Dynamic response and damage of fiber metal interpenetrating composite plate under low-velocity impact
-
摘要: 纤维增强金属复合材料受到冲击时容易发生金属与纤维分层从而影响力学性能,为了缓解此类现象,将金属板冲孔,使用碳纤维和芳纶纤维交替穿编,制备了一种三维复合材料纤维金属互穿式复合板(Fiber Metal Interpenetrating Composite Plate,FMICP)。进行了低速冲击试验,研究了FMICP在不同冲击速度、冲击面积和冲孔样式下的力学性能。研究表明:当冲击速度在35.19~78.08 m/s之间时,FMICP发生了贯穿破坏,吸收了39.78~70.67 J的冲击能量;受到恒定49 J冲击能量时,冲击面积为491 mm2的FMICP最高能够吸收42.77 J能量;随着冲击面积的增大,FMICP中受到拉伸的纤维数量增多,冲击造成的冲切破坏和局部损伤减小;冲孔类型改变了FMICP中金属基的占比和应力传递方式,椭圆冲孔FMICP (41.11 J)相对矩型冲孔FMICP (34.08 J)能够起到更好的吸收能量的作用。本研究结果可为FMICP的推广应用提供参考。
-
关键词:
- 低速冲击 /
- 能量吸收 /
- 三维穿编 /
- 纤维金属互穿式复合板 /
- 动力响应
Abstract: Fiber reinforced metal composites are prone to delamination of metal and fibre when subjected to impact, thus affecting the mechanical properties, in order to alleviate such phenomena, a three-dimensional composite Fiber Metal Interpenetrating Composite Plate (FMICP) was prepared by punching the metal plate and alternately threading it with carbon fibres and aramid fibres. Low-speed impact tests were conducted to investigate the mechanical properties of FMICP at different impact velocities, impact areas and punching styles. The study shows that: when the impact velocity is between 35.19 and 78.08 m/s, the FMICP undergoes penetration damage and absorbs 39.78 J to 70.67 J of impact energy; when subjected to a constant 49 J of impact energy, the FMICP with an impact area of 491 mm2 is able to absorb a maximum of 42.77 J of energy; as the impact area increases, the number of fibers subjected to stretching in the FMICP increases, which decreases the punching damage and local damage caused by the impact; the type of punching changes the percentage of metal base in the FMICP and the mode of stress transfer, the elliptical punched FMICP (41.11 J) is able to absorb energy more effectively compared to the rectangular punched FMICP (34.08 J). The results of this study can provide a reference for the promotion and application of FMICP. -
表 1 纤维金属互穿式复合板(FMICP)制备材料力学性能
Table 1. Mechanical properties of Fiber-Metal Interpenetrating Composite Plate(FMICP) prepared materials
Material Density/
(g·cm−3)Tensile
strength/MPaYield
strength/MPaElastic
modulus/GPaFiber
diameter/μmElongation
at break/%Aluminium alloy 2.68 230 170 70 — 14 Carbon fibre 1.76 3530 — 230 7 1.5 Aramid fiber 1.45 1750 — 440 15 3.1 Epoxy resin 0.95 75 — 2.0 — 8.7 表 2 FMICP试件参数
Table 2. FMICP specimen parameters
Number Thickness/mm Quality/g Punch type Punch shape/mm AC/AL-A1-1(1) 2.93±0.10 41.0 Elliptical
Elliptical
Circular-rectangular
RectangularAC/AL-A1-1(2) 2.90±0.10 40.7 AC/AL-A1-1(3) 2.94±0.10 41.2 AC/AL-A1-2 3.32±0.10 48.4 AC/AL-A1-3 2.78±0.10 40.2 AC/AL-A1-4 3.16±0.10 47.0 AC/AL-A1-5 2.91±0.10 40.9 AC/AL-A2-1(1) 2.99±0.10 43.8 AC/AL-A2-1(2) 2.95±0.10 42.9 AC/AL-A2-1(3) 2.97±0.10 43.1 AC/AL-A3-1(1) 2.94±0.10 42.9 AC/AL-A3-1(2) 2.89±0.10 42.0 AC/AL-A3-1(3) 2.97±0.10 43.1 AC/AL-B1-1(1) 2.84±0.10 39.7 Circular-rectangular AC/AL-B1-1(2) 2.91±0.10 40.1 AC/AL-B1-1(3) 2.93±0.10 40.3 AC/AL-C1-1(1) 3.09±0.10 43.3 Rectangular AC/AL-C1-1(2) 2.98±0.10 42.1 AC/AL-C1-1(3) 3.04±0.10 42.9 Notes:AC/AL is an aramid fibre (A) and carbon fibre (C) reinforced aluminum based (AL) FMICP; The three numbers in A1-1 differentiate between the type of punch, the impact area, and the impact velocity of the specimen, the specimen numbers in the article are abbreviated versions. 表 3 弹体及弹托力学性能
Table 3. Mechanical properties of Bullet and Shell casing
