Modification of carbon fiber by microwave and its effect on interfacial properties of electron beam cured CFRP
-
摘要: 电子束原位固化迎合“双碳”战略下碳纤维增强树脂基复合材料(CFRP)低成本控形控性的一体化制造需求,但却因固化构件界面质量差而尚未迈向工业化。本文围绕电子束固化CFRP弱界面的高效、高工业可行性强化技术,探索了微波短时辐射改性碳纤维改善界面的机制及工艺,阐明了碳纤维表面物理形貌、粗糙度及化学成分在不同微波辐射工艺参数下的演变规律:碳纤维表面的粗糙度和表面积,由未改性时的4.41 nm和7.5 nm2最高提高至微波辐射180 s后的21.7 nm和26.4 nm2;O/C原子比也由未改性时的 0.2578 最高增至辐射 180 s 时的 0.3278。进一步地,构建了界面分子动力学模型,从分子层面细化并深化了羧基及羟基强化界面的本质,及其对界面结构及界面能的影响。界面剪切强度测试结果表明,在微波辐射(90 s)的物理及化学改性双重作用下,碳纤维/树脂界面获得了20.47%的提高。该研究为高性能电子束固化CFRP的绿色成型制造提供基础与支撑,具有重要的科学意义。Abstract: For carbon fiber reinforced polymer matrix composites (CFRP), the in-situ electron beam (E-Beam) curing meets the requirements of integrated manufacturing of shape and performance, which is low-cost according with the "carbon peak and carbon neutralization" strategy. But the E-Beam technology has not yet been industrialized due to the poor interface quality of cured components. Addressing the weak interface of E-Beam cured CFRP, the mechanism and technology of an efficient and high industrial feasibility strengthening technology by microwave short-time radiation were explored in this study. The evolution of physical morphology, roughness and chemical composition of carbon fiber surface under different microwave radiation process parameters was described, showing that the surface roughness, surface area and the O/C atomic ratio of CFs increased from 4.41 nm,7.5 nm2, 0.2578 at 0 s irradiation to 21.7 nm, 26.4 nm2, and 0.3278 respectively after 180 s microwave irradiation. Furthermore, a molecular dynamics model of the interface was constructed to refine and deepen the nature of the carboxyl and hydroxyl enhanced interface from the molecular level, and then their effects on the interface structure and interface energy. The experimental results show that the interfacial shear strength of carbon fiber/resin is improved by 20.47% under the combined effect of physical and chemical modification of microwave radiation (90 s). This research provides the foundation and support for green forming manufacturing of high-performance E-Beam cured CFRP, and has important scientific significance.
-
表 1 不同微波辐射时间下碳纤维表面氧碳原子比
Table 1. O/C atomic ratio at different microwave irradiation time
Microwave
irradiation time/s0 30 60 90 120 180 O/C 0.2578 0.2671 0.2856 0.3093 0.3141 0.3278 表 2 碳纤维与树脂的非键作用能
Table 2. Nonbonding energy between CF and epoxy resin at different microwave irradiation time
Model I(0) I(30) I(60) I(90) I(120) I(180) Nobonding energy/(kcal·mol−1) −472.152 −479.332 −498.493 −517.594 −519.104 −514.347 Van der waals energy/(kcal·mol−1) −374.251 −373.541 −380.201 −382.984 −377.877 −373.692 Electrostatic energy/(kcal·mol−1) −97.901 −105.791 −118.284 −134.61 −141.217 −140.655 Notes: I(t)—Specimens with CFs irradiated by microwave for t seconds; t—Microwave irradiation time (s). 表 3 不同微波辐射时间下碳纤维单丝的拉伸强度
Table 3. CF monofilament tensile strength at different microwave irradiation time
Microwave irradiation
time/s0 30 60 90 120 180 Tensile strength/GPa 5.296 5.328 5.214 5.172 4.991 4.84 -
[1] CHEN A Y, BAEHR S, TURNER A, et al. Carbon-fiber reinforced polymer composites: A comparison of manufacturing methods on mechanical properties[J]. International Journal of Lightweight Materials and Manufacture,2021,4(4):468-479. doi: 10.1016/j.ijlmm.2021.04.001 [2] JUNG F. Composite use of CFRP, steel and aluminum[J]. ATZ Worldwide,2021,123:14-15. [3] 杨智勇, 张东, 顾春辉, 等. 国外空天往返飞行器用先进树脂基复合材料研究与应用进展[J]. 复合材料学报, 2022, 39(7):3029-3043. doi: 10.13801/j.cnki.fhclxb.20220325.004YANG Zhiyong, ZHANG Dong, GU Chunhui, et al. Research and application of advanced resin matrix composites for aerospace shuttle vehicles abroad[J]. Acta Materiae Compositae Sinica,2022,39(7):3029-3043(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220325.004 [4] 邢丽英, 冯志海, 包建文, 等. 碳纤维及树脂基复合材料产业发展面临的机遇与挑战[J]. 