Preparation and performance of balsa wood-based carbon sponge /TPU composite pressure sensor
-
摘要:
近年来,具有三维网状结构的柔性压力传感器展现出高度可逆压缩性和良好灵敏性等特点,其复杂的网络形态也有利于构建稳定的导电网络,在可穿戴电子设备、医疗诊断、人体健康监测等方面显示出巨大的应用前景。三维导电网络的构建和传感性能的优化成为目前柔性压力传感器的一个研究难点,因此本文针对柔性压力传感器的制备和性能提升进行了深入研究。本文以天然生物质材料轻木(Balsa Wood)为原材料,将纤维素酸性催化热解机理与轻木的碳化过程相结合,采用催化处理和多步碳化工艺,获得了高碳化得率(20.15%)的三维层状结构碳海绵(Carbonized Wood Sponge,CWS),并通过TPU弹性体材料的浸渍,得到具有良好导电性和高度可逆压缩性的CWS/TPU复合传感层。将CWS/TPU复合材料作为导电传感元件,覆上电极后可制成柔性压力传感器。结果表明,该传感器压缩应变可达60%,在0-4 kPa压力范围内,其最高压力传感灵敏度(S)达12.87 kPa-1,并且在超过5000次的压缩/释放周期后仍具有良好的传感稳定性,表现出良好的传感性能和环境稳定性。在实际应用方面,将其安装在人体的多个关节处,可以实时监测其运动状态,制备的传感器实现了对人体运动和生理信号的健康监测。 轻木基碳海绵/TPU复合压力传感器 Abstract: In recent years, flexible pressure sensors with three-dimensional mesh structure show high reversible compressibility and good sensitivity, and their complex network shape is also conducive to the construction of stable conductive network, which is widely used in human health monitoring, wearable devices, medical diagnosis and other fields. In this study, a carbonized wood sponge(CWS)/TPU composite pressure sensor with three-dimensional layered structure based on natural balsa wood was designed to construct a stable three-dimensional conductive network and optimize the sensing performance. The catalytic treatment, carbonization process, sensing performance and human applicability of the sensor were characterized. The results show that the carbon yield of the light wood-based CWS/TPU sensor by catalytic treatment and high temperature carbonization can reach 20.15%, the compressive strain can reach at 60%, and the maximum pressure sensing sensitivity (S) can reach 12.87 kPa−1 in the pressure range of 0-4 kPa. Moreover, the sensor still has good sensing stability and environmental stability even after 5000 compression/release cycles, showing good sensing performance. The sensor was successfully used to monitor hand movement, walking and pulse in real time, which shows the potential application value of the sensor in motion and health monitoring. -
图 6 CWS/TPU复合材料的力学性能:(a)CWS/TPU显示其高度可逆压缩性的示意图;(b)不同碳化温度下CWS/TPU在60%应变下的压缩应力-应变曲线图;(c)CWS/TPU在不同应变下的压缩应力-应变曲线图,插图为0-20%压缩范围内的放大图;(d)CWS/TPU在50%应变下循环5次下的压缩应力-应变曲线图
Figure 6. Mechanical properties of CWS/TPU composites: (a) Schematic diagram of CWS/TPU showing its highly reversible compressibility; (b) Compressive stress-strain curves of CWS/TPU under 60% strain at different carbonization temperatures; (c) Compressive stress-strain curves of CWS/TPU at different strains, inset is enlarged image in the 0-20% compression range; (d) Compressive stress-strain curves of CWS/TPU cycling 5 times at 50% strain
图 7 CWS/TPU柔性压力传感器的压阻传感性能:(a)传感器结构示意图;(b)传感器在不同压力下的电流响应;(c)循环前后传感器在不同施加压力下电阻的相对变化(ΔR/R0);(d)传感器在500 Pa的加载和卸载压力下的响应和恢复时间;(e)传感器的最低检测限;(f)本文CWS/TPU压力传感器的灵敏度与其他文献中三维结构传感器进行对比[24; 26; 28-30]
Figure 7. Piezoresistive sensing performance of CWS/TPU flexible pressure sensor: (a) Schematic diagram of sensor structure; (b) The current response of the sensor at different pressures; (c) The relative change in the resistance of the sensor under different applied pressures (ΔR/R0) before and after cycle; (d) The response and recovery time of the sensor upon loading and unloading pressure of 500 Pa; (e) The minimum detection limit of the sensor; (f) The sensitivity of the CWS/TPU pressure sensor is compared with other three-dimensional structural sensors[24; 26; 28-30]
图 8 CWS/TPU传感器的稳定性:(a)传感器超过5000次循环的电阻变化(插图为5000次循环后的三维碳层结构SEM图);(b)循环后1 kPa压力下传感器在不同放置时间、温度、湿度的电阻相对变化(ΔR/R0)
Figure 8. The stability of CWS/TPU sensor: (a) Sensing stability of the sensor over 5000 cycles (insert is the SEM image of three-dimensional carbon layer structure after cycling); (b) The relative change in the resistance of the sensor at different placement time, temperature and humidity with 1 kPa pressure after cycling.
