-strength recycled aggregate concrete beams[J]. Acta Materiae Compositae Sinica.
Citation: Haicheng NIU, Jinlong GAO, Bohan LI, Yuhui FAN, Yonggui WANG. Effect of PVA-steel fiber on the flexural performance of high-strength recycled aggregate concrete beams[J]. Acta Materiae Compositae Sinica.

PVA-钢纤维对高强再生骨料混凝土梁抗弯性能的影响

基金项目: 国家自然科学基金(U1904188);河南省自然科学基金(182300410247)
详细信息
    通讯作者:

    牛海成,博士,副教授,研究方向为钢与混凝土组合结构 Email: niuhch@126.com

  • 中图分类号: TU375.1

Effect of PVA-steel fiber on the flexural performance of high-strength recycled aggregate concrete beams

  • 摘要: 为研究纤维对高强再生骨料混凝土梁抗弯性能的影响,以粗骨料类型、纤维种类、纤维掺入方式和纤维体积掺量为变化参数完成了8个混凝土梁的四点弯曲试验,分析了不同参数对高强再生骨料混凝土梁破坏特征、裂缝宽度、挠度、开裂荷载、抗弯承载力和延性的影响。试验结果表明:掺入纤维的高强再生骨料混凝土梁和未掺入纤维的高强再生骨料混凝土梁破坏特征与高强天然骨料混凝土梁相似,均经历了弹性阶段,带裂缝工作阶段和破坏阶段;高强再生骨料混凝土梁的开裂荷载、刚度和变形性能较高强天然骨料混凝土梁均有所降低,且裂缝较宽,挠度较大;掺入聚乙烯醇/钢纤维有效抑制了裂缝的产生和进一步扩展,提高了开裂荷载,增强了变形性能;单掺聚乙烯醇纤维可使开裂荷载和延性显著提高,但抗弯承载力基本没有变化;单掺钢纤维与混掺聚乙烯醇-钢纤维均使再生骨料混凝土梁力学性能有所提高;与未掺纤维的再生骨料混凝土梁相比,混掺0.1vol%聚乙烯醇-1.5vol%钢纤维后,开裂荷载、抗弯承载力和延性分别提高了60.0%、4.2%和20.1%;利用规程对纤维增强再生骨料混凝土梁进行抗弯承载力计算,计算结果与实测结果吻合较好。

     

  • 图  1  纤维类型

    Figure  1.  Types of fiber

    图  2  纤维增强高强再生骨料混凝土梁(FRHRACB)基本尺寸

    Figure  2.  Dimensions of fiber reinforced high-strength recycled aggregate concrete beams (FRHRACB)

    图  3  FRHRACB典型试块破坏形态

    Figure  3.  Typical failure modes of FRHRACB specimens

    图  4  FRHRACB加载装置示意图

    Figure  4.  Schematic diagram of loading device of FRHRACB

    图  5  FRHRACB典型破坏形态

    Figure  5.  Typical failure modes of FRHRACB

    图  6  FRHRACB荷载-挠度曲线

    Figure  6.  Load-deflection curves of FRHRACB

    图  7  FRHRACB荷载-应变曲线

    Figure  7.  Load-strain curves of FRHRACB

    图  8  FRHRACB跨中截面应变发展规律

    Figure  8.  Mid-span cross-section strain of FRHRACB

    图  9  梁正截面抗弯承载力计算简图

    Figure  9.  Calculation diagram of flexural bearing capacity of beams

    表  1  粉煤灰和矿粉物理性能指标

    Table  1.   Physical properties of fly ash and mineral powder

    ProgramDensity/
    (kg·m−3)
    Bulk Density/
    (kg·m−3)
    Specific
    surface area/
    (cm2·g−1)
    Ignition loss/%
    Fly ash 2180 1124 3400 1.78
    Mineral
    powder
    2980 1440 3850 4.09
    下载: 导出CSV

