留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tufting复合材料预制体成形及数值仿真研究进展

申皓 玛日耶姆·阿卜力米提 李志辉 祁欣 黄晋

申皓, 玛日耶姆·阿卜力米提, 李志辉, 等. Tufting复合材料预制体成形及数值仿真研究进展[J]. 复合材料学报, 2024, 42(0): 1-19.
引用本文: 申皓, 玛日耶姆·阿卜力米提, 李志辉, 等. Tufting复合材料预制体成形及数值仿真研究进展[J]. 复合材料学报, 2024, 42(0): 1-19.
SHEN Hao, ABULIMITI Mariyemu, LI Zhihui, et al. Advances in forming and numerical simulation research of tufted composite preforms[J]. Acta Materiae Compositae Sinica.
Citation: SHEN Hao, ABULIMITI Mariyemu, LI Zhihui, et al. Advances in forming and numerical simulation research of tufted composite preforms[J]. Acta Materiae Compositae Sinica.

Tufting复合材料预制体成形及数值仿真研究进展

基金项目: 国家自然科学基金 (12202467);江苏省自然科学基金(BK20220597)
详细信息
    通讯作者:

    黄晋,博士,助理研究员,研究方向为复合材料结构与力学、热防护复合材料性能 E-mail: huangjin312@126.com

  • 中图分类号: TB332

Advances in forming and numerical simulation research of tufted composite preforms

Funds: National Natural Science Foundation of China (No. 12202467); Natural Science Foundation of Jiangsu Province (No. BK20220597)
  • 摘要: 三维复合材料因其优异的抗分层能力,在航空航天等领域具有巨大的应用价值,近年来受到了国内外研究者的广泛关注。然而,传统三维复合材料制造周期长,工艺复杂度高,曲面成形难度大,已成为制约三维复合材料构件应用推广的关键难题之一。Tufting缝合(亦称“簇绒缝合”)是一种工艺简单的单边缝合技术,其缝合线非互锁的结构特征使Tufting缝合后的三维预制体在曲面上无缺陷成形变为可能。本文首先对Tufting缝合工艺的发展历程和Tufting缝合复合材料的结构特征进行了概述,其次梳理了现有关于Tufting缝合预制体曲面模压成形方面的研究,重点从成形性能分析、成形缺陷定义和数字化表征手段三个方面,指出了目前研究所取得的进步和尚缺少的不足,并对Tufting缝合预制体曲面模压成形的数值模拟方法进行了总结,点明了Tufting缝合预制体成形模型的特殊性,最后展望了Tufting缝合技术在复合材料预制体成形领域未来的发展方向。

     

  • 图  1  Tufting缝合工艺设备发展历史流程

    Figure  1.  The development of tufting equipment and process

    图  2  Tufting缝合原理:(a) Tufting缝合工艺流程示意图;(b)对心曲柄滑块机构;(c)偏置曲柄滑块机构

    Figure  2.  Principle of tufting: (a) Schematic of tufting process; (b) Centric slider-crank mechanism; (c) Off-set slider-crank mechanism

    图  3  Tufting缝合设备:(a) 英国克兰菲尔德大学KSL KL150 Tufting缝合机头[40]; (b) 英国克兰菲尔德大学KSL RS522 Tufting缝合机头[16];(c) 天津工业大学自研Tufting样机[45];(d) 扬州大学自研Tufting缝合样机

    Figure  3.  Tufting machines: (a) KSL KL150 Tufting head in Cranfield University[40]; (b) KSL RS522 Tufting head in Cranfield University [16]; (c) Tufting equipment developed by Tiangong University[45]; (d)Tufting equipment developed by Yangzhou University

    图  4  Tufting缝合线损伤:(a) Tufting缝合线磨损[41];(b) Tufting缝合线断裂[41];(c) Tufting缝合线的羽化度表征[52]

    Figure  4.  Degradation of tufting thread: (a) Yarn damage[41]; (b) Yarn rupture[41]; (c) Characterization of yarn damage[52]

    图  5  记忆合金Tufting缝合T型复合材料结构件(a) 测试后显示镍钛合金Tufting缝合的T型接头断裂的侧视照片;(b) 翼缘部分的镍钛合金Tufting缝合线的变形和拉出破坏;(c) 镍钛合金Tufting缝合线拉出和断裂扫描电子显微镜图像[57]

    Figure  5.  Composite T-joints using shape memory alloy tufts: (a) Side-view photograph of fractured T-joint following testing showing bridging and fracture of SMA tufts along the skin-flange interfaces. (b) Large-scale deformation and pull-out failure of SMA tufts along the skinflange section. (c) Scanning electron microscope image of pull-out and fracture of a SMA tuft[57]

