留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2对硫铝酸盐混凝土负温力学性能与微观结构的影响

李恒 王正君 杜英欣

李恒, 王正君, 杜英欣. 纳米SiO2对硫铝酸盐混凝土负温力学性能与微观结构的影响[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 李恒, 王正君, 杜英欣. 纳米SiO2对硫铝酸盐混凝土负温力学性能与微观结构的影响[J]. 复合材料学报, 2024, 42(0): 1-11.
LI Heng, WANG Zhengjun, DU Yingxin. Effect of nano-SiO2 on negative temperature mechanical properties and microstructure of sulfoaluminate concrete[J]. Acta Materiae Compositae Sinica.
Citation: LI Heng, WANG Zhengjun, DU Yingxin. Effect of nano-SiO2 on negative temperature mechanical properties and microstructure of sulfoaluminate concrete[J]. Acta Materiae Compositae Sinica.

纳米SiO2对硫铝酸盐混凝土负温力学性能与微观结构的影响

基金项目: 黑龙江省重点研发计划指导类科研项目(GZ20220138);黑龙江省生态环境厅科研项目(HST2022GF004)
详细信息
    通讯作者:

    王正君,博士,教授,硕士生导师,研究方向为水工混凝土材料 E-mail:1995073@hlju.edu.cn

  • 中图分类号: TU528.3

Effect of nano-SiO2 on negative temperature mechanical properties and microstructure of sulfoaluminate concrete

Funds: Scientific research projects under the guidance category of the Heilongjiang Provincial Key R&D Programme (GZ20220138); Scientific research projects of the Heilongjiang Provincial Department of Ecology and Environment (HST2022GF004)
  • 摘要: 为保证混凝土在负温环境下的安全可靠,采用力学性能测试、超声波波速测试、扫描电子显微镜(SEM)、X射线衍射(XRD)结合Rietveld精修定量分析等方法,研究了恒负温(−10℃)养护条件下不同纳米SiO2(NS)掺量对硫铝酸盐混凝土性能的影响。结果表明:硫铝酸盐混凝土强度随NS掺量的增加,先升高后降低,在2%NS掺量时强度达到最大;当养护温度从负温变为常温时,超声波波速先降低后升高,掺入NS后再次水化(升高段)的超声波波速上升速率均高于空白组,其中2%NS掺量的混凝土超声波波速上升速率最快;SEM和XRD发现随NS掺量增加,混凝土内部孔隙结构变的更加致密,钙矾石(AFt)相对含量逐渐上升,其中2%NS掺量AFt含量最高,说明NS可以促进负温环境下的硫铝酸盐混凝土的水化。

     

  • 图  1  纳米SiO2(NS)颗粒(a)及SEM图像(b)

    Figure  1.  Nano-SiO2 (NS) particles (a) and SEM images (b)

    图  2  硫铝酸盐水泥、NS的粒度分布曲线

    Figure  2.  Particle size distribution curve of sulfoaluminate cement and NS

    图  3  试块制备过程及测试

    Figure  3.  Specimen preparation process and testing

    图  4  NS掺量对硫铝酸盐混凝土抗压强度的影响

    Figure  4.  Effect of NS admixture on compressive strength of sulfo-aluminate concrete

    图  5  NS促进早期硫铝酸盐水泥水化过程

    Figure  5.  NS promotes the hydration process of early sulfoaluminate cements

    图  6  超声波传播路径示意图

    Figure  6.  Diagram of ultrasonic propagation path

    图  7  硫铝酸盐混凝土升温过程中超声波速度的变化

    Figure  7.  Variation of ultrasonic velocity during warming of sulfoaluminate concrete

    图  8  不同NS掺量混凝土抗压强度与超声波波速的关系

    Figure  8.  Relationship between compressive strength of concrete with different NS admixture and ultrasonic wave velocity

    图  9  不同NS掺量1 d龄期的微观结构:(a)空白组;(b)1%NS掺量;(c)2%NS掺量

    Figure  9.  Microstructure at 1 d age with different NS doping: (a)0%NS; (b)1%NS; (c)2%NS

    图  10  不同NS掺量3 d龄期的微观结构:(a)空白组;(b)1%NS掺量;(c)2%NS掺量

    Figure  10.  Microstructure at 3 d age with different NS doping: (a)0%;(b)1%; (c)2%

