留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低速冲击下纤维金属互穿式复合板的动态响应与损伤

李波 马钢 卓国威 张凯 马龙

李波, 马钢, 卓国威, 等. 低速冲击下纤维金属互穿式复合板的动态响应与损伤[J]. 复合材料学报, 2024, 42(0): 1-16.
引用本文: 李波, 马钢, 卓国威, 等. 低速冲击下纤维金属互穿式复合板的动态响应与损伤[J]. 复合材料学报, 2024, 42(0): 1-16.
LI Bo, MA Gang, ZHUO Guowei, et al. Dynamic response and damage of fiber metal interpenetrating composite plate under low-velocity impact[J]. Acta Materiae Compositae Sinica.
Citation: LI Bo, MA Gang, ZHUO Guowei, et al. Dynamic response and damage of fiber metal interpenetrating composite plate under low-velocity impact[J]. Acta Materiae Compositae Sinica.

低速冲击下纤维金属互穿式复合板的动态响应与损伤

基金项目: 国家自然科学基金(52178239);国家自然科学基金(52205016)
详细信息
    通讯作者:

    马钢,博士,教授,博士生导师,研究方向为极端环境下材料与结构的力学响应 E-mail: magang@tyut.edu.cn

  • 中图分类号: TB333

Dynamic response and damage of fiber metal interpenetrating composite plate under low-velocity impact

Funds: National Natural Science Foundation of China (52178239); National Natural Science Foundation of China (52205016)
  • 摘要: 纤维增强金属复合材料受到冲击时容易发生金属与纤维分层从而影响力学性能,为了缓解此类现象,将金属板冲孔,使用碳纤维和芳纶纤维交替穿编,制备了一种三维复合材料纤维金属互穿式复合板(Fiber Metal Interpenetrating Composite Plate,FMICP)。进行了低速冲击试验,研究了FMICP在不同冲击速度、冲击面积和冲孔样式下的力学性能。研究表明:当冲击速度在35.19~78.08 m/s之间时,FMICP发生了贯穿破坏,吸收了39.78~70.67 J的冲击能量;受到恒定49 J冲击能量时,冲击面积为491 mm2的FMICP最高能够吸收42.77 J能量;随着冲击面积的增大,FMICP中受到拉伸的纤维数量增多,冲击造成的冲切破坏和局部损伤减小;冲孔类型改变了FMICP中金属基的占比和应力传递方式,椭圆冲孔FMICP (41.11 J)相对矩型冲孔FMICP (34.08 J)能够起到更好的吸收能量的作用。本研究结果可为FMICP的推广应用提供参考。

     

  • 图  1  纤维金属互穿式复合板(FMICP)结构示意图

    Figure  1.  Schematic diagram of Fiber-Metal Interpenetrating Composite Plate(FMICP) structure

    图  2  FMICP制备过程

    Figure  2.  FMICP preparation process

    图  3  树脂填充及FMICP试件

    Figure  3.  Resin filling and FMICP specimens

    图  4  冲击试验装置图:(a)轻气炮示意图;(b)发射系统及采集系统;(c)夹具

    Figure  4.  Diagram of the impact test setup: (a) Schematic diagram of the light air cannon; (b) Launching system and acquisition system; (c) Fixture

    图  5  FMICP冲击损伤过程(v=37.55 m/s)

    Figure  5.  Impact damage process of FMICP (v=37.55 m/s)

    图  6  冲击过程弹体变化情况

    Figure  6.  Changes of the bullet during impact

    图  7  FMICP裂纹分布图

    Figure  7.  Distribution of FMICP cracks

    图  8  不同冲击速度下FMICP变形

    Figure  8.  FMICP deformation under different impact velocities

    图  9  不同冲击面积下FMICP变形

    Figure  9.  FMICP deformation under different impact areas

    图  10  不同冲孔FMICP的破坏模式:(a)椭圆型;(b)圆矩型;(c)矩型

    Figure  10.  Damage modes of different punched FMICPs: (a) Elliptical; (b) Circular-rectangular; (c) Rectangular