    表  2  纤维物理性能

    Table  2.   Physical and mechanical properties of fibers

    Fiber
    types
    $ {d}_{\mathrm{f}} $/μml/mmν/(g·cm−3)$ {f}_{\mathrm{f}\mathrm{y}} $/MPa$ {E}_{\mathrm{f}} $/GPa$ {\delta }_{\mathrm{f}} $/%
    PVA 15 27 1.27 1060 29 6.00
    Steel 600 19 7.80 1500 220 8.00
    Notes: PVA is the Polyvinyl Alcohol; $ {d}_{\mathrm{f}} $ is the fiber diameter; l is fiber length; ν is fiber density; $ {f}_{\mathrm{f}\mathrm{y}} $ is the tensile strength of fiber; $ {E}_{\mathrm{f}} $ is the elastic modulus of fiber; $ {\delta }_{\mathrm{f}} $ is the fiber elongation.
    下载: 导出CSV

    表  3  混凝土配合比

    Table  3.   Mix ratio of concrete

    Replacement ratio of RCA/%Material composition/(kg·m−3)
    CementFine aggregateNCARCABase waterAdditional waterFly ashMineral powder
    03376341126015404896
    10033763401126154254896
    Notes: RCA is recycled coarse aggregate; NCA is natural coarse aggregate.
    下载: 导出CSV

    表  4  FRHRACB设计参数

    Table  4.   Design parameters of FRHRACB

    Specimenγ/%Fiber/(kg·m−3)$ {f}_{\mathrm{c}\mathrm{u}} $/MPa$ {f}_{\mathrm{c}} $/MPaK/(kN·mm−1)Slump/mm
    PVASteel
    NACB00069.049.917.4201
    RACB1000066.441.115.7176
    0.1vol%PVA/RACB1001.3062.140.116.9150
    0.3vol%PVA/RACB1003.9057.439.417.4112
    0.5vol%S/RACB100039.066.242.318.3161
    1.5vol%S/RACB1000117.070.446.819.1132
    0.3vol%PVA-0.5vol%S/RACB1003.939.061.440.817.675
    0.1vol%PVA-1.5vol%S/RACB1001.3117.064.743.917.8110
    Notes:γ is the replacement ratio of RCA; $ {f}_{\mathrm{c}\mathrm{u}} $ is the compressive strength of concrete;$ {f}_{\mathrm{c}} $ is the axial compressive strength of concrete; K is initial stiffness of specimens. NACB is natural aggregate concrete beams; RACB is recycled aggregate concrete beams; S is steel fibers.
    下载: 导出CSV

    表  5  钢材性能

    Table  5.   Material properties of steel bars

    Steel bars typed/mm$ {f}_{\mathrm{y}} $/MPa$ {f}_{\mathrm{u}} $/MPa$ {E}_{\mathrm{c}} $/MPa
    HRB400224015302.1×105
    124435842.1×105
    HPB30063324562.2×105
    Notes:d is the diameter of rebar; $ {f}_{\mathrm{y}} $ is the yield strength of rebar; $ {f}_{\mathrm{u}} $ is the tensile strength of rebar; $ {E}_{\mathrm{c}} $ is the elastic modulus of rebar.
    下载: 导出CSV

    表  6  各FRHRACB特征点荷载

    Table  6.   Characteristic load of FRHRACB

    Specimen$ {P}_{\mathrm{r}} $/kN$ {P}_{\mathrm{y}} $/kN$ {P}_{\mathrm{p}} $/kN
    NACB35177212
    RACB25196213
    0.1vol%PVA/RACB30200213
    0.3vol%PVA/RACB35199213
    0.5vol%S/RACB30201218
    1.5vol%S/RACB40200221
    0.3vol%PVA-0.5vol%S/RACB30199219
    0.1vol%PVA-1.5vol%S/RACB40202222
    Notes:$ {P}_{\mathrm{r}} $ is the crack load of specimens; $ {P}_{\mathrm{y}} $ is the yield load of specimens;$ {P}_{\mathrm{p}} $ is the peak load of specimens.
    下载: 导出CSV