Parts Material Density/(g·cm−3) Tensile
strength/MPaCompressive
strength/MPaYield
strength/MPaElastic
modulus/GPaBullet Alloy Steel SKD11 7.80 2000 2800 1700 210 Shell casing Nylon 1.15 75 90 70 2.9 表 4 FMICP冲击试验结果汇总
Table 4. Summary of FMICP impact test results
Number Initial
velocity/(m·s−1)Residual
velocity/(m·s−1)Impact
area/mm2Initial
energy/JResidual
energy/JAbsorbs
energy/JEnergy absorption rate/% AC/AL-A1-1(1) 35.19 11.94 314 44.96 5.18 39.78 88.49 AC/AL-A1-1(2) 36.94 13.76 49.55 6.88 42.68 86.12 AC/AL-A1-1(3) 35.93 12.86 46.89 6.01 40.88 87.19 AC/AL-A1-2 49.95 35.28 90.58 45.19 45.39 50.11 AC/AL-A1-3 65.15 51.93 154.13 97.90 56.22 36.48 AC/AL-A1-4 68.86 56.52 172.15 115.98 56.17 32.63 AC/AL-A1-5 78.08 64.42 221.34 150.67 70.67 31.93 AC/AL-A2-1(1) 47.54 29.64 177 45.43 17.67 27.77 61.11 AC/AL-A2-1(2) 49.67 28.77 49.58 16.64 32.94 66.44 AC/AL-A2-1(3) 49.02 29.94 48.30 18.02 30.28 62.70 AC/AL-A3-1(1) 30.62 15.59 491 53.85 13.97 39.89 74.07 AC/AL-A3-1(2) 29.74 16.19 50.80 15.05 42.77 73.96 AC/AL-A3-1(3) 30.18 15.84 52.32 14.41 38.58 72.81 AC/AL-B1-1(1) 37.55 23.42 314 51.21 15.15 36.06 70.42 AC/AL-B1-1(2) 36.96 21.33 49.59 16.51 33.08 66.70 AC/AL-B1-1(3) 37.89 20.97 52.11 15.96 36.16 69.39 AC/AL-C1-1(1) 36.81 21.36 49.20 16.57 32.63 66.32 AC/AL-C1-1(2) 38.42 22.87 53.58 18.99 34.60 64.57 AC/AL-C1-1(3) 37.99 21.89 52.39 17.39 35.00 66.80 表 5 不同冲孔FMICP参数
Table 5. Different punching FMICP parameters
Number Punch type Single punching area/mm2 Metal based ratio/% Metal based quality/g AC/AL-A1-1(1-3) Elliptical 12.56 81.91 22.12 AC/AL-B1-1(1-3) Circular-rectangular 15.14 78.19 21.11 AC/AL-C1-1(1-3) Rectangular 16 76.96 20.78 Notes: Metal based ratio is the proportion of base metal after punching to the mass of base metal before punching. 表 6 Recht-Ipson模型拟合参数
Table 6. Recht-Ipson model fitting parameters
a p FMICP 0.823 2.726 -
[1] SUN J, XU S, Lu G, et al. Ballistic impact experiments of titanium based carbon-fibre/epoxy laminates[J]. Thin-Walled Structures, 2022, 179: 109709. doi: 10.1016/j.tws.2022.109709 [2] XU L Y, LU J R, LI K M, et al. Experimental study of CFRP laser surface modification and bonding characteristics of CFRP/Al6061 heterogeneous joints[J]. Composite Structures, 2022, 283: 115030. doi: 10.1016/j.compstruct.2021.115030 [3] SUN G Y, YU H, WANG Z, et al. Energy absorption mechanics and design optimization of CFRP/aluminum hybrid structures for transverse loading[J]. International Journal of Mechanical Sciences, 2019, 150: 767-783. doi: 10.1016/j.ijmecsci.2018.10.043 [4] LIU G, XIONG Y, ZHOU L. Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications[J]. Composites Communications, 2021, 27: 100907. doi: 10.1016/j.coco.2021.100907 [5] DING Z, WEEGER O, QI H J, et al. 4D rods: 3D structures via programmable 1D composite rods[J]. Materials & Design, 2018, 137: 256-265. [6] KULKARNI P, DHOBLE A, PADOLE P. A review of research and recent trends in analysis of composite plates[J]. Sadhana Academy Proceedings in Engineering Sciences, 2018, 43(6): 1-20. [7] 陈勇, 庞宝君, 郑伟, 等. 纤维金属层板低速冲击实验和数值仿真[J]. 复合材料学报, 2014, 31(3): 733-740.CHEN Y, PANG B, ZHENG W, et al. Tests and numerical simulation on low velocity impact performance of fiber metal laminates[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 733-740(in Chinese). [8] 崔岸, 杨伟丽, 程普, 等. 玄武岩纤维/铝合金层合板低速冲击性能及应用研究[J]. 