    图  11  A1-1(1)~A1-5 FMICP冲击前后对比图:(a)速度;(b)能量

    Figure  11.  A1-1(1)~A1-5 FMICP comparison before and after impacts: (a) Velocity;(b) Energy

    图  12  A2-1(1-3)~A3-1(1-3) FMICP冲击前后对比图:(a)速度;(b)能量

    Figure  12.  A2-1(1-3)~A3-1(1-3) FMICP comparison before and after impacts: (a) Velocity;(b) Energy

    图  13  A1-1(1-3)~C1-1(1-3) FMICP冲击前后对比图:(a)速度;(b)能量

    Figure  13.  A1-1(1-3)~C1-1(1-3) FMICP comparison before and after impacts: (a) Velocity;(b) Energy

    图  14  FMICP弹道极限拟合曲线图

    Figure  14.  Ballistic limit fitting curve of FMICP

    图  15  A1-1(1)~A1-5 FMICP变形损伤:(a)变形区域面积;(b)等效变形轮廓图

    Figure  15.  A1-1(1)~A1-5 FMICP deformation Damage: (a) Area of deformed; (b) Equivalent deformation contours

    图  16  A2-1~A3-1 FMICP变形损伤:(a)变形区域面积;(b)等效变形轮廓图

    Figure  16.  A2-1~A3-1 FMICP deformation damage: (a) Area of deformed; (b) Equivalent deformation contours

    图  17  A1-1~C1-1 FMICP变形损伤:(a)变形区域面积;(b)等效变形轮廓图

    Figure  17.  A1-1~C3-1 FMICP deformation damage: (a) Area of deformed; (b) Equivalent deformation contours

    图  18  A1-1(1)~A1-5 FMICP截面挠曲线图:(a) A截面;(b) C截面

    Figure  18.  A1-1(1)~A1-5 FMICP section deflection curve: (a) A-section; (b) C-section

    图  19  A2-1(1-3)~A3-1(1-3) FMICP截面挠曲线图:(a) A截面;(b) C截面

    Figure  19.  A2-1(1-3)~A3-1(1-3) FMICP section deflection curve: (a) A-section; (b) C-section

    图  20  A1-1(1-3)~C1-1(1-3) FMICP截面挠曲线图:(a) A截面;(b) C截面

    Figure  20.  A1-1(1-3)~C1-1(1-3) FMICP section deflection curve: (a) A-section; (b) C-section

    表  1  纤维金属互穿式复合板(FMICP)制备材料力学性能

    Table  1.   Mechanical properties of Fiber-Metal Interpenetrating Composite Plate(FMICP) prepared materials

    Material Density/
    (g·cm−3)
    Tensile
    strength/MPa
    Yield
    strength/MPa
    Elastic
    modulus/GPa
    Fiber
    diameter/μm
    Elongation
    at break/%
    Aluminium alloy 2.68 230 170 70 14
    Carbon fibre 1.76 3530 230 7 1.5
    Aramid fiber 1.45 1750 440 15 3.1
    Epoxy resin 0.95 75 2.0 8.7
    下载: 导出CSV

    表  2  FMICP试件参数

    Table  2.   FMICP specimen parameters

    Number Thickness/mm Quality/g Punch type Punch shape/mm
    AC/AL-A1-1(1) 2.93±0.10 41.0 Elliptical
    Elliptical