图 9 CWS/TPU传感器在人体健康监测方面的应用:(a)CWS/TPU传感器与LED灯连接的照片,以可视化压缩和释放CWS时的亮度变化(b)指关节弯曲;(c)腕关节弯曲;(d)模拟行走过程;(e)脉搏跳动
Figure 9. Applications of CWS/TPU sensor in human health monitoring: (a) Photographs of the CWS/TPU sensor connected with an LED lamp to visualize the brightness change upon compressing and releasing the conducive sponge. (b) Knuckle bending; (c) Bending of the wrist joint; (d) Simulating the walking process; (e) Pulse beating.
-
[1] CHORTOS A, LIU J, BAO Z. Pursuing prosthetic electronic skin[J]. Nature Materials,2016,15(9):937-950. doi: 10.1038/nmat4671 [2] WANG X, LIU Z, ZhANG T. Flexible sensing electronics for wearable/attachable health monitoring[J]. Small,2017,13(25):1602790. doi: 10.1002/smll.201602790 [3] LI S, XIAO X, HU J, et al. Recent advances of carbon-based flexible strain sensors in physiological signal monitoring[J]. ACS Applied Electronic Materials,2020,2(8):2282-2300. doi: 10.1021/acsaelm.0c00292 [4] 胡海龙, 马亚伦, 张帆, et al. 柔性纳米复合材料压阻式应变传感器的研究进展[J]. 复合材料学报, 2022, 39(1):1-22.HU Hailong, MA Yalun, ZHANG Fan, et al. Research progress of flexible nanocomposites for piezoresistive strain sensors[J]. Acta Materiae Compositae Sinica,2022,39(1):1-22(in Chinese). [5] GAO Y, XIAO T, LI Q, et al. Flexible microstructured pressure sensors: design, fabrication and applications[J]. Nanotechnology,2022,33(32):322002. doi: 10.1088/1361-6528/ac6812 [6] YANG R, CHANG Y, YANG X, et al. Electromechanical sorting method for improving the sensitivity of micropyramid carbon nanotube film flexible force sensor[J]. Composites Part B:Engineering,2021,217:108818. doi: 10.1016/j.compositesb.2021.108818 [7] YANG S, ZHANG C, Ji J, et al. Performance improvement of flexible pressure sensor based on ordered hierarchical structure array[J]. Advanced Materials Technologies,2022:2200309. [8] ZHANG X, HU Y, GU H, et al. A highly sensitive and cost-effective flexible pressure sensor with micropillar arrays fabricated by novel metal-assisted chemical etching for wearable electronics[J]. Advanced Materials Technologies,2019,4(9):1900367. doi: 10.1002/admt.201900367 [9] JIAN M, XIA K, WANG Q, et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures[J]. Advanced Functional Materials,2017,27(9):1606066. doi: 10.1002/adfm.201606066 [10] SHI J, WANG L, DAI Z, et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range[J]. Small,2018,14(27):e1800819. doi: 10.1002/smll.201800819 [11] TANG X, WU C, GAN L, et al. Multilevel microstructured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins[J]. Small,2019,15(10):e1804559. doi: 10.1002/smll.201804559 [12] DING Y, XU T, ONYILAGHA O, et al. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3 D monolithic conductive sponges[J]. ACS Applied Materials Interfaces,2019,11(7):6685-6704. doi: 10.1021/acsami.8b20929 [13] HU Y, CHEN Z, ZHUO H, et al. Advanced compressible and elastic 3 D monoliths beyond hydrogels[J]. Advanced Functional Materials,2019,29(44):1904472. doi: 10.1002/adfm.201904472 [14] WANG X, YU J, CUI Y, et al. Research progress of flexible wearable pressure sensors[J]. Sensors and Actuators A:Physical,2021,330:112838. doi: 10.1016/j.sna.2021.112838 [15] CHEN S, CHEN Y, LI D, et al. Flexible and sensitivity-adjustable pressure sensors based on carbonized bacterial nanocellulose/wood-derived cellulose nanofibril composite aerogels[J]. ACS Applied Materials Interfaces,2021,13(7):8754-8763. doi: 10.1021/acsami.0c21392 [16] 苟巧林, 李燕, 李宏章, et al. 