留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻木基碳海绵/TPU复合压力传感器的制备与性能

刘玉慧 柳仕林 吴聪影 何敬宗 吴琪琳

刘玉慧, 柳仕林, 吴聪影, 等. 轻木基碳海绵/TPU复合压力传感器的制备与性能[J]. 复合材料学报, 2023, 40(10): 5716-5726. doi: 10.13801/j.cnki.fhclxb.20230202.001
引用本文: 刘玉慧, 柳仕林, 吴聪影, 等. 轻木基碳海绵/TPU复合压力传感器的制备与性能[J]. 复合材料学报, 2023, 40(10): 5716-5726. doi: 10.13801/j.cnki.fhclxb.20230202.001
LIU Yuhui, LIU Shilin, WU Congying, et al. Preparation and performance of balsa wood-based carbon sponge/TPU composite pressure sensor[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5716-5725. doi: 10.13801/j.cnki.fhclxb.20230202.001
Citation: LIU Yuhui, LIU Shilin, WU Congying, et al. Preparation and performance of balsa wood-based carbon sponge/TPU composite pressure sensor[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5716-5725. doi: 10.13801/j.cnki.fhclxb.20230202.001

轻木基碳海绵/TPU复合压力传感器的制备与性能

doi: 10.13801/j.cnki.fhclxb.20230202.001
基金项目: 国家自然科学基金重大项目(52090033;52090030)
详细信息
    通讯作者:

    吴琪琳,博士,教授,博士生导师,研究方向为高性能纤维及其复合材料 E-mail: wql@dhu.edu.cn

  • 中图分类号: TB33

Preparation and performance of balsa wood-based carbon sponge/TPU composite pressure sensor

Funds: National Natural Science Foundation of China (52090033; 52090030)
  • 摘要: 近年来,具有三维网状结构的柔性压力传感器展现出高度可逆压缩性和良好灵敏性等特点,其复杂的网络形态也有利于构建稳定的导电网络,广泛应用于人体健康监测、可穿戴设备、医疗诊断等领域。本文围绕构建稳定的三维导电网络和传感性能优化为目标,设计了一种基于天然轻木的具有三维层状结构的碳海绵(CWS)/热塑性聚氨酯弹性体(TPU)复合压力传感器,并对该传感器的催化处理、碳化工艺、传感性能及人体适用性进行表征。结果表明:通过催化处理和高温碳化得到的轻木基CWS/TPU复合压力传感器,其碳化得率达到20.15%,压缩应变可达60%,在0~4 kPa压力范围内,最高压力传感灵敏度达12.87 kPa−1,并且在超过5000次的压缩/释放周期后仍具有良好的传感稳定性和环境稳定性,表现出良好的传感性能。应用该传感器成功地对手部活动、行走和脉搏进行了实时监测,显示了该传感器在运动和健康监测方面潜在的应用价值。

     

  • 图  1  碳海绵(CWS)/热塑性聚氨酯弹性体(TPU)柔性压力传感器的制备:(a) 酸性催化CWS的制备过程;(b) 碳化工艺图;(c) 传感器结构示意图

    Figure  1.  Preparation of carbonized wood sponge (CWS)/thermoplastic polyurethane elastomers (TPU) flexible pressure sensor: (a) Preparation process of acidic catalytic CWS; (b) Carbonization program; (c) Schematic diagram of the sensor structure

    图  2  化学处理和900℃碳化前后的形貌变化:((a1)~(a3)) 天然轻木;((b1)~(b3)) 木海绵(WS);((c1)~(c3)) CWS

    Figure  2.  Morphological changes before and after chemical treatment and carbonization at 900℃: ((a1)-(a3)) Natural balsa wood; ((b1)-(b3)) Wood sponge (WS); ((c1)-(c3)) CWS

    图  3  不同处理条件下的红外图谱:(a) 原木和WS;(b) 催化处理前后的WS

    Figure  3.  FTIR spectra under different treatment conditions: (a) Nature wood and WS; (b) WS before and after catalytic treatment