    Circular-rectangular

    Rectangular
    AC/AL-A1-1(2) 2.90±0.10 40.7
    AC/AL-A1-1(3) 2.94±0.10 41.2
    AC/AL-A1-2 3.32±0.10 48.4
    AC/AL-A1-3 2.78±0.10 40.2
    AC/AL-A1-4 3.16±0.10 47.0
    AC/AL-A1-5 2.91±0.10 40.9
    AC/AL-A2-1(1) 2.99±0.10 43.8
    AC/AL-A2-1(2) 2.95±0.10 42.9
    AC/AL-A2-1(3) 2.97±0.10 43.1
    AC/AL-A3-1(1) 2.94±0.10 42.9
    AC/AL-A3-1(2) 2.89±0.10 42.0
    AC/AL-A3-1(3) 2.97±0.10 43.1
    AC/AL-B1-1(1) 2.84±0.10 39.7 Circular-rectangular
    AC/AL-B1-1(2) 2.91±0.10 40.1
    AC/AL-B1-1(3) 2.93±0.10 40.3
    AC/AL-C1-1(1) 3.09±0.10 43.3 Rectangular
    AC/AL-C1-1(2) 2.98±0.10 42.1
    AC/AL-C1-1(3) 3.04±0.10 42.9
    Notes:AC/AL is an aramid fibre (A) and carbon fibre (C) reinforced aluminum based (AL) FMICP; The three numbers in A1-1 differentiate between the type of punch, the impact area, and the impact velocity of the specimen, the specimen numbers in the article are abbreviated versions.
    下载: 导出CSV

    表  3  弹体及弹托力学性能

    Table  3.   Mechanical properties of Bullet and Shell casing

    Parts Material Density/(g·cm−3) Tensile
    strength/MPa
    Compressive
    strength/MPa
    Yield
    strength/MPa
    Elastic
    modulus/GPa
    Bullet Alloy Steel SKD11 7.80 2000 2800 1700 210
    Shell casing Nylon 1.15 75 90 70 2.9
    下载: 导出CSV

    表  4  FMICP冲击试验结果汇总

    Table  4.   Summary of FMICP impact test results

    Number Initial
    velocity/(m·s−1)
    Residual
    velocity/(m·s−1)
    Impact
    area/mm2
    Initial
    energy/J
    Residual
    energy/J
    Absorbs
    energy/J
    Energy absorption rate/%
    AC/AL-A1-1(1) 35.19 11.94 314 44.96 5.18 39.78 88.49
    AC/AL-A1-1(2) 36.94 13.76 49.55 6.88 42.68 86.12
    AC/AL-A1-1(3) 35.93 12.86 46.89 6.01 40.88 87.19
    AC/AL-A1-2 49.95 35.28 90.58 45.19 45.39 50.11
    AC/AL-A1-3 65.15 51.93 154.13 97.90 56.22 36.48
    AC/AL-A1-4 68.86 56.52 172.15 115.98 56.17 32.63
    AC/AL-A1-5 78.08 64.42 221.34 150.67 70.67 31.93
    AC/AL-A2-1(1) 47.54 29.64 177 45.43 17.67 27.77 61.11
    AC/AL-A2-1(2) 49.67 28.77 49.58 16.64 32.94 66.44
    AC/AL-A2-1(3) 49.02 29.94 48.30 18.02 30.28 62.70
    AC/AL-A3-1(1) 30.62 15.59 491 53.85 13.97 39.89 74.07
    AC/AL-A3-1(2) 29.74 16.19 50.80 15.05 42.77 73.96
    AC/AL-A3-1(3) 30.18 15.84 52.32 14.41 38.58 72.81
    AC/AL-B1-1(1) 37.55 23.42 314 51.21 15.15 36.06 70.42
    AC/AL-B1-1(2) 36.96 21.33 49.59 16.51 33.08 66.70
    AC/AL-B1-1(3) 37.89 20.97 52.11 15.96 36.16 69.39
    AC/AL-C1-1(1) 36.81 21.36 49.20 16.57 32.63 66.32
    AC/AL-C1-1(2) 38.42 22.87 53.58 18.99 34.60 64.57
    AC/AL-C1-1(3) 37.99 21.89 52.39 17.39 35.00 66.80
    下载: 导出CSV