    表  7  各FRHRACB特征点挠度及延性系数

    Table  7.   Characteristic deflection and ductility coefficient of FRHRACB

    Specimen$ {\varDelta }_{\mathrm{y}} $/mm$ {\varDelta }_{\mathrm{p}} $/mmμ
    NACB11.1530.802.76
    RACB13.5534.912.58
    0.1vol%PVA/RACB12.6335.212.79
    0.3vol%PVA/RACB13.2340.123.03
    0.5vol%S/RACB13.2437.252.81
    1.5vol%S/RACB12.7936.072.82
    0.3vol%PVA-0.5vol%S/RACB13.2140.303.05
    0.1vol%PVA-1.5vol%S/RACB11.8936.803.10
    Notes:$ {\varDelta }_{\mathrm{y}} $ is the yield displacement of specimens;$ {\Delta }_{\mathrm{p}} $ is the peak displacement of specimens; μ is the displacement ductility coefficient of specimens.
    下载: 导出CSV

    表  8  试验结果与计算结果比较

    Table  8.   Comparison of test results with calculation results

    SpecimenMt/(kN·m)Mc/(kN·m)Mt /Mc
    NACB81.2779.181.026
    RACB81.6579.071.033
    0.1vol%PVA/RACB81.6578.871.031
    0.3vol%PVA/RACB81.6578.611.039
    0.5vol%S/RACB83.5783.131.005
    1.5vol%S/RACB84.7291.930.922
    0.3vol%PVA-0.5vol%S/RACB83.9582.551.017
    0.1vol%PVA-1.5vol%S/RACB85.1091.040.935
    $ \mu ' $1.001
    $ D $0.0434
    $ {C_{\text{v}}} $0.0434
    Notes: Mt is the test results; Mc is the calculation results; µ' represents mean; $ D $represents variance; $ {C_{\text{v}}} $ represents coefficient of variation.
    下载: 导出CSV
  • [1] CHINCHILLAS-CHINCHILLAS M J, ROSAS- CASAREZ C A, ARREDONDO-REA S P, et al. SEM image analysis in permeable recycled concretes with silica fume. A quantitative comparison of porosity and the ITZ[J]. Materials,2019,12(13):2201. doi: 10.3390/ma12132201
    [2] GOLAFSHANI E M, BEHNOOD A. Automatic regression methods for formulation of elastic modulus of recycled aggregate concrete[J]. Applied Soft Computing,2018,64:377-400. doi: 10.1016/j.asoc.2017.12.030
    [3] GOLAFSHANI E M, BEHNOOD A. Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete[J]. Journal of Cleaner Production,2018,176:1163-1176. doi: 10.1016/j.jclepro.2017.11.186
    [4] WANG Y M, DENG Z H, XIAO J Z, et al. Mechanical properties of recycled aggregate concrete under compression-shear stress state[J]. Construction and Building Materials,2021,271:121894. doi: 10.1016/j.conbuildmat.2020.121894
    [5] ARORA S, SINGH S P. Analysis of flexural fatigue failure of concrete made with 100% coarse recycled concrete aggregates[J]. Construction and Building Materials,2016,102:782-791. doi: 10.1016/j.conbuildmat.2015.10.098
    [6] CHOI W C, YUN H D. Long-term deflection and flexural behavior of reinforced concrete beams with recycled aggregate[J]. Materials & Design,2013,51:742-750.
    [7] AJDUKIEWICZ A B, KLISZCZEWICZ A T. Comparative tests of beams and columns made of recycled aggregate concrete and natural aggregate concrete [J]. Journal of Advanced Concrete Technology. 2007, 5: 259-273.
    [8] SINDY S P, BELEN G F, FERNANDO M A, et al. Flexural performance of reinforced concrete beams made with recycled concrete coarse aggregate[J]. Engineering Structures,2018,156:32-45. doi: 10.1016/j.engstruct.2017.11.015