    图  6  压边类型及作用:(a) 整体型压边;(b) 离散型压边;(c) 压边对不同方向Tufting缝合线的影响[14]

    Figure  6.  Types and effects of blank-holder: (a) Integral blank-holder;(b) Discrete blank-holder;(c) Influence of blank-holder on tufting yarn with different direction [14]

    图  7  预制体收缩量示意图:(a) 弱约束预制体;(b) 强约束预制体[39]

    Figure  7.  Schematic of material draw-in: (a) Preform with weak connection;(b) Preform with strong connection[39]

    图  8  Tufting缝合图案对预制体收缩量的影响[33]

    Figure  8.  Influence of tufting patterns on material draw-in[33]

    图  9  预制体层间滑移:(a) 层间滑移测量方法[78];(b) Tufting缝合对预制体层间滑移的影响[33]

    Figure  9.  Interlayer sliding of preform: (a) Interlayer sliding measurement[78]; (b) Influence of tufting yarn on interlayer sliding[33]

    图  10  剪切角的测量[84]

    Figure  10.  Measurement for shear angle[84]

    图  11  织物剪切变形对Tufting缝合线的影响[86]

    Figure  11.  Influence of fabric shear deformation on tufting yarns[86]

    图  12  算法示意图:(a) Tufting缝合简化模型,(b) Tufting缝合全结构模型,(c) 滑动绳索接触算法[38]

    Figure  12.  Schematics of algorithm: (a) Simplified model of tufting, (b) Full structure model of tufting, (c) Sliding-thread contact algorithm[38]

    图  13  算法示意图:(a) 接触搜索算法, (b) Tufting缝合相对滑移模型[38]

    Figure  13.  Schematics of algorithm: (a) Detection algorithm of contact (b) Relative sliding model of tufting yarn[38]

    图  14  Tufting缝合成形实验与仿真对比[38]

    Figure  14.  Comparison between the forming experiment and simulation with tufting [38]

    表  1  基准样件实验常用凸模形状

    Table  1.   Common punch geometries for benchmark forming experiments

    Punch Geometry Hemisphere Double domes Tetrahedron Prism Square-box Cylinder
    Schematic
    Number of edges
    0 0 3 4 8 1
    Number of triple points 0 0 1 2 4 0
    下载: 导出CSV

    表  2  成形缺陷[26]

    Table  2.   Forming defects[26]

    Terminology Definition Schematic
    Out-of-plane defects
    Wrinkles When the fabric deforms out-of-plane taking the shape of a waved curve that can vary in length, number and magnitude
    Folds When the fabric deforms in an out-of-plane curved form, identical to the “wrinkles” mechanism described, the two sides of the curves will fall, one on the other, multiplying the thickness of the fabric locally
    Buckles When the shifting of the fiber position out-of-plane is randomly creating an irregular yarns pattern distribution
    Bridging When forming a curved concave form, the material retreats in a corner and the fabric is no longer in contact with the shaping form and stay suspended mid-air
    In-plane defects
    Yarn sliding The yarns slides from its initial position to another following its longitudinal or perpendicular direction
    Yarn misalignment When the yarns are curved locally in plane, and the
    yarns are unparallel
    Yarn rupture By applying high tensile stress on the yarn, higher than its maximum resistant stress, it will break the fiber
    下载: 导出CSV

    表  3  Tufting缝合图案对褶皱缺陷的影响[34]

    Table  3.   Effect of tufting pattern on wrinkles[34]

    Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
    Tufting pattern
    Wrinkles
    Photos of samples
    Wrinkle ratio 27.6% 37.4% 20.3% 25.4% 32.1%
    下载: 导出CSV

    表  4  连续纤维复合材料预制体成形过程数值仿真方法

    Table  4.   Numerical simulation method of continuous fiber composite preform during the forming process

