留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微波对碳纤维的改性作用及其对电子束固化CFRP界面性能的影响

张静静 梁森 汤超

张静静, 梁森, 汤超. 微波对碳纤维的改性作用及其对电子束固化CFRP界面性能的影响[J]. 复合材料学报, 2023, 40(7): 3900-3911. doi: 10.13801/j.cnki.fhclxb.20220922.004
引用本文: 张静静, 梁森, 汤超. 微波对碳纤维的改性作用及其对电子束固化CFRP界面性能的影响[J]. 复合材料学报, 2023, 40(7): 3900-3911. doi: 10.13801/j.cnki.fhclxb.20220922.004
ZHANG Jingjing, LIANG Sen, TANG Chao. Modification of carbon fiber by microwave and its effect on interfacial properties of electron beam cured CFRP[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3900-3911. doi: 10.13801/j.cnki.fhclxb.20220922.004
Citation: ZHANG Jingjing, LIANG Sen, TANG Chao. Modification of carbon fiber by microwave and its effect on interfacial properties of electron beam cured CFRP[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3900-3911. doi: 10.13801/j.cnki.fhclxb.20220922.004

微波对碳纤维的改性作用及其对电子束固化CFRP界面性能的影响

doi: 10.13801/j.cnki.fhclxb.20220922.004
基金项目: 国家自然科学基金 (52075280)
详细信息
    通讯作者:

    张静静,博士,副教授,硕士生导师,研究方向为树脂基复合材料成型技术及界面强化 E-mail: zhangjingjing@qut.edu.cn

  • 中图分类号: TB332

Modification of carbon fiber by microwave and its effect on interfacial properties of electron beam cured CFRP

Funds: National Natural Science Foundation of China (52075280)
  • 摘要: 电子束原位固化迎合“双碳”战略下碳纤维增强树脂基复合材料(CFRP)低成本控形控性的一体化制造需求,但却因固化构件界面质量差而尚未迈向工业化。本文围绕电子束固化CFRP弱界面的高效、高工业可行性强化技术,探索了微波短时辐射改性碳纤维改善界面的机制及工艺,阐明了碳纤维表面物理形貌、粗糙度及化学成分在不同微波辐射工艺参数下的演变规律:碳纤维表面的粗糙度和表面积,由未改性时的4.41 nm和7.5 nm2最高提高至微波辐射180 s后的21.7 nm和26.4 nm2;O/C原子比也由未改性时的0.2578最高增至辐射180 s时的0.3278。进一步地,构建了界面分子动力学模型,从分子层面细化并深化了羧基及羟基强化界面的本质,及其对界面结构及界面能的影响。界面剪切强度测试结果表明,在微波辐射(90 s)的物理及化学改性双重作用下,碳纤维/树脂界面获得了20.47%的提高。该研究为高性能电子束固化CFRP的绿色成型制造提供基础与支撑,具有重要的科学意义。

     

  • 图  1  AFM试样示意图

    Figure  1.  AFM specimen diagram

    图  2  碳纤维(CF)单丝拉伸强度测试

    Figure  2.  Carbon fiber (CF) monofilament tensile strength test

    F—Force

    图  3  界面剪切强度实验

    Figure  3.  Interfacial shear strength test

    图  4  碳纤维增强树脂基复合材料(CFRP)分子动力学模型

    Figure  4.  Molecular dynamics models of carbon fiberreinforced polymer (CFRP)

    图  5  不同微波辐射时间下CF表面微观形貌图及沟壑特征分析

    Figure  5.  Surface morphology and furrow characteristics of CFs at different microwave irradiation times

    Δx—Groove width; Δz—Groove depth

    图  6  不同微波辐射时间下CF表面粗糙度及表面积

    Figure  6.  Surface roughness and area of CF at different microwave irradiation time

    图  7  不同微波辐射时间下CF表面官能团含量

    Figure  7.  Group contents of CF surfaces at different microwave irradiation time

    图  8  CF与树脂分子间的静电吸附作用

    Figure  8.  Electrostatic interactions between CF and resin molecules

    图  9  CF及树脂分子在纤维表面法向的浓度分布

    Figure  9.  Molecular concentration distribution of CF and epoxy resin along CF surface normal direction