    图  11  1、3 d龄期硫铝酸盐水泥的XRD图谱

    Figure  11.  XRD patterns of sulphoaluminate cement at 1 and 3 d ages

    表  1  硫铝酸盐水泥的技术指标

    Table  1.   Technical specifications for sulphoaluminate cements

    Specific surface
    area/(m2·kg−1)
    Setting time/min Compressive strength/MPa Flexural strength/MPa
    Initial setting Final setting 1 d 3 d 28 d 1 d 3 d 28 d
    368 26 68 36.1 44.3 49.4 6.2 7.2 8.4
    下载: 导出CSV

    表  2  NS的物理性能

    Table  2.   Physical properties of NS

    Appearance Average Primary size/nm Apparent density/(g·cm−3) Specific surface area/(m2·g−1) Loss on dry/%
    White powder 21 0.19 198 4.7
    下载: 导出CSV

    表  3  硫铝酸盐水泥和NS的主要化学成分

    Table  3.   Main chemical composition of sulphoaluminate cement and NS

    Material Mass fraction/ %
    SiO2 Al2O3 CaO Fe2O3 MgO SO3 K2O Na2O
    Sulfoaluminate
    cement
    7.58 30.53 45.38 3.52 2.25 14.37 0.30 0.76
    NS 99.98 0.001 0.015 0.004
    下载: 导出CSV

    表  4  硫铝酸盐混凝土配合比(kg/m3)

    Table  4.   Sulfoaluminate concrete ratio (kg/m3)

    Groupsw/cNS/%Li2CO3/%CementWaterAggregateFine aggregate
    NS-00.4500.2433.31951151.6620.1
    NS-10.4510.24291951151.6620.1
    NS-1.50.451.50.2426.81951151.6620.1
    NS-20.4520.2424.61951151.6620.1
    NS-30.4530.2420.31951151.6620.1
    Note: w/c is the water cement ratio of concrete.
    下载: 导出CSV

    表  5  回归分析计算误差(%)

    Table  5.   Calculation error of regression analysis (%)

    GroupsLinear functionLogarithmic functionPower function
    Average relative errorRSDAverage relative errorRSDAverage relative errorRSD
    NS-01.562.040.831.050.740.96
    NS-12.593.342.493.193.184.12
    NS-1.53.835.093.524.645.316.77
    NS-24.345.323.564.785.076.83
    NS-36.679.343.934.806.227.57
    Note: RSD refers to relative standard deviation.
    下载: 导出CSV

    表  6  硫铝酸盐水泥水化产物晶体结构参数

    Table  6.   Crystal structure parameters of hydration products of sulfoaluminate cement

    Mineral a b c α/(º) β/(º) γ/(º) V3 ICSD
    Ettringite 9.189 9.189 9.189 90 90 90 779.958 9560
    Ye'elimite 11.223 11.223 21.428 90 90 120 2358.532 16045
    Anhydite 6.984 6.241 6.986 90 90 90 306.180 16382
    Belite 5.496 6.756 10.433 90 116.758 90 343.916 963
    Quartz 4.907 4.907 5.408 90 90 120 112.876 62405
    下载: 导出CSV

    表  7  不同NS掺量硫铝酸盐水泥水化1 d、3 d时的矿物含量

    Table  7.   Mineral content of sulfoaluminate cement hydrated at 1 d and 3 d with different NS dosage

    Groups Relative amount/% Rwp
    Hydration age Ettringite Ye'elimite Anhydite Belite Quartz
    NS-0 1 d 26.23 36.38 14.42 21.13 1.84 8.81
    3 d 28.66 35.11 13.12 21.02 2.09 9.23
    NS-1 1 d 27.77 34.64 13.88 20.86 2.85 9.67
    3 d 31.86 31.24 12.45 20.34 4.11 8.63
    NS-1.5 1 d 29.63 33.32 12.65 20.64 3.76 8.82
    3 d 32.98 29.93 12.05 20.22 4.82 9.87
    NS-2 1 d 31.82 31.23 12.28 20.41 4.26 9.56
    3 d 33.74 28.44 11.87 20.11 5.84 8.97
    下载: 导出CSV
  • [1] 郭跃, 周孝军, 白时明, 等. 低温环境下早期养护方式对混凝土力学性能的影响[J]. 新型建筑材料, 2022, 49(10): 69-72+77.