    表  5  不同冲孔FMICP参数

    Table  5.   Different punching FMICP parameters

    NumberPunch typeSingle punching area/mm2Metal based ratio/%Metal based quality/g
    AC/AL-A1-1(1-3)Elliptical12.5681.9122.12
    AC/AL-B1-1(1-3)Circular-rectangular15.1478.1921.11
    AC/AL-C1-1(1-3)Rectangular1676.9620.78
    Notes: Metal based ratio is the proportion of base metal after punching to the mass of base metal before punching.
    下载: 导出CSV

    表  6  Recht-Ipson模型拟合参数

    Table  6.   Recht-Ipson model fitting parameters

    ap
    FMICP0.8232.726
    下载: 导出CSV
  • [1] SUN J, XU S, Lu G, et al. Ballistic impact experiments of titanium based carbon-fibre/epoxy laminates[J]. Thin-Walled Structures, 2022, 179: 109709. doi: 10.1016/j.tws.2022.109709
    [2] XU L Y, LU J R, LI K M, et al. Experimental study of CFRP laser surface modification and bonding characteristics of CFRP/Al6061 heterogeneous joints[J]. Composite Structures, 2022, 283: 115030. doi: 10.1016/j.compstruct.2021.115030
    [3] SUN G Y, YU H, WANG Z, et al. Energy absorption mechanics and design optimization of CFRP/aluminum hybrid structures for transverse loading[J]. International Journal of Mechanical Sciences, 2019, 150: 767-783. doi: 10.1016/j.ijmecsci.2018.10.043
    [4] LIU G, XIONG Y, ZHOU L. Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications[J]. Composites Communications, 2021, 27: 100907. doi: 10.1016/j.coco.2021.100907
    [5] DING Z, WEEGER O, QI H J, et al. 4D rods: 3D structures via programmable 1D composite rods[J]. Materials & Design, 2018, 137: 256-265.
    [6] KULKARNI P, DHOBLE A, PADOLE P. A review of research and recent trends in analysis of composite plates[J]. Sadhana Academy Proceedings in Engineering Sciences, 2018, 43(6): 1-20.
    [7] 陈勇, 庞宝君, 郑伟, 等. 纤维金属层板低速冲击实验和数值仿真[J]. 复合材料学报, 2014, 31(3): 733-740.

    CHEN Y, PANG B, ZHENG W, et al. Tests and numerical simulation on low velocity impact performance of fiber metal laminates[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 733-740(in Chinese).
    [8] 崔岸, 杨伟丽, 程普, 等. 玄武岩纤维/铝合金层合板低速冲击性能及应用研究[J]. 汽车工程, 2020, 42(5): 694-699+708.

    CUI A, YANG W, CHENG P, et al. Study on Low-speed Impact Performance and Application of Basalt Fiber/Aluminum Alloy Laminates[J]. Automotive Engineering, 2020, 42(5): 694-699+708(in Chinese).
    [9] 赵艺桥, 于涛, 郭逸纯, 等. 植物纤维金属层合板的抗低速冲击性能[J]. 建筑材料学报, 2022, 25(8): 830-835. doi: 10.3969/j.issn.1007-9629.2022.08.009