碳纳米管复合亚麻纤维柔性传感材料的制备[J]. 复合材料学报, 2021, 38(7):2244-2253.GOU Qiaolin, LI Yan, LI Hongzhang, et al. Preparation of flexible sensing material of flax fiber combined carbon nanotubes[J]. Acta Materiae Compositae Sinica,2021,38(7):2244-2253(in Chinese). [17] ChANG S, LI J, HE Y, et al. A high-sensitivity and low-hysteresis flexible pressure sensor based on carbonized cotton fabric[J]. Sensors and Actuators A:Physical,2019,294:45-53. doi: 10.1016/j.sna.2019.05.011 [18] GAO L, ZHU C, LI L, et al. All paper-based flexible and wearable piezoresistive pressure sensor[J]. ACS Applied Materials & Interfaces,2019,11(28):25034-25042. [19] LIU X, LI Y, SUN X, et al. Off/on switchable smart electromagnetic interference shielding aerogel[J]. Matter,2021,4(5):1735-1747. doi: 10.1016/j.matt.2021.02.022 [20] GUAN H, MENG J, CHENG Z, et al. Processing natural wood into a high-performance flexible pressure sensor[J]. ACS Applied Materials & Interfaces,2020,12(41):46357-46365. [21] TAN Y, LIU X, TANG W, et al. Flexible pressure sensors based on bionic microstructures: from plants to animals[J]. Advanced Materials Interfaces,2022,9(5):2101312. doi: 10.1002/admi.202101312 [22] GUAN H, CHENG Z, WANG X. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano,2018,12(10):10365-10373. doi: 10.1021/acsnano.8b05763 [23] ZHU M, YAN X, LEI Y, et al. An ultrastrong and antibacterial silver nanowire/aligned cellulose scaffold composite film for electromagnetic interference shielding[J]. ACS Applied Materials Interfaces,2022,14(12):14520-14531. doi: 10.1021/acsami.1c23515 [24] GUAN H, DAI X, NI L, et al. Highly elastic and fatigue-resistant graphene-wrapped lamellar wood sponges for high-performance piezoresistive sensors[J]. ACS Sustainable Chemistry & Engineering,2021,9(45):15267-15277. [25] CHEN C, SONG J, ZHU S, et al. Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge[J]. Chem,2018,4(3):544-554. doi: 10.1016/j.chempr.2017.12.028 [26] HUANG Y, CHEN Y, FAN X, et al. Wood derived composites for high sensitivity and wide linear-range pressure sensing[J]. Small,2018:e1801520. [27] 吴琪琳, 何敬宗, 赵雪, 等. 一种阻燃纤维素基预氧化纤维制品及其制备方法[P]. 中国专利, ZL 202111323645.5, 2022-08-12.WU Qilin, HE Jingzong, ZHAO Xue, et al. The invention relates to a flame retardant cellulose based preoxidized fiber product and a preparation method thereof[P]. Chinese patent, ZL 202111323645.5, 2022-08-12(in Chinese). [28] ZHAI J, ZHANG Y, CUI C, et al. Flexible waterborne polyurethane/cellulose nanocrystal composite aerogels by integrating graphene and carbon nanotubes for a highly sensitive pressure sensor[J]. ACS Sustainable Chemistry & Engineering,2021,9(42):14029-14039. [29] LUO R, LI Z, WU X, et al. Super durable graphene aerogel inspired by deep-sea glass sponge skeleton[J]. Carbon,2022,191:153-163. doi: 10.1016/j.carbon.2022.01.055 [30] LI G, CHU Z, GONG X, et al. A wide-range linear and stable piezoresistive sensor based on methylcellulose-reinforced, lamellar, and wrinkled graphene erogels[J]. Advanced Materials Technologies,2022,7(5):2101021. doi: 10.1002/admt.202101021 -

计量
- 文章访问数: 136
- HTML全文浏览量: 134
- 被引次数: 0