留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多壁碳纳米管/天然橡胶复合材料压阻传感特性实验分析及理论预测

刘兴姚 郭荣鑫 杨洋 范正明 王洋

刘兴姚, 郭荣鑫, 杨洋, 等. 多壁碳纳米管/天然橡胶复合材料压阻传感特性实验分析及理论预测[J]. 复合材料学报, 2022, 39(0): 1-12
引用本文: 刘兴姚, 郭荣鑫, 杨洋, 等. 多壁碳纳米管/天然橡胶复合材料压阻传感特性实验分析及理论预测[J]. 复合材料学报, 2022, 39(0): 1-12
Xingyao LIU, Rongxin GUO, Yang YANG, Zhengming FAN, Yang WANG. Experimental analysis and theoretical prediction to piezoresistance sensing characteristics of multiwalled carbon nanotubes/natural rubber composite[J]. Acta Materiae Compositae Sinica.
Citation: Xingyao LIU, Rongxin GUO, Yang YANG, Zhengming FAN, Yang WANG. Experimental analysis and theoretical prediction to piezoresistance sensing characteristics of multiwalled carbon nanotubes/natural rubber composite[J]. Acta Materiae Compositae Sinica.

多壁碳纳米管/天然橡胶复合材料压阻传感特性实验分析及理论预测

基金项目: 国家自然科学基金 (11962009)
详细信息
    通讯作者:

    杨洋,博士,教授,硕士生导师,研究方向:智能土木工程材料,结构健康监测技术 E-mail:yangyang0416@kust.edu.cn

  • 中图分类号: TB332

Experimental analysis and theoretical prediction to piezoresistance sensing characteristics of multiwalled carbon nanotubes/natural rubber composite

  • 摘要: 为实现对隔震支座工作性能的有效监测,采用开炼法制备了多壁碳纳米管(MWCNT)/天然橡胶(NR)复合材料,研究了该复合材料在恒应变和间歇加载下的电阻-应变响应行为。结果表明: MWCNT/NR复合材料电阻-应变响应稳定性、重复性、单调性、对称性及“肩峰”效应依赖恒应变载荷;随着间歇时间的增加电阻变化幅值趋于稳定,所建立的理论模型能有效预测该幅值变化。不同脱层形式下MWCNT/NR复合材料表现出不同的压阻行为,采用Digimat和Workbench解释了其响应机制。基于MWCNT导电网络和橡胶材料黏弹性,一个能够完整表征和预测循环电阻-应变响应的数学模型被提出和验证,模型拟合结果与实验结果高度吻合,为实现MWCNT/NR复合材料的工业应用奠定理论基础。

     

  • 图  1  压敏测试系统

    Figure  1.  Testing system of compression sensitive

    图  2  多壁碳纳米管(MWCNT)/天然橡胶(NR)复合材料在不同恒应变下的电阻-应变响应(a)、最大灵敏系数(b)和机制示意图(c)

    Figure  2.  Resistance-strain response under different constant strain (a), maximum gauge factor (b) and mechanism diagram (c) of multiwalled carbon nanotubes (MWCNT)/natural rubber (NR) composite

    图  3  MWCNT/NR压缩形变及导电网络变化(图例单位:mm):(a)位移前;(b)位移后;(c)导电网络位移轨迹(灰色阴影表示位移前导电网络结构;红色箭头表示位移较大的MWCNT)

    Figure  3.  Compressive deformation and change of conductive network of MWCNT/NR composite (Legend unit: mm): (a) without displacement; (b) after displacement; (c) displacement trajectory of conductive network (the gray shadow represents the structure of conductive network without displacement; the red arrow represents the MWCNT with large displacement)

    图  4  MWCNT/NR复合材料动态电阻-应变响应(a)~(c)和应力-时间曲线(d)

    Figure  4.  Dynamic resistance-strain response (a)-(c) and stress-time curve (d) of MWCNT/NR composites

    图  5  MWCNT/NR复合材料间歇加载示意图(a)、传感响应(b)和理论模型预测结果(c)

    Figure  5.  Schematic diagram (a), Sensing response (b) and results predicted by the theoretical model (c) of MWCNT/NR composites

    图  6  外围橡胶层(a)和上下面橡胶层(b)作用下MWCNT/NR复合材料传感特性

    Figure  6.  Sensing property of MWCNT/NR composite circumscribed by outer rubber (a) and upper and lower rubber layers (b)

    图  7  不同脱层形式下MWCNT/NR复合材料传感行为:(a)(a’)恒应变0%,下脱层;(b)恒应变10%,下脱层;(c)恒应变20%,下脱层;(d)恒应变20%,上下脱层;(e)恒应变30%,上下脱层

    Figure  7.  Sensing behavior of MWCNT/NR composite at different delamination forms: bottom delamination: (a)(a’) constant strain 0%; (b) constant strain 10%; (c) constant strain 20%, top and bottom delamination: (d) constant strain 20%; (e) constant strain 30%