    ZHAO Y, YU T, GUO Y, et al. Low Velocity Impact Performance of Plant Fiber Metal Laminates[J]. Journal of Building Materials, 2022, 25(8): 830-835(in Chinese). doi: 10.3969/j.issn.1007-9629.2022.08.009
    [10] Zhang J, Lin G, UDAY V, et al. present and future prospective of global carbon fibre composite developments and applications[J]. Composites Part B: Engineering, 2023, 250: 110463. doi: 10.1016/j.compositesb.2022.110463
    [11] PRIYANKA P. High-Strength Hybrid Textile Composites with Carbon, Kevlar, and E-Glass Fibers for Impact-Resistant Structures. A Review[J]. Mechanics of Composite Materials, 2017, 53: 685-704. doi: 10.1007/s11029-017-9696-2
    [12] SUN Z, HU X, CHEN H. Effects of aramid-fibre toughening on interfacial fracture toughness of epoxy adhesive joint between carbon-fibre face sheet and aluminium substrate[J]. International Journal of Adhesion and Adhesives, 2014, 48: 288-294. doi: 10.1016/j.ijadhadh.2013.09.023
    [13] K K, D R, A M. Evaluation of tensile properties on Glass/Carbon/Kevlar fiber reinforced hybrid composites[J]. Materials Today: Proceedings, 2021, 39: 1655-1660. doi: 10.1016/j.matpr.2020.06.049
    [14] TAMER S, EGEMEN A, MUSTAFA , et al. A review: Fibre metal laminates, background, bonding types and applied test methods, Materials & Design, 2011, 32, 3671-3685.
    [15] BRESCIANI L, MANES A, GIGLIOM. An analytical model for ballistic impacts against plain woven fabrics with a polymeric matrix[J]. International Journal of Impact Engineering, 2015, 78: 138-149. doi: 10.1016/j.ijimpeng.2015.01.001
    [16] YENTL S, LARISSA G, IGNAAS V. Fibre hybridisation in polymer composites: A review[J]. Composites Part A: Applied Science and Manufacturing, 2014, 67: 181-200. doi: 10.1016/j.compositesa.2014.08.027
    [17] SYAFIQAH N, MOHAMED T, MOHAMMAD J, et al. Impact behaviour of hybrid composites for structural applications: A review[J]. Composites Part B: Engineering, 2018, 133: 112-121. doi: 10.1016/j.compositesb.2017.09.008
    [18] 曹俊超, 孙建波, 曹勇, 等. 混杂纤维增强环氧树脂复合材料高速冲击损伤行为[J]. 复合材料学报, 2022, 39(10): 4935-4948.

    CAO J, SUN J, CAO Y, et al. High-velocity impact damage behavior of hybrid fiber reinforced epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4935-4948 (in Chinese).
    [19] KIM D, KIM H. Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle[J]. Composite Structures, 2015, 131: 742-752. doi: 10.1016/j.compstruct.2015.06.028
    [20] HASHIM N, MAJID D, MAHDI E, et al. Effect of fiber loading directions on the low cycle fatigue of intraply carbon-kevlar reinforced epoxy hybrid composites[J]. Composite Structures, 2019, 212: 476-483. doi: 10.1016/j.compstruct.2019.01.036
    [21] BANDARU A, CHAVAN V, AHMAD S. Low velocity impact response of 2D and 3D Kevlar/polypropylene composites[J]. International Journal of Impact Engineering, 2016, 93: 136-143, doi: 10.1016/j.ijimpeng.2016.02.016
    [22] QIAN Z, CHAO Z. Finite element simulation of damage in fiber metal laminates under high velocity impact by projectiles with different shapes[J]. Composite Structures, 2019, 214: 73-82. doi: 10.1016/j.compstruct.2019.02.009
    [23] ZHANG C, ZHU Q. Ballistic performance and damage simulation of fiber metal laminates under high-velocity oblique impact[J]. International Journal of Damage Mechanics, 2020, 29(7): 1011-1034. doi: 10.1177/1056789519900784
    [24] XU M, Yang Y, LEI H, et al. Dynamic response of fiber metal laminates subjected to localized high impulse blast loading[J]. Composite Structures, 2020, 243: 112216. doi: 10.1016/j.compstruct.2020.112216
    [25] PANG Y, YAN X, WU L, et al. Experiment study of basalt fiber/steel hybrid laminates under high-velocity impact performance by projectiles[J]. Composite Structures, 2022, 280: 114848. doi: 10.1016/j.compstruct.2021.114848
    [26] Li X, ZHANG X, GUO Y. Influence of fiber type on the impact response of titanium based fiber-metal laminates[J]. International Journal of Impact Engineering, 2018, 114: 32-42. doi: 10.1016/j.ijimpeng.2017.12.011
    [27] Li X, YAHYA M, NIA A, et al. Dynamic failure of basalt/epoxy laminates under blast—Experimental observation[J]. International Journal of Impact Engineering, 2017, 102: 16-26. doi: 10.1016/j.ijimpeng.2016.12.001
    [28] DHALIWAL G, NEWAZ G. Compression after impact characteristics of carbon fiber reinforced aluminum laminates[J]. Composite Structures, 2017, 160: 1212-1224. doi: 10.1016/j.compstruct.2016.11.015
    [29] 沈玲燕, 李永池, 王志海, 等. 三维正交机织玻璃纤维/环氧树脂复合材料动态力学性能的实验和理论研究[J]. 复合材料学报, 2012, 29(4): 157-162.