汽车工程, 2020, 42(5): 694-699+708.CUI A, YANG W, CHENG P, et al. Study on Low-speed Impact Performance and Application of Basalt Fiber/Aluminum Alloy Laminates[J]. Automotive Engineering, 2020, 42(5): 694-699+708(in Chinese). [9] 赵艺桥, 于涛, 郭逸纯, 等. 植物纤维金属层合板的抗低速冲击性能[J]. 建筑材料学报, 2022, 25(8): 830-835. doi: 10.3969/j.issn.1007-9629.2022.08.009ZHAO Y, YU T, GUO Y, et al. Low Velocity Impact Performance of Plant Fiber Metal Laminates[J]. Journal of Building Materials, 2022, 25(8): 830-835(in Chinese). doi: 10.3969/j.issn.1007-9629.2022.08.009 [10] Zhang J, Lin G, UDAY V, et al. present and future prospective of global carbon fibre composite developments and applications[J]. Composites Part B: Engineering, 2023, 250: 110463. doi: 10.1016/j.compositesb.2022.110463 [11] PRIYANKA P. High-Strength Hybrid Textile Composites with Carbon, Kevlar, and E-Glass Fibers for Impact-Resistant Structures. A Review[J]. Mechanics of Composite Materials, 2017, 53: 685-704. doi: 10.1007/s11029-017-9696-2 [12] SUN Z, HU X, CHEN H. Effects of aramid-fibre toughening on interfacial fracture toughness of epoxy adhesive joint between carbon-fibre face sheet and aluminium substrate[J]. International Journal of Adhesion and Adhesives, 2014, 48: 288-294. doi: 10.1016/j.ijadhadh.2013.09.023 [13] K K, D R, A M. Evaluation of tensile properties on Glass/Carbon/Kevlar fiber reinforced hybrid composites[J]. Materials Today: Proceedings, 2021, 39: 1655-1660. doi: 10.1016/j.matpr.2020.06.049 [14] TAMER S, EGEMEN A, MUSTAFA , et al. A review: Fibre metal laminates, background, bonding types and applied test methods, Materials & Design, 2011, 32, 3671-3685. [15] BRESCIANI L, MANES A, GIGLIOM. An analytical model for ballistic impacts against plain woven fabrics with a polymeric matrix[J]. International Journal of Impact Engineering, 2015, 78: 138-149. doi: 10.1016/j.ijimpeng.2015.01.001 [16] YENTL S, LARISSA G, IGNAAS V. Fibre hybridisation in polymer composites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2014, 67: 181-200. doi: 10.1016/j.compositesa.2014.08.027 [17] SYAFIQAH N, MOHAMED T, MOHAMMAD J, et al. Impact behaviour of hybrid composites for structural applications: A review[J]. Composites Part B: Engineering, 2018, 133: 112-121. doi: 10.1016/j.compositesb.2017.09.008 [18] 曹俊超, 孙建波, 曹勇, 等. 混杂纤维增强环氧树脂复合材料高速冲击损伤行为[J]. 复合材料学报, 2022, 39(10): 4935-4948.CAO J, SUN J, CAO Y, et al. High-velocity impact damage behavior of hybrid fiber reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4935-4948 (in Chinese). [19] KIM D, KIM H. Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle[J]. Composite Structures, 2015, 131: 742-752. doi: 10.1016/j.compstruct.2015.06.028 [20] HASHIM N, MAJID D, MAHDI E, et al. Effect of fiber loading directions on the low cycle fatigue of intraply carbon-kevlar reinforced epoxy hybrid composites[J]. Composite Structures, 2019, 212: 476-483. doi: 10.1016/j.compstruct.2019.01.036 [21] BANDARU A, CHAVAN V, AHMAD S. Low velocity impact response of 2D and 3D Kevlar/polypropylene composites[J]. International Journal of Impact Engineering, 2016, 93: 136-143, doi: 10.1016/j.ijimpeng.2016.02.016 [22] QIAN Z, CHAO Z. Finite element simulation of damage in fiber metal laminates under high velocity impact by projectiles with different shapes[J]. Composite Structures, 2019, 214: 73-82. doi: 10.1016/j.compstruct.2019.02.009 [23] ZHANG C, ZHU Q. Ballistic performance and damage simulation of fiber metal laminates under high-velocity oblique impact[J]. International