    图  8  不同脱层形式下MWCNT/NR复合材料形变及导电网络变化(图例单位:mm):(a)(b)(c)下脱层;(d)(e)(f)上下脱层(灰色阴影表示位移前导电网络结构;红色箭头表示位移较大的MWCNT)

    Figure  8.  Deformation and conductivity network changes of MWCNT/NR composites under different delamination forms (Legend unit: mm): (a)(b)(c) bottom delamination; (d)(e)(f) top and bottom delamination (the gray shadow represents the structure of conductive network without displacement; the red arrow represents the MWCNT with large displacement)

    图  9  下脱层MWCNT/NR复合材料不同位置的MWCNT间相对位移与加载历程曲线:(a)试样外围;(b)试样中部

    Figure  9.  The curve of relative displacement between MWCNTs at different location and loading process for MWCNT/NR composite under bottom delamination: (a) sample periphery, (b) sample center

    图  10  MWCNT/NR复合材料的理论模型与实验拟合结果及其预测曲线(a)、模型预测误差分布(b)、模型拟合参数(c)

    Figure  10.  Fitting result of theoretical model and experiment and its prediction curve (a), prediction error distribution (b), fitting parameters (c) of model of MWCNT/NR composite

    E—Tuning parameter; εc—Yield strain; m—Parameters related to fractal structure of conductive network; $ {n}_{\epsilon }— $Exponential scale; $ \zeta —{k}_{2}{N}_{0} $, $ {k}_{2} $—Constants related to matrix properties and conductive network, $ {N}_{0} $—Number of initial conductive networks per unit volume, $ {\eta }_{1},{\eta }_{2}andk— $Constants associated with the destruction and reconstruction of the conductive network.

    图  11  不同恒应变下MWCNT/NR复合材料导电通路(CP)(a)和隧穿距离(TD)(b)的变化

    Figure  11.  Change of conductive paths (CP) (a) and tunning distance (TD) (b) of MWCNT/NR composite under different constant strain

    表  1  公式(25)的拟合参数

    Table  1.   The fitting parameters of Equation (25).