复合材料学报, 2020, 37(11):2700-2706. doi: 10.13801/j.cnki.fhclxb.20200824.005XING Liying, FENG Zhihai, BAO Jianwen, et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development[J]. Acta Materiae Compositae Sinica,2020,37(11):2700-2706(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200824.005 [5] 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6):1629-1650. doi: 10.13801/j.cnki.fhclxb.20210107.002XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica,2021,38(6):1629-1650(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210107.002 [6] GOODMAN D L, PALMESE G R. Curing and bonding of composites using electron beam processing[Z]. Handbook of polymer blends and composites, 2001: 1-41. [7] LUKASZEWICZ H, POTTER K D, EALES J. A concept for the in situ consolidation of thermoset matrix prepreg during automated lay-up[J]. Composites Part B: Engineering,2013,45(1):538-543. doi: 10.1016/j.compositesb.2012.09.008 [8] BRAGANA G F, VIANNA A S, NEVES F D, et al. Effect of exposure time and moving the curing light on the degree of conversion and Knoop microhardness of light-cured resin cements[J]. Dental Materials,2020,36(11):e340-e351. doi: 10.1016/j.dental.2020.08.016 [9] BOON Y D, JOSHI S C, BHUDOLIA S K. Review: Filament winding and automated fiber placement with in situ consolidation for fiber reinforced thermoplastic polymer composites[J]. Polymers,2021,13(12):1951. doi: 10.3390/polym13121951 [10] CAI J Y, LI Q X, EASTON C D, et al. Surface modification of carbon fibres with ammonium cerium nitrate for interfacial shear strength enhancement[J]. Composites Part B: Engineering,2022,246:110173. doi: 10.1016/j.compositesb.2022.110173 [11] MUND M, LIPPKY K, BLASS D, et al. Influence of production based surface topography and release agent amount on bonding properties of CFRP[J]. Composite Structures,2019,216(2):104-111. [12] SHARMA M, GAO S L, MÄDER E, et al. Carbon fiber surfaces and composite interphases[J]. Composites Science and Technology,2014,102:35-50. doi: 10.1016/j.compscitech.2014.07.005 [13] FAN W, LI J L, ZHENG Y Y. Improved thermo-oxidative stability of three-dimensional and four-directional braided carbon fiber/epoxy hierarchical composites using graphene-reinforced gradient interface layer[J]. Polymer Testing,2015,44:177-185. doi: 10.1016/j.polymertesting.2015.04.010 [14] GHOSH N N, PALMESE G R. Electron-beam curing of epoxy resins: Effect of alcohols on cationic polymerization[J]. Bulletin of Materials Science,2005,28(6):603-607. doi: 10.1007/BF02706350 [15] 包建文, 钟翔屿, 张代军, 等. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8):33-48. doi: 10.11868/j.issn.1001-4381.2020.000208BAO Jianwen, ZHONG Xiangyu, ZHANG Daijun, et al. Progress in high strength intermediate modulus carbon fiber and its high toughness resin matrix composite in China[J]. Journal of Materials Engineering,2020,48(8):33-48(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000208 [16] 包建文. 高效低成本复合材料及其制造技术[M]. 北京: 国防工业出版社, 2012.BAO Jianwen. High-efficient and law-cost manufacturing technology for advanced composites[M]. Beijing: National Defense Industry Press, 2012(in Chinese). [17] ZHAO X M, DUAN Y G, LI D C, et al. Carbon fiber/epoxy interfacial bonding improvement by microwave pretreatment for low-energy electron beam curing[J]. Polymers & Polymer Composites,2016,24(2):121-125. [18] ZHANG J J, DUAN Y G, WANG B, et al. Interfacial enhancement for carbon fibre reinforced electron beam cured polymer composite by microwave irradiation[J]. Polymer,2020,192:122327. doi: 10.1016/j.polymer.2020.122327 [19] NANSÉ G, PAPIRER E, FIOUX P, et al. Fluorination of carbon blacks: An X-ray photoelectron spectroscopy study: I. A literature review of XPS studies of fluorinated carbons. XPS investigation of some reference compounds[J]. Carbon,1997,35(2):175-194. doi: 10.1016/S0008-6223(96)00095-4 [20] American Society for Testing and Materials. Standard test method for tensile strength and Young's modulus for high-modulus single-filament materials: ASTM-D3379—75[S]. Philadelphia: ASTM International, 1975. [21] ZUSSMAN E, CHEN X, DING W, et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers[J]. Carbon,2005,43(10):2175-2185. doi: 10.1016/j.carbon.2005.03.031 [22] CHAO M, LIU X Y, XIE L L, et al. Synthesis and molecular dynamics simulation of amphiphilic low molecular weight polymer viscosity reducer for heavy oil cold recovery[J]. Energies,2021,14(21):1-14. doi: 10.3390/en14216856 [23] 庄昌清, 岳红, 张慧军. 分子模拟方法及模拟软件Materials Studio在高分子材料中的应用[J]. 塑料, 2010, 39(4):81-84.ZHUANG Changqing, YUE Hong, ZHANG Huijun. Molecular simulation methods and materials studio applications to macromolecular material[J]. Plastics,2010,39(4):81-84(in Chinese). [24] SHI L Y, SESSIM M, TONKS M R, et al. Tonksoxidation of carbon fiber and char by molecular dynamics simulation[J]. Carbon,2021,185:449-463. doi: 10.1016/j.carbon.2021.09.038 -