Journal of Damage Mechanics, 2020, 29(7): 1011-1034. doi: 10.1177/1056789519900784 [24] XU M, Yang Y, LEI H, et al. Dynamic response of fiber metal laminates subjected to localized high impulse blast loading[J]. Composite Structures, 2020, 243: 112216. doi: 10.1016/j.compstruct.2020.112216 [25] PANG Y, YAN X, WU L, et al. Experiment study of basalt fiber/steel hybrid laminates under high-velocity impact performance by projectiles[J]. Composite Structures, 2022, 280: 114848. doi: 10.1016/j.compstruct.2021.114848 [26] Li X, ZHANG X, GUO Y. Influence of fiber type on the impact response of titanium based fiber-metal laminates[J]. International Journal of Impact Engineering, 2018, 114: 32-42. doi: 10.1016/j.ijimpeng.2017.12.011 [27] Li X, YAHYA M, NIA A, et al. Dynamic failure of basalt/epoxy laminates under blast—Experimental observation[J]. International Journal of Impact Engineering, 2017, 102: 16-26. doi: 10.1016/j.ijimpeng.2016.12.001 [28] DHALIWAL G, NEWAZ G. Compression after impact characteristics of carbon fiber reinforced aluminum laminates[J]. Composite Structures, 2017, 160: 1212-1224. doi: 10.1016/j.compstruct.2016.11.015 [29] 沈玲燕, 李永池, 王志海, 等. 三维正交机织玻璃纤维/环氧树脂复合材料动态力学性能的实验和理论研究[J]. 复合材料学报, 2012, 29(4): 157-162.SHEN L, LI Y, WANG Z, et al. Experimental and theoretical research, dynamic mechanical properties, properties, three dimensions, methodology, woven glass fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 157-162 (in Chinese). [30] 汪金花, 方芳, 杨格, 等. 三维正交机织复合材料低周弯曲疲劳力学性能有限元模拟[J]. 复合材料学报, 2014, 31(3): 797-802.WANG J, FANG F, YAN G, et al. Finite element simulation of 3D orthogonal woven composites under low cycle bending fatigue loading[J]. Acta Materia Compositae Sinica, 2014, 31(3): 797-802 (in Chinese) [31] 王聪, 竺铝涛, 高晓平. 纳米增韧三维正交玻璃纤维机织物增强环氧树脂复合材料的力学性能[J]. 复合材料学报, 2020, 37(2): 252-259.WANG C, ZHU L, GAO X. Mechanical properties of 3d orthogonal glass fiber woven fabric reinforced epoxy resin composites with nano clay modification[J]. Acta Materia Compositae Sinica, 2020, 37(2): 252-259 (in Chinese). [32] ELIAS A, LAURIN F, KAMINSKI M, et al. Experimental and numerical investigations of low energy/velocity impact damage generated in 3D woven composite with polymer matrix[J]. Composite Structures, 2017, 159: 228-239. doi: 10.1016/j.compstruct.2016.09.077 [33] YU B, BRADLEY R, SOUTIS C, et al. 2D and 3D imaging of fatigue failure mechanisms of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 77: 37-49. doi: 10.1016/j.compositesa.2015.06.013 [34] ZHOU W, WENTE T, LIU D, et al. A comparative study of a quasi 3D woven composite with UD and 2D woven laminates[J]. Composites Part A: Applied Science and Manufacturing, 2020, 139: 106139. doi: 10.1016/j.compositesa.2020.106139 [35] MUOZ R, HERGUETA F, GLVEZ F, et al. Ballistic performance of hybrid 3D woven composites: Experiments and simulations[J]. Composite Structures, 2015, 127: 141-151. doi: 10.1016/j.compstruct.2015.03.021 [36] 郭妙才, 李亚锋, 张杜鹃, 等. 偶联剂表面富集对高强玻纤复合材料界面和层间断裂韧性的影响[J]. 复合材料学报, 2023, 40(4): 2066-2074.GUO M, LI Y, ZHANG D, et al. Effect of the surface enrichment of coupling agent on the interfacial properties and interlaminar fracture toughness of GFRPs[J]. Acta Materia Compositae Sinica, 2023, 40(4): 2066-2074 (in Chinese). [37] RECHT R, IPSON T. Ballistic perforation dynamics[J]. Journal Of Applied Mechanics, 1963, 30(3): 384-390. doi: 10.1115/1.3636566
计量
- 文章访问数: 25
- HTML全文浏览量: 13
- 被引次数: 0