    Preform structures Modeling scales Constitutive laws Finite element types Features
    3D woven
    preforms
    Macroscopic Hyperelastic Specific shell[9497] For predicting the transverse shear deformations in the thickness direction during the forming of 3D woven preforms
    Hypoelastic
    Mesoscopic Hyperelastic Solid+inter-yarn contact(penalty method)[98,99] For predicting yarn deformation and its defects during the forming of 3D woven preforms
    Hypoelastic
    Macroscopic + Mesoscopic Hyperelastic Solid [100] More efficient calculation compared to complete mesoscopic methods
    Microscopic Elastic Rod+inter-fibers contact algorithm (penalty method) [101] For predicting the deformation behavior of fibers during the weaving process of 3D woven preforms
    Stithed preforms Macroscopic + Mesoscopic (1)Fabrics:hyperelastic
    (2)Stitching thread:elastc
    Shell+Rod+inter-layer contact algorithm+fabric-thread contact algorithm [36,37] For predicting macroscopic forming defects such as wrinkles, which can only describe stitching connection between two layers of fabric because the stitching thread is represented by a single 1D rod
    NCF
    (Non-crimp fabric)
    Mesoscopic Fabric yarns and stitching thread:non-linear elastic Solid+Rod/Beam+yarn-thread contact algorithm [102,103] For predicting the gapping defects due to yarn slippage during forming of NCF
    Macroscopic + Mesoscopic (1) Fabrics:hyperelastic
    (2) Stitching thread:elastc
    Shell+Rod+inter-layer contact algorithm+ specific fabric-thread contact algorithm (Friction thresold method) [78,83] For predicting macroscopic forming defects such as wrinkles
    Macroscopic (1) Shear and tensile deformation of fabrics:elastic-plastic;
    (2)In-plane transverse compression of fabrics:non-linear elastic
    Shell [104] For predicting the gapping defects due to yarn slippage and the wrinkling defects during forming of NCF
    Tufted preforms Macroscopic + Mesoscopic (1) Fabrics:hyperelastic
    (2) Tufting thread:elastic
    Shell+Rod+inter-layer contact algorithm+ specific fabric-thread contact algorithm (Sliding thread method)[38] Breaks the ply limit of the models for stitching and NCF, for predicting the wrinkling defects during forming
    下载: 导出CSV
  • [1] MALLICK P K. Fiber-reinforced composites: materials, manufacturing, and design[M]. CRC press, 2007.
    [2] ZHENG H, ZHANG W, LI B, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: A review[J]. Composites Part B: Engineering, 2022, 233: 109639. doi: 10.1016/j.compositesb.2022.109639
    [3] XIE J, GUO Z, SHAO M, et al. Mechanics of textiles used as composite preforms: A review[J]. Composite structures, 2023, 304: 116401. doi: 10.1016/j.compstruct.2022.116401
    [4] CAMPBELL JR FC. Manufacturing processes for advanced composites[M]. Elsevier; 2003.
    [5] YASAEE M, MOHAMED G, HALLETT S R. Interaction of Z-pins with multiple mode II delaminations in composite laminates[J]. Experimental Mechanics, 2016, 56: 1363-1372. doi: 10.1007/s11340-016-0175-9
    [6] CIAMPA F, LADANI R, KNOTT G, et al. Shape memory alloy tufted composites combining high delamination resistant and crack closure properties[J]. Composites Part A: Applied Science and Manufacturing, 2021, 147: 106455. doi: 10.1016/j.compositesa.2021.106455
    [7] JOHAR M, ISRAR H A, LOW K O, et al. Numerical simulation methodology for mode II delamination of quasi-isotropic quasi-homogeneous composite laminates[J]. Journal of Composite Materials, 2017, 51(28): 3955-3968. doi: 10.1177/0021998317695414
    [8] 国义军, 曾磊, 张昊元, 等. HTV2第二次飞行试验气动热环境及失效模式分析[J]. 空气动力学学报, 2017, 35(4): 496-503. doi: 10.7638/kqdlxxb-2016.0114

    GUO Yijun, ZENG Lei, ZHANG Haoyuan, et al. Analysis of aerodynamic thermal environment and failure mode of HTV2 second flight test[J]. Acta Aerodynamica Sinica, 2017, 35(4): 496-503(in Chinese). doi: 10.7638/kqdlxxb-2016.0114
    [9] LI Z H, PENG A P, MA Q, et al. Gas-kinetic unified algorithm for computable modeling of Boltzmann equation and application to aerothermodynamics for falling disintegration of uncontrolled Tiangong-No. 1 spacecraft[J]. Advances in Aerodynamics, 2019, 1: 1-21. doi: 10.1186/s42774-019-0001-z
    [10] GAY D. Composite materials: design and applications[M]. CRC press, 2022.
    [11] GEREKE T, CHERIF C. A review of numerical models for 3D woven composite reinforcements[J]. Composite Structures, 2019, 209: 60-66. doi: 10.1016/j.compstruct.2018.10.085
    [12] CARTIE D D, DELL’ANNO G, POULIN E, et al. 3D reinforcement of stiffener-to-skin T-joints by Z-pinning and tufting[J]. Engineering fracture mechanics, 2006, 73(16): 2532-2540. doi: 10.1016/j.engfracmech.2006.06.012
    [13] DRAKE D A, SULLIVAN R W, CLAY S B, et al. Influence of stitching on the fracture of stitched sandwich composites[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106383. doi: 10.1016/j.compositesa.2021.106383
    [14] 刘苏骅, 李崇俊, 嵇阿琳. Tufting缝合复合材料预制体的成型与研究进展[J]. 航空制造技术, 2017, 60(14): 88-92.