    图  4  (a) 催化处理前后WS的TG和DTG曲线;(b) 不同碳化温度下CWS的碳化得率

    Figure  4.  (a) TG and DTG curves of WS before and after catalytic treatment; (b) Carbon yield of CWS at different carbonization temperatures

    图  5  不同碳化温度下CWS的拉曼图谱:(a) 直接碳化;(b) 酸性催化后碳化

    Figure  5.  Raman spectra of CWS at different carbonization temperatures: (a) Directly carbonized; (b) Carbonized after acid catalysis

    ID/IG—Area ratio of peak D to peak G

    图  6  CWS/TPU复合材料的力学性能:(a) 高度可逆压缩性示意图;(b) 不同碳化温度下、60%应变下的压缩应力-应变曲线;(c) 不同应变下的压缩应力-应变曲线(插图为0%~20%压缩范围内的放大图);(d) 在50%应变下循环5次的压缩应力-应变曲线

    Figure  6.  Mechanical properties of CWS/TPU composites: (a) Schematic diagram of highly reversible compressibility; (b) Compressive stress-strain curves under 60% strain at different carbonization temperatures; (c) Compressive stress-strain curves at different strains (Inset is enlarged image in the 0%-20% compression range); (d) Compressive stress-strain curves cycling 5 times at 50% strain

    图  7  CWS/TPU柔性压力传感器的压阻传感性能:(a) 传感器结构示意图;(b) 传感器在不同压力下的电流响应;(c) 循环前后传感器在不同施加压力下电阻的相对变化(ΔR/R0);(d) 传感器在500 Pa的加载和卸载压力下的响应和恢复时间;(e) 传感器的最低检测限;(f) 本文制备的CWS/TPU压力传感器的灵敏度与其他文献中三维结构传感器进行对比[24, 26, 28-30]

    Figure  7.  Piezoresistive sensing performance of CWS/TPU flexible pressure sensor: (a) Schematic diagram of sensor structure; (b) Current response of the sensor at different pressures; (c) Relative change in the resistance (ΔR/R0) of the sensor under different applied pressures before and after cycle; (d) Response and recovery time of the sensor upon loading and unloading pressure of 500 Pa; (e) Minimum detection limit of the sensor; (f) Sensitivity of the CWS/TPU pressure sensor prepared in this paper compared with other three-dimensional structural sensors[24, 26, 28-30]

    S—Sensitivity; R2—Correlation coefficient; GR—Graphene; CNTs—Carbon nanotbes; CNC—Cellulose nanocrystal composite; rGO—Reduced graphene oxide; CMC—Carboxymethyl cellulose; MC—Methyl cellulose; PDMS—Polydimethylsiloxane

    图  8  CWS/TPU传感器的稳定性:(a) 传感器超过5000次循环的电阻变化(插图为5000次循环后的三维碳层结构SEM图像);(b) 循环后1 kPa压力下传感器在不同放置时间、温度、湿度的电阻相对变化

    Figure  8.  Stability of CWS/TPU sensor: (a) Resistance change of the sensor over 5000 cycles (Insert is SEM image of 3D carbon layer structure after 5000 cycles); (b) Relative change in the resistance of the sensor at different placement time, temperature and humidity with 1 kPa pressure after cycling

    图  9  CWS/TPU传感器在人体健康监测方面的应用:(a) CWS/TPU传感器与LED灯连接的照片,以可视化压缩和释放CWS时的亮度变化;(b) 指关节弯曲;(c) 腕关节弯曲;(d) 模拟行走过程;(e) 脉搏跳动

    Figure  9.  Applications of CWS/TPU sensor in human health monitoring: (a) Photographs of the CWS/TPU sensor connected with an LED lamp to visualize the brightness change upon compressing and releasing the conductive sponge; (b) Knuckle bending; (c) Bending of the wrist joint; (d) Simulating the walking process; (e) Pulse beating