    图  10  不同微波辐射时间下CF/树脂界面能

    Figure  10.  Interfacial energy between CF/epoxy resin at different microwave irradiation time

    图  11  不同微波辐射时间下CFRP界面剪切强度(IFSS) (a)及单因素方差(ANOVA)分析结果 (b)

    Figure  11.  Interfacial shear strength (IFSS) at different microwave irradiation time (a) and one-way analysis of variance (ANOVA) analysis results (b)

    图  12  IFSS测试后碳纤维/树脂界面的微观形貌

    Figure  12.  Microscopic morphologies of CFRP interface after IFSS tests

    表  1  不同微波辐射时间下CF表面氧碳原子比

    Table  1.   O/C atomic ratio of CF surface at different microwave irradiation time

    Microwave
    irradiation time/s
    0306090120180
    O/C0.25780.26710.28560.30930.31410.3278
    下载: 导出CSV

    表  2  不同微波辐射时间下CF与树脂的非键作用能

    Table  2.   Nonbonding energy between CF and epoxy resin at different microwave irradiation time

    ModelI(0)I(30)I(60)I(90)I(120)I(180)
    Nobonding energy/(kcal·mol−1)−472.152−479.332−498.493−517.594−519.104−514.347
    Van der waals energy/(kcal·mol−1)−374.251−373.541−380.201−382.984−377.877−373.692
    Electrostatic energy/(kcal·mol−1)−97.901−105.791−118.284−134.61−141.217−140.655
    Notes: I(t)—Specimens with CFs irradiated by microwave for t seconds; t—Microwave irradiation time (s).
    下载: 导出CSV

    表  3  不同微波辐射时间下CF单丝的拉伸强度

    Table  3.   CF monofilament tensile strength at different microwave irradiation time

    Microwave irradiation
    time/s
    0306090120180
    Tensile strength/GPa5.2965.3285.2145.1724.9914.84
    下载: 导出CSV
  • [1] CHEN A Y, BAEHR S, TURNER A, et al. Carbon-fiber reinforced polymer composites: A comparison of manufacturing methods on mechanical properties[J]. International Journal of Lightweight Materials and Manufacture,2021,4(4):468-479. doi: 10.1016/j.ijlmm.2021.04.001
    [2] JUNG F. Composite use of CFRP, steel and aluminum[J]. ATZ Worldwide,2021,123:14-15.
    [3] 杨智勇, 张东, 顾春辉, 等. 国外空天往返飞行器用先进树脂基复合材料研究与应用进展[J]. 复合材料学报, 2022, 39(7):3029-3043. doi: 10.13801/j.cnki.fhclxb.20220325.004

    YANG Zhiyong, ZHANG Dong, GU Chunhui, et al. Research and application of advanced resin matrix composites for aerospace shuttle vehicles abroad[J]. Acta Materiae Compositae Sinica,2022,39(7):3029-3043(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220325.004
    [4] 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37(11):2700-2706. doi: 10.13801/j.cnki.fhclxb.20200824.005

    XING Liying, FENG Zhihai, BAO Jianwen, et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development[J]. Acta Materiae Compositae Sinica,2020,37(11):2700-2706(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200824.005
    [5] 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6):1629-1650. doi: 10.13801/j.cnki.fhclxb.20210107.002

    XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica,2021,38(6):1629-1650(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210107.002
    [6] GOODMAN D L, PALMESE G R. Curing and bonding of composites using electron beam processing[Z]. Handbook of polymer blends and composites, 2001: 1-41.
    [7] LUKASZEWICZ H, POTTER K D, EALES J. A concept for the in situ consolidation of thermoset matrix prepreg during automated lay-up[J]. Composites Part B: Engineering,2013,45(1):538-543. doi: 10.1016/j.compositesb.2012.09.008
    [8] BRAGANA G F, VIANNA A S, NEVES F D, et al. Effect of exposure time and moving the curing light on the degree of conversion and Knoop microhardness of light-cured resin cements[J]. Dental Materials,2020,36(11):e340-e351. doi: 10.1016/j.dental.2020.08.016
    [9] BOON Y D, JOSHI S C, BHUDOLIA S K. Review: Filament winding and automated fiber placement with in situ consolidation for fiber reinforced thermoplastic polymer composites[J]. Polymers,2021,13(12):1951. doi: 10.3390/polym13121951
    [10] CAI J Y, LI Q X, EASTON C D, et al. Surface modification of carbon fibres with ammonium cerium nitrate for interfacial shear strength enhancement[J]. Composites Part B: Engineering,2022,246:110173. doi: 10.1016/j.compositesb.2022.110173
    [11] MUND M, LIPPKY K, BLASS D, et al. Influence of production based surface topography and release agent amount on bonding properties of CFRP[J]. Composite Structures,2019,216(2):104-111.
    [12] SHARMA M, GAO S L, MÄDER E, et al. Carbon fiber surfaces and composite interphases[J]. Composites Science and Technology,2014,102:35-50. doi: 10.1016/j.compscitech.2014.07.005
    [13] FAN W, LI J L, ZHENG Y Y. Improved thermo-oxidative stability of three-dimensional and four-directional braided carbon fiber/epoxy hierarchical composites using graphene-reinforced gradient interface layer[J]. Polymer Testing,2015,44:177-185. doi: 10.1016/j.polymertesting.2015.04.010
    [14] GHOSH N N, PALMESE G R. Electron-beam curing of epoxy resins: Effect of alcohols on cationic polymerization[J]. Bulletin of Materials Science,2005,28(6):603-607. doi: 10.1007/BF02706350
    [15] 包建文, 钟翔屿, 张代军, 等. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8):33-48. doi: 10.11868/j.issn.1001-4381.2020.000208

    BAO Jianwen, ZHONG Xiangyu, ZHANG Daijun, et al. Progress in high strength intermediate modulus carbon fiber and its high toughness resin matrix composite in China[J]. Journal of Materials Engineering,2020,48(8):33-48(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000208
    [16] 包建文. 高效低成本复合材料及其制造技术[M]. 北京: 国防工业出版社, 2012.

    BAO Jianwen. High-efficient and law-cost manufacturing technology for advanced composites[M]. Beijing: National Defense Industry Press, 2012(in Chinese).
    [17] ZHAO X M, DUAN Y G, LI D C, et al. Carbon fiber/epoxy interfacial bonding improvement by microwave pretreatment for low-energy electron beam curing[J]. Polymers & Polymer Composites,2016,24(2):121-125.
    [18] ZHANG J J, DUAN Y G, WANG B, et al. Interfacial enhancement for carbon fibre reinforced electron beam cured polymer composite by microwave irradiation[J]. Polymer,2020,192:122327. doi: 10.1016/j.polymer.2020.122327
    [19] NANSÉ G, PAPIRER E, FIOUX P, et al. Fluorination of carbon blacks: An X-ray photoelectron spectroscopy study: I. A literature review of XPS studies of fluorinated carbons. XPS investigation of some reference compounds[J]. Carbon,1997,35(2):175-194. doi: 10.1016/S0008-6223(96)00095-4
    [20] American Society for Testing and Materials. Standard test method for tensile strength and Young's modulus for high-modulus single-filament materials: ASTM-D3379—75[S]. Philadelphia: ASTM International, 1975.
    [21] ZUSSMAN E, CHEN X, DING W, et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers[J]. Carbon,2005,43(10):2175-2185. doi: 10.1016/j.carbon.2005.03.031
    [22] CHAO M, LIU X Y, XIE L L, et al. Synthesis and molecular dynamics simulation of amphiphilic low molecular weight polymer viscosity reducer for heavy oil cold recovery[J]. Energies,2021,14(21):1-14. doi: 10.3390/en14216856
    [23] 庄昌清, 岳红, 张慧军. 分子模拟方法及模拟软件Materials Studio在高分子材料中的应用[J]. 塑料, 2010, 39(4):81-84.

    ZHUANG Changqing, YUE Hong, ZHANG Huijun. Molecular simulation methods and materials studio applications to macromolecular material[J]. Plastics,2010,39(4):81-84(in Chinese).
    [24] SHI L Y, SESSIM M, TONKS M R, et al. Tonksoxidation of carbon fiber and char by molecular dynamics simulation[J]. Carbon,2021,185:449-463. doi: 10.1016/j.carbon.2021.09.038
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  725
  • HTML全文浏览量:  225
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-03
  • 修回日期:  2022-09-05
  • 录用日期:  2022-09-11
  • 网络出版日期:  2022-09-23
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回