    SHEN L, LI Y, WANG Z, et al. Experimental and theoretical research, dynamic mechanical properties, properties, three dimensions, methodology, woven glass fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 157-162 (in Chinese).
    [30] 汪金花, 方芳, 杨格, 等. 三维正交机织复合材料低周弯曲疲劳力学性能有限元模拟[J]. 复合材料学报, 2014, 31(3): 797-802.

    WANG J, FANG F, YAN G, et al. Finite element simulation of 3D orthogonal woven composites under low cycle bending fatigue loading[J]. Acta Materia Compositae Sinica, 2014, 31(3): 797-802 (in Chinese)
    [31] 王聪, 竺铝涛, 高晓平. 纳米增韧三维正交玻璃纤维机织物增强环氧树脂复合材料的力学性能[J]. 复合材料学报, 2020, 37(2): 252-259.

    WANG C, ZHU L, GAO X. Mechanical properties of 3d orthogonal glass fiber woven fabric reinforced epoxy resin composites with nano clay modification[J]. Acta Materia Compositae Sinica, 2020, 37(2): 252-259 (in Chinese).
    [32] ELIAS A, LAURIN F, KAMINSKI M, et al. Experimental and numerical investigations of low energy/velocity impact damage generated in 3D woven composite with polymer matrix[J]. Composite Structures, 2017, 159: 228-239. doi: 10.1016/j.compstruct.2016.09.077
    [33] YU B, BRADLEY R, SOUTIS C, et al. 2D and 3D imaging of fatigue failure mechanisms of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 77: 37-49. doi: 10.1016/j.compositesa.2015.06.013
    [34] ZHOU W, WENTE T, LIU D, et al. A comparative study of a quasi 3D woven composite with UD and 2D woven laminates[J]. Composites Part A: Applied Science and Manufacturing, 2020, 139: 106139. doi: 10.1016/j.compositesa.2020.106139
    [35] MUOZ R, HERGUETA F, GLVEZ F, et al. Ballistic performance of hybrid 3D woven composites: Experiments and simulations[J]. Composite Structures, 2015, 127: 141-151. doi: 10.1016/j.compstruct.2015.03.021
    [36] 郭妙才, 李亚锋, 张杜鹃, 等. 偶联剂表面富集对高强玻纤复合材料界面和层间断裂韧性的影响[J]. 复合材料学报, 2023, 40(4): 2066-2074.

    GUO M, LI Y, ZHANG D, et al. Effect of the surface enrichment of coupling agent on the interfacial properties and interlaminar fracture toughness of GFRPs[J]. Acta Materia Compositae Sinica, 2023, 40(4): 2066-2074 (in Chinese).
    [37] RECHT R, IPSON T. Ballistic perforation dynamics[J]. Journal Of Applied Mechanics, 1963, 30(3): 384-390. doi: 10.1115/1.3636566
  • 加载中
计量
  • 文章访问数:  37
  • HTML全文浏览量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-25
  • 修回日期:  2024-07-23
  • 录用日期:  2024-08-08
  • 网络出版日期:  2024-09-05

目录

    /

    返回文章
    返回