    Constant strainβ1β2β3β4VδVR2
    0%0.0241.14910.918−125.490−0.114−0.4120.99
    5%0.106− 5.376101.476−456.155−0.125−1.6890.99
    10%0.063−9.600358.092−2333.490−0.145−0.8680.99
    20%0.0496.538408.723−3570.640−0.376−0.2620.99
    30%− 0.25650.40972.143−2806.220−0.5170.9890.99
    Notes: β1, β2, β3, β4 are the parameters related to the number of conductive paths, V and δ are constant, R2 represents the goodness of fit for equation (25).
    下载: 导出CSV
  • [1] MARKOU A A, OLIVETO G, ATHANASIOU A. Response simulation of hybrid base isolation systems under earthquake excitation[J]. Soil Dynamics and Earthquake Engineering,2016,84:120-133. doi: 10.1016/j.soildyn.2016.02.003
    [2] HU K, ZHOU Y, JIANG L, et al. A mechanical tension-resistant device for lead rubber bearings[J]. Engineering Structures,2017,152:238-250. doi: 10.1016/j.engstruct.2017.09.006
    [3] KANG D, PIKHITSA P V, CHOI Y W, et al. Ultra-sensitive mechanical crack-based sensor inspired by the spider sensory system[J]. Nature,2014,516(7530):222-226. doi: 10.1038/nature14002
    [4] LI X, CUI Q, LIU Y, et al. An effective scheduling scheme for CoMP in heterogeneous scenario//[J]. 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC). IEEE,2012:870-874.
    [5] O'DRISCOLL D P, MCMAHON S, GARCIA J, et al. Printable G-putty for frequency- and rate-independent, high-performance strain sensors[J]. Small,2021,17(23):e2006542. doi: 10.1002/smll.202006542
    [6] TANG X, YANG W, YIN S, et al. Controllable graphene wrinkle for a high-performance flexible pressure sensor[J]. ACS Applied Materials & Interfaces,2021,13(17):20448-20458.
    [7] WANG J, LIU Y, WANG S, et al. Molybdenum disulfide enhanced polyacrylamide-acrylic acid-Fe3+ ionic conductive hydrogel with high mechanical properties and anti-fatigue abilities as strain sensors[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,610:125692. doi: 10.1016/j.colsurfa.2020.125692
    [8] XU K, WANG Y, ZHANG B, et al. Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity[J]. Composites Communications,2021,24:100677. doi: 10.1016/j.coco.2021.100677
    [9] YANG G, TIAN M Z, HUANG P, et al. Flexible pressure sensor with a tunable pressure-detecting range for various human motions[J]. Carbon,2021,173:736-743. doi: 10.1016/j.carbon.2020.11.066
    [10] PARK J, LEE Y, HONG J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J]. ACS nano,2014,8(5):4689-4697. doi: 10.1021/nn500441k
    [11] WANG Y, WANG L, YANG T, et al. Wearable and highly sensitive graphene strain sensors for human motion monitoring[J]. Advanced Functional Materials,2014,24(29):4666-4670. doi: 10.1002/adfm.201400379
    [12] ZHAN Y, MENG Y, LI Y. Electric heating behavior of flexible graphene/natural rubber conductor with self-healing conductive network[J]. Materials Letters,2017,192:115-118. doi: 10.1016/j.matlet.2016.12.045
    [13] THOSTENSON E T, REN Z, CHOU T W. Advances in the science and technology of carbon nanotubes and their composites: a review[J]. Composites Science and Technology,2001,61:1899-1912. doi: 10.1016/S0266-3538(01)00094-X
    [14] LIU X, GUO R, LIN Z, et al. Resistance-strain sensitive rubber composites filled by multi-walled carbon nanotubes for structural deformation monitoring[J]. Nanomaterials and Nanotechnology, 2021, 11: 184798042110113.
    [15] LIU H, DONG M, HUANG W, et al. Lightweight conductive graphene/thermoplastic polyure-thane foams with ultrahigh compressibility for piezoresistive sensing[J]. Journal of Materials Chemistry C,2017,5(1):73-83. doi: 10.1039/C6TC03713E
    [16] CHO H, LEE H, LEE S, et al. Reduced graphene oxide-based wearable and bio-electrolyte triggered pressure sensor with tunable sensitivity[J]. Ceramics International,2021,11(11):6685.
    [17] KIRKPATRICK S. Percolation and conduction[J]. Review of Modern Physics,1973,45(4):574-588. doi: 10.1103/RevModPhys.45.574
    [18] EZQUERRA T A, KULESCZA M, BALTÁ-CALLEJA F J. Electrical transport in polyethylene-graphite composite materials[J]. Synthetic Metals,1991,41(3):915-920. doi: 10.1016/0379-6779(91)91526-G
    [19] YANG X, SUN L, ZHANG C, et al. Modulating the sensing behaviors of poly(styrene-ethylene-butylene- styrene)/carbon nanotubes with low-dimensional fillers for large deformation sensors[J]. Composites Part B:Engineering,2019,160(MAR.1):605-614.
    [20] SELVAN NT, ESHWARAN S B, DAS A, et al. Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications[J]. Sensors and Actuators A:Physical,2016,239:102-113. doi: 10.1016/j.sna.2016.01.004
    [21] YANG H, YAO X, ZHENG Z, et al. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing[J]. Composites Science and Technology,2018,167:371-378. doi: 10.1016/j.compscitech.2018.08.022
    [22] LIU X, GUO R, LI R, et al. Effect of the processing on the resistance-strain response of multiwalled carbon nanotube/natural rubber composites for use in large deformation sensors[J]. Nanomaterials,2021,11(7):1845. doi: 10.3390/nano11071845
    [23] WU G, ASAI S, ZHANG C, et al. A delay of percolation time in carbon-black-filled conductive polymer composites[J]. Journal of Applied Physics,2000,88(3):1480-1487. doi: 10.1063/1.373843
    [24] CAO Q, SONG Y, TAN Y, et al. Thermal-induced percolation in high-density polyethylene/carbon black composites[J]. Polymer,2009,50(26):6350-6356. doi: 10.1016/j.polymer.2009.10.059
    [25] ALLEN P, PATRICK C R. Polymer chemistry. (Book reviews: kinetics and mechanisms of polymerization reactions. applications of physicochemical principles)[J]. Science,1975,187:1071-1072. doi: 10.1126/science.187.4181.1071.b
    [26] GRAESSLEY W W. The entanglement concept in polymer rheology[M]. Springer Berlin Heidelberg, 1974.
    [27] BOLAND C S, KHAN U, RYAN G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites[J]. Science,2016,354(6317):1257-1260. doi: 10.1126/science.aag2879
    [28] ZHANG X, PAN Y, ZHENG Q, et al. Time dependence of piezoresistance for the conductor-filled polymer composites[J]. Journal of Polymer Science Part B Polymer Physics,2015,38(21):2739-2749.
    [29] SIMMONS J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. Journal of Applied Physics,1963,34(6):1793-1803. doi: 10.1063/1.1702682
    [30] SHENG P, SICHEL E K, GITTLEMAN J I. Fluctuation-induced tunneling conduction in carbon-polyvinylchloride composites[J]. Physical Review Letters,1978,40(18):1197-1200. doi: 10.1103/PhysRevLett.40.1197
  • 加载中
计量
  • 文章访问数:  134
  • HTML全文浏览量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 录用日期:  2022-01-12
  • 修回日期:  2022-01-09
  • 网络出版日期:  2022-02-16

目录

    /

    返回文章
    返回