  • [1] CHORTOS A, LIU J, BAO Z. Pursuing prosthetic electronic skin[J]. Nature Materials,2016,15(9):937-950. doi: 10.1038/nmat4671
    [2] WANG X W, LIU Z, ZHANG T. Flexible sensing electronics for wearable/attachable health monitoring[J]. Small,2017,13(25):1602790. doi: 10.1002/smll.201602790
    [3] LI S, XIAO X, HU J, et al. Recent advances of carbon-based flexible strain sensors in physiological signal monitoring[J]. ACS Applied Electronic Materials,2020,2(8):2282-2300. doi: 10.1021/acsaelm.0c00292
    [4] 胡海龙, 马亚伦, 张帆, 等. 柔性纳米复合材料压阻式应变传感器的研究进展[J]. 复合材料学报, 2022, 39(1):1-22.

    HU Hailong, MA Yalun, ZHANG Fan, et al. Research progress of flexible nanocomposites for piezoresistive strain sensors[J]. Acta Materiae Compositae Sinica,2022,39(1):1-22(in Chinese).
    [5] GAO Y, XIAO T, LI Q, et al. Flexible microstructured pressure sensors: Design, fabrication and applications[J]. Nanotechnology,2022,33(32):322002. doi: 10.1088/1361-6528/ac6812
    [6] YANG R, CHANG Y, YANG X, et al. Electromechanical sorting method for improving the sensitivity of micropyramid carbon nanotube film flexible force sensor[J]. Composites Part B: Engineering,2021,217:108818. doi: 10.1016/j.compositesb.2021.108818
    [7] YANG S, ZHANG C, JI J, et al. Performance improvement of flexible pressure sensor based on ordered hierarchical structure array[J]. Advanced Materials Technologies,2022,7(11):2200309. doi: 10.1002/admt.202200309
    [8] ZHANG X, HU Y, GU H, et al. A highly sensitive and cost-effective flexible pressure sensor with micropillar arrays fabricated by novel metal-assisted chemical etching for wearable electronics[J]. Advanced Materials Technologies,2019,4(9):1900367. doi: 10.1002/admt.201900367
    [9] JIAN M, XIA K, WANG Q, et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures[J]. Advanced Functional Materials,2017,27(9):1606066. doi: 10.1002/adfm.201606066
    [10] SHI J, WANG L, DAI Z, et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range[J]. Small,2018,14(27):1800819. doi: 10.1002/smll.201800819
    [11] TANG X, WU C, GAN L, et al. Multilevel microstructured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins[J]. Small,2019,15(10):1804559. doi: 10.1002/smll.201804559
    [12] DING Y, XU T, ONYILAGHA O, et al. Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges[J]. ACS Applied Materials & Interfaces,2019,11(7):6685-6704. doi: 10.1021/acsami.8b20929
    [13] HU Y, CHEN Z, ZHUO H, et al. Advanced compressible and elastic 3D monoliths beyond hydrogels[J]. Advanced Functional Materials,2019,29(44):1904472. doi: 10.1002/adfm.201904472
    [14] WANG X, YU J, CUI Y, et al. Research progress of flexible wearable pressure sensors[J]. Sensors and Actuators A: Physical,2021,330:112838. doi: 10.1016/j.sna.2021.112838
    [15] CHEN S, CHEN Y, LI D, et al. Flexible and sensitivity-adjustable pressure sensors based on carbonized bacterial nanocellulose/wood-derived cellulose nanofibril composite aerogels[J]. ACS Applied Materials & Interfaces,2021,13(7):8754-8763. doi: 10.1021/acsami.0c21392
    [16] 苟巧林, 李燕, 李宏章, 等. 碳纳米管复合亚麻纤维柔性传感材料的制备[J]. 复合材料学报, 2021, 38(7):2244-2253.