    [9] MAHDI A, ADAM S, JEFFERY S, et al. An experimental study on flexural strength of reinforced concrete beams with 100% recycled concrete aggregate[J]. Engineering Structures,2015,88:154-162. doi: 10.1016/j.engstruct.2015.01.043
    [10] RYOICHI S, IPPEI M, TAKAHISA S, et al. Flexural Behavior of Reinforced Recycled Concrete Beams[J]. Journal of Advanced Concrete Technology,2007,5:43-61. doi: 10.3151/jact.5.43
    [11] FATHIFAZL G, RAZAQPUR A G, ISGOR O B, et al. Flexural performance of steel-reinforced recycled concrete beams[J]. ACI Structural Journal,2009,106:858-867.
    [12] KNAACK A M, KURAMA Y C. Behavior of reinforced concrete beams with recycled concrete coarse aggregates [J]. Journal of Structural Engineering 2015, 141: B4014009.
    [13] KANG T H. -K, KIM W, WAK Y K, et al. Flexural testing of reinforced concrete beams with recycled concrete aggregates[J]. ACI Structural Journal,2014,111(3):607-616.
    [14] LEE Y T, KIM S H, KIM J H, et al. Flexural behavior of high strength reinforced concrete beams by replacement ratio of recycled coarse aggregate[J]. Advanced Materials Research,2013,680:230-233. doi: 10.4028/www.scientific.net/AMR.680.230
    [15] GHALEHNOVI M, KARIMIPOUR A, ANVARI A, et al. Flexural strength enhancement of recycled aggregate concrete beams with steel fibre-reinforced concrete jacket[J]. Engineering Structures,2021,240:112325. doi: 10.1016/j.engstruct.2021.112325
    [16] KARIMIPOUR A, GHALEHNOVI M. Comparison of the effect of the steel and polypropylene fibres on the flexural behaviour of recycled aggregate concrete beams[J]. Structures,2021,29:129-146. doi: 10.1016/j.istruc.2020.11.013
    [17] LI S P, ZHANG Y B, CHEN W J. Bending performance of unbonded prestressed basalt fiber recycled concrete beams[J]. Engineering Structures,2020,221:110937. doi: 10.1016/j.engstruct.2020.110937
    [18] SHAHJALAL M, ISLAM K, RAHMAN J, et al. Flexural response of fiber reinforced concrete beams with waste tires rubber and recycled aggregate[J]. Journal of Cleaner Production,2021,278:123842. doi: 10.1016/j.jclepro.2020.123842
    [19] 程东辉, 羌震. 钢纤维再生混凝土梁抗弯承载力试验分析[J]. 混凝土, 2019(09):31-35. doi: 10.3969/j.issn.1002-3550.2019.09.008

    CHENG Donghui, QIANG Zhen. Experimental analysis of flexural bearing capacity of steel fiber recycled concrete beams[J]. Concrete,2019(09):31-35(in Chinese). doi: 10.3969/j.issn.1002-3550.2019.09.008
    [20] 羌震. 钢纤维再生混凝土梁抗弯性能试验研究 [D]. 黑龙江: 东北林业大学, 2019.

    QIANG Zhen. Experimental study on flexural performance of steel fiber recycled concrete beams [D]. Heilongjiang: Northeast Forestry University, 2019 (in Chinese).
    [21] CHABOK H R, GHALEHNOVI M, KARIMIPOU A, et al. Experimental study on the flexural behaviour and ductility ratio of steel fibres coarse recycled aggregate concrete beams[J]. Construction and Building Materials,2018,186:400-422. doi: 10.1016/j.conbuildmat.2018.07.132
    [22] 张振兴. 纤维再生混凝土梁的力学性能研究 [D]. 陕西: 西安工业大学, 2020.