    GUO Yu, ZHOU Xiaojun, BAI Shiming, et al. Influence of early curing mode on mechanical properties of concrete under lowtemperature environment[J]. New Building Materials, 2022, 49(10): 69-72+77(in Chinese).
    [2] QIN L, GAO X, ZHANG A. Potential application of Portland cement-calcium sulfoaluminate cement blends to avoid early age frost damage[J]. Construction and Building Materia-ls, 2018, 190: 363-372. doi: 10.1016/j.conbuildmat.2018.09.136
    [3] Kurihashi Y, Konno H, Hama Y, et al. Effects of frostdamged reinforced concrete beams on their impact resistance behavior[J]. Construction and Building Materials, 2021, 274: 122089. doi: 10.1016/j.conbuildmat.2020.122089
    [4] HUANG G, Pudasainee D, Gupta R, et al. The performance of calcium sulfoaluminate cement for preventing earlyage frost damage[J]. Construction and Building Materials, 2020, 254: 119322. doi: 10.1016/j.conbuildmat.2020.119322
    [5] P. Li, X. Gao, K. Wang, et al. Hydration mechanism and ear-ly frost resistance of calcium sulfoaluminate cement concrete[J]. Construction and Building Materials, 2020, 239: 117862. doi: 10.1016/j.conbuildmat.2019.117862
    [6] G. Huang, D. Pudasainee, R. Gupta, et al. Hydration reaction and strength development of calcium sulfoaluminate cementbased mortar cured atcold temperatures[J]. Construction and Building Materials, 2019, 224: 493–503.
    [7] Guo J B, Liu L, Wang Q. Application self-regulating heating cable curing of concrete in winter[J]. Applied Mechanics and Materials, 2014, 638: 1531-1535.
    [8] Won J Y, Lee S H, Park T W, et al. Basic applicability of an insulated gang form for concrete building construction in cold weather[J]. Construction and Building Materials, 2016, 125: 458-464. doi: 10.1016/j.conbuildmat.2016.08.036
    [9] Li G, Zhang J, Song Z, et al. Improvement of workability and early strength of calcium sulphoaluminate cement at various temperature by chemical admixtures[J]. Construction and Building Materials, 2018, 160: 427-439. doi: 10.1016/j.conbuildmat.2017.11.076
    [10] Kaufmann J, Winnefeld F, Lothenbach B. Stability of ettringite in CSA cement at elevated temperatures[J]. Advances in Cement Research, 2016, 28(4): 251-261. doi: 10.1680/jadcr.15.00029
    [11] 王培铭, 李楠, 徐玲琳, 等. 低温养护下硫铝酸盐水泥的水化进程及强度发展[J]. 硅酸盐学报, 2017, 45(2): 242-248.

    WANG Peiming, LI Nan, XU Linglin, et al. Hydration process and strength development of sulphoaluminate cement under low temperature maintenance[J]. Journal of Silicate, 2017, 45(2): 242-248(in Chinese).
    [12] 王敬宇, 叶家元, 程华, 等. 负10℃条件下缓凝剂对快硬硫铝酸盐水泥水化及强度的影响[J]. 硅酸盐学报, 2020, 48(8): 1285-1294.

    WANG Jingyu, YE Jiayuan, CHENG Hua, et al. Effect of retarder on hydration and strength of fast-hardening sulfoaluminate cement at minus 10°C[J]. Journal of Silicate, 2020, 48(8): 1285-1294(in Chinese).
    [13] 张鸿飞, 叶家元, 任俊儒, 等. -10℃条件下氯化钙溶液对硫铝酸盐水泥性能的影响[J]. 硅酸盐学报, 2022, 50(11): 2834-2843.

    ZHANG Hongfei, YE Jiayuan, REN Junru, et al. Effect of calcium chloride solution on the properties of sulfoaluminate cement at -10℃[J]. Journal of Silicates, 2022, 50(11): 2834-2843(in Chinese).
    [14] Sun J, Xu Z, Li W, et al. Effect of nano-SiO2 on the early hydration of alite-sulphoaluminate cement[J]. Nanomaterials, 2017, 7(5): 102. doi: 10.3390/nano7050102
    [15] 马保国, 姜文斌, 梅军鹏, 等. 纳米SiO2对硫铝酸盐水泥基材料物理力学性能的影响[J]. 功能材料, 2017, 48(3): 3116-3120.