    GOU Qiaolin, LI Yan, LI Hongzhang, et al. Preparation of flexible sensing material of flax fiber combined carbon nanotubes[J]. Acta Materiae Compositae Sinica,2021,38(7):2244-2253(in Chinese).
    [17] CHANG S N, LI J, HE Y, et al. A high-sensitivity and low-hysteresis flexible pressure sensor based on carbonized cotton fabric[J]. Sensors and Actuators A: Physical,2019,294:45-53. doi: 10.1016/j.sna.2019.05.011
    [18] GAO L, ZHU C, LI L, et al. All paper-based flexible and wearable piezoresistive pressure sensor[J]. ACS Applied Materials & Interfaces,2019,11(28):25034-25042.
    [19] LIU X, LI Y, SUN X, et al. Off/on switchable smart electromagnetic interference shielding aerogel[J]. Matter,2021,4(5):1735-1747. doi: 10.1016/j.matt.2021.02.022
    [20] GUAN H, MENG J, CHENG Z, et al. Processing natural wood into a high-performance flexible pressure sensor[J]. ACS Applied Materials & Interfaces,2020,12(41):46357-46365.
    [21] TAN Y, LIU X, TANG W, et al. Flexible pressure sensors based on bionic microstructures: From plants to animals[J]. Advanced Materials Interfaces,2022,9(5):2101312. doi: 10.1002/admi.202101312
    [22] GUAN H, CHENG Z, WANG X. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents[J]. ACS Nano,2018,12(10):10365-10373. doi: 10.1021/acsnano.8b05763
    [23] ZHU M, YAN X, LEI Y, et al. An ultrastrong and antibacterial silver nanowire/aligned cellulose scaffold composite film for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2022,14(12):14520-14531. doi: 10.1021/acsami.1c23515
    [24] GUAN H, DAI X, NI L, et al. Highly elastic and fatigue-resistant graphene-wrapped lamellar wood sponges for high-performance piezoresistive sensors[J]. ACS Sustainable Chemistry & Engineering,2021,9(45):15267-15277.
    [25] CHEN C, SONG J, ZHU S, et al. Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge[J]. Chem,2018,4(3):544-554. doi: 10.1016/j.chempr.2017.12.028
    [26] HUANG Y, CHEN Y, FAN X Y, et al. Wood derived composites for high sensitivity and wide linear-range pressure sensing[J]. Small,2018,14(31):1801520. doi: 10.1002/smll.201801520
    [27] 吴琪琳, 何敬宗, 赵雪, 等. 一种阻燃纤维素基预氧化纤维制品及其制备方法: 中国专利, ZL 202111323645.5[P]. 2022-08-12.

    WU Qilin, HE Jingzong, ZHAO Xue, et al. The invention relates to a flame retardant cellulose based preoxidized fiber product and a preparation method thereof: Chinese Patent, ZL 202111323645.5[P]. 2022-08-12(in Chinese).
    [28] ZHAI J, ZHANG Y, CUI C, et al. Flexible waterborne polyurethane/cellulose nanocrystal composite aerogels by integrating graphene and carbon nanotubes for a highly sensitive pressure sensor[J]. ACS Sustainable Chemistry & Engineering,2021,9(42):14029-14039.
    [29] LUO R, LI Z, WU X, et al. Super durable graphene aerogel inspired by deep-sea glass sponge skeleton[J]. Carbon,2022,191:153-163. doi: 10.1016/j.carbon.2022.01.055
    [30] LI G, CHU Z, GONG X, et al. A wide-range linear and stable piezoresistive sensor based on methylcellulose-reinforced, lamellar, and wrinkled graphene aerogels[J]. Advanced Materials Technologies,2022,7(5):2101021. doi: 10.1002/admt.202101021
  • 加载中
图(9)
计量
  • 文章访问数:  623
  • HTML全文浏览量:  411
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 修回日期:  2022-12-04
  • 录用日期:  2023-01-09
  • 网络出版日期:  2023-02-02
  • 刊出日期:  2023-10-15

目录

    /

    返回文章
    返回