    ZHANG Zhenxing. Study on Mechanical properties of fiber recycled concrete beams [D]. Shaanxi: Xi 'an University of Technology, 2020 (in Chinese).
    [23] 周静海, 林东野, 康天蓓, 等. 废弃纤维再生混凝土梁抗弯性能研究[J]. 工业建筑, 2021, 51(5):70-75+107.

    ZHOU Jinghai, LIN Dongye, KANG Tianbei, et al. Study on flexural behavior of recycled concrete beams with waste fiber[J]. Industrial Architecture,2021,51(5):70-75+107(in Chinese).
    [24] 银英姿, 仇贝. 聚乙烯醇纤维混凝土力学性能及早期开裂试验研究[J]. 硅酸盐通报, 2019, 38(2):454,458-458.

    YIN Yingzi, QIU Bei. Experimental study on mechanical properties and early cracking of polyvinyl alcohol fiber reinforced concrete[J]. Silicate Bulletin,2019,38(2):454,458-458(in Chinese).
    [25] 苏骏, 赵家玉, 李磊. 钢-PVA混杂纤维再生混凝土梁抗弯性能试验研究[J]. 混凝土与水泥制品, 2021(6):50-55.

    SU Jun, ZHAO Jiayu, LI Lei. Experimental study on flexural behavior of recycled concrete beams with steel -PVA hybrid fiber[J]. Concrete and Cement Products,2021(6):50-55(in Chinese).
    [26] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ55-2011 [S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the people's Republic of China. Specification for mix proportion design of ordinary concrete: JGJ55-2011 [S]. Beijing: China Construction Industry Press, 2011 (in Chinese).
    [27] 中国国家标准化管理委员会. 金属材料室温拉伸试验 第1部分: 室温试验方法: GB/T 228.1−2010[S]. 北京: 中国标准出版社, 2011.

    China National Standardization Administration Committee. Metallic materials-Tensile testing-part 1: Method of test at room temperature: B/T. 228.1-2010 [S]. Beijing: China Standards Publishing House, 2011. (in Chinese).
    [28] 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T50080-2016. [S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for Performance Test Methods of Ordinary Concrete Mixtures: GB/T50080-2016. [S]. Beijing: China Building Industry Press. 2016. (in Chinese).
    [29] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081-2019 [S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the people's Republic of China. Standard of test method for physical and mechanical properties of concrete: GB/T 50081-2019 [S]. Beijing: China Construction Industry Press, 2019. (in Chinese).
    [30] 陈宗平, 梁厚燃. 高温喷水冷却后钢筋再生混凝土梁受力性能试验及承载力计算[J]. 土木工程学报, 2019, 52(12):22-35.

    CHEN Zongping, LIANG Houran. Mechanical performance test and bearing capacity calculation of reinforced recycled concrete beams cooled by high temperature water spraying[J]. China Civil Engineering Journal,2019,52(12):22-35(in Chinese).
    [31] CHABOKI H R, GHALEHNOVI M, KARIMIPOUR A, et al. Shear behaviour of concrete beams with recycled aggregate and steel fibres[J]. Construction and Building Materials,2019,20(ARR.20):809-827.
    [32] 中国工程建设标准化协会. 纤维混凝土结构技术规程: CECS 38: 2004 [S]. 北京: 中国计划出版社, 2004.

    China Engineering Construction Standardization Association. Technical Specification for Fiber Concrete Structure: CECS 38: 2004 [S]. Beijing: China Planning Press, 2004. (in Chinese).
    [33] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010-2010 [S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Design code for concrete structures: GB 50010-2010 [S]. Beijing: China Building Industry Press, 2010. (in Chinese).
  • 加载中
计量
  • 文章访问数:  149
  • HTML全文浏览量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 录用日期:  2021-11-05
  • 修回日期:  2021-11-04
  • 网络出版日期:  2021-11-24

目录

    /

    返回文章
    返回