    MA Baoguo, JIANG Wenbin, MEI Junpeng, et al. Effect of nano-SiO2 on the physical and mechanical propeties of sulphoaluminate cement-based materials[J]. Functional Materials, 2017, 48(3): 3116-3120(in Chinese).
    [16] Chen T, Wang Z, Bai E, et al. Effect of nano admixtures on the engineering properties and microstructure of sulphoaluminate cement mortar at -10°C[J]. Construction and Building Materials, 2023, 402: 133015. doi: 10.1016/j.conbuildmat.2023.133015
    [17] Huo Y, Hu S, Lu D, et al. Understanding the rolesof Li2CO3 in a sulphoaluminate cement system at negative temperatures[J]. Case Studies in Construction Materials, 2023, 19: e02574. doi: 10.1016/j.cscm.2023.e02574
    [18] GB/T 50081-2019. 混凝土物理力学性能试验方法标准[S]. 北京: 中国建筑工业出版社, 2019.

    GB/T 50081-2019. Test method standard for Physical and Mechanical properties of concrete[S]. Beijing: China Building and Construction Press, 2019(in Chinese).
    [19] 于海洋. 受冻混凝土的早期变形及冻害机理分析[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    YU Haiyang. Analysis of early deformation and frost damage mechanism of frozen concrete[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [20] 李沛然. 硅酸盐—硫铝酸盐复合胶凝材料的低温水化与微观特征[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    LI Peiran. Low-temperature hydration and microscopic characteristics of silicate-aluminium sulphate composite cementitious materials[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [21] 程超. 硫铝酸盐喷射混凝土机场路面应急维修研究[D]. 长沙: 湖南大学, 2015.

    CHENG Chao. Research on emergency repai of sulphoaluminate shotcrete airport pavement[D]. Changsha: Hunan University, 2015(in Chinese).
    [22] DENG X, GUO H, TAN H, et al. Comparison of early hydration of Portland cement and sulphoaluminate cement in the presence of nano ettringite[J]. Construction and Building Materials, 2022, 360: 129516. doi: 10.1016/j.conbuildmat.2022.129516
    [23] Camiletti J, Soliman A M, Nehdi M L. Effect of nano-calcium carbonate on early-age properties of ultra-high-performance concrete[J]. Magazine of Concrete Research, 2013, 65(5): 297-307. doi: 10.1680/macr.12.00015
    [24] Júnior L U D T, de Matos P R, Lima G S, et al. Effect of the nanosilica source on the rheology and early-age hydration of calcium sulfoaluminate cement pastes[J]. Construction and Building Materials, 2022, 327: 126942. doi: 10.1016/j.conbuildmat.2022.126942
    [25] Li L, WANG R, ZHANG S. Effect of curing temperature and relative humidity on the hydrates and porosity of calcium sulfoaluminate cement[J]. Construction and Building Materials, 2019, 213: 627-636. doi: 10.1016/j.conbuildmat.2019.04.044
    [26] LIU Y, YANG S, LI J, et al. Effect of w/c ratio and antifreeze admixture on the frost damage of sulfoaluminate cement concrete a −20°C[J]. Construction and Building Materials, 2022, 347: 128457. doi: 10.1016/j.conbuildmat.2022.128457
    [27] LIU Y P, LI J H, Yang C, et al. Effects of antifreeze and earlystrengthening agent on the negative temperature hydration property of sulfoaluminate cement[J]. Silicate Bulletin, 2021, 40(2): 359-367.
    [28] Liu X, Xie X, Liu R, et al. Research on the durability of nano-SiO2 and sodium silicate co-modified recycled coarse aggregate (RCA) concrete[J]. Construction and Building Materials, 2023, 378: 131185. doi: 10.1016/j.conbuildmat.2023.131185
    [29] J. Wang, S. Song, Y. u. Zhang, et al. Hydration and mechanical properties of calcium sulphoaluminatecement containing calcium carbonate and gypsumunder NaCl solutions[J]. Materials, 2022, 15(3): 816. doi: 10.3390/ma15030816
    [30] 李华, 孙伟, 刘加平. XRD-Rietveld法用于水泥基材料物相的定量分析[J]. 混凝土, 2013, (1): 1-5. doi: 10.3969/j.issn.1002-3550.2013.01.001

    LI Hua, SUN Wei, LIU Jiaaping. XRD-Rietveld method forquantitative analysis of physical phase of cementitious materials[J]. Concrete, 2013, (1): 1-5(in Chinese). doi: 10.3969/j.issn.1002-3550.2013.01.001
  • 加载中
计量
  • 文章访问数:  67
  • HTML全文浏览量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-10
  • 修回日期:  2024-05-29
  • 录用日期:  2024-06-11
  • 网络出版日期:  2024-06-26

目录

    /

    返回文章
    返回