    LIU Suhua, LI Chongjun, JI Alin. Manufacture and Advances of Tufting Composite Preform[J]. Aeronautical Manufacturing Technology, 2017, 60(14): 88-92(in Chinese).
    [15] 杨宏宇, 吴宁, 王玉, 等. 复合材料Tufting缝合技术的研究进展[J]. 材料导报, 2021, 35(23): 23219-23228. doi: 10.11896/cldb.20070094

    YANG Hongyu, WU Ning, WANG Yu, et al. The Application of Tufting Suture Technology on Composite Structures: a Review[J]. Materials Reports, 2021, 35(23): 23219-23228(in Chinese). doi: 10.11896/cldb.20070094
    [16] DELL’ANNO G, TREIBER J W G, PARTRIDGE I K. Manufacturing of composite parts reinforced through-thickness by tufting[J]. Robotics and Computer-Integrated Manufacturing, 2016, 37: 262-272. doi: 10.1016/j.rcim.2015.04.004
    [17] DELL’ANNO G, CARTIÉ D D, PARTRIDGE I K, et al. Exploring mechanical property balance in tufted carbon fabric/epoxy composites[J]. Composites part A: applied science and manufacturing, 2007, 38(11): 2366-2373. doi: 10.1016/j.compositesa.2007.06.004
    [18] DE VERDIERE M C, SKORDOS AA, WALTON A C, et al. Influence of loading rate on the delamination response of untufted and tufted carbon epoxy non-crimp fabric composites/Mode II[J]. Engineering fracture mechanics, 2012, 96: 1-10. doi: 10.1016/j.engfracmech.2011.12.011
    [19] SCARPONI C, PERILLO A M, CUTILLO L, et al. Advanced TTT composite materials for aeronautical purposes: Compression after impact (CAI) behaviour[J]. Composites Part B: Engineering, 2007, 38(2): 258-264. doi: 10.1016/j.compositesb.2006.03.014
    [20] CHEN C, LEGRAND X, HONG Y, et al. Investigation and prediction of laminate quality and interlaminar mechanical performance of the tufted sandwich composites with different core structures[J]. Composite Structures, 2023, 306: 116594. doi: 10.1016/j.compstruct.2022.116594
    [21] VERMA K K, VISWARUPACHARI C H, GADDIKERI K M, et al. Unfolding the effects of tuft density on compression after impact properties in unidirectional carbon/epoxy composite laminates[J]. Composite Structures, 2021, 258: 113378. doi: 10.1016/j.compstruct.2020.113378
    [22] 吕侦军, 卢志毅, 陈庆民, 等. 高速变翼面飞行器研究现状及关键气动技术[J]. 空天技术, 2022, 10(6): 49-56.

    LV Zhenjun, LU Zhiyi, CHEN Qingmin, et al. Research status and key aerodynamic technology of high speed variable wing vehicle[J]. Aerospace Technology, 2022, 10(6): 49-56(in Chinese).
    [23] LIANG B, BOISSE P. A review of numerical analyses and experimental characterization methods for forming of textile reinforcements[J]. Chinese Journal of Aeronautics, 2021, 34(8): 143-163. doi: 10.1016/j.cja.2020.09.027
    [24] BOISSE P, HUANG J, GUZMAN-MALDONADO E. Analysis and modeling of wrinkling in composite forming[J]. Journal of Composites Science, 2021, 5(3): 81. doi: 10.3390/jcs5030081
    [25] 吴刚, 赵龙, 高艳秋, 等. 缝合技术在复合材料液体成型预制体中的应用研究[J]. 航空制造技术, 2012, (Z2): 70-72.

    WU Gang, ZHAO Long, GAO Yanqiu, et al. Application research of stitching technology on fabric preform for the composites liquid forming[J]. Aeronautical Manufacturing Technology, 2012, (Z2): 70-72(in Chinese).
    [26] AZZOUZ R, ALLAOUI S, MOULART R. Composite preforming defects: a review and a classification[J]. International Journal of Material Forming, 2021, 14(6): 1259-1278. doi: 10.1007/s12289-021-01643-7
    [27] SHANWAN A, ALLAOUI S. Different experimental ways to minimize the preforming defects of multi-layered interlock dry fabric[J]. International Journal of Material Forming, 2019, 12: 69-78. doi: 10.1007/s12289-018-1407-6
    [28] YU F, CHEN S, HARPER L T, et al. Double diaphragm forming simulation using a global-to-local modelling strategy for detailed defect detection in large structures[J]. Composites Part A: Applied Science and Manufacturing, 2021, 147: 106457. doi: 10.1016/j.compositesa.2021.106457
    [29] LOMOV S V, ABAIMOV S G, BREITE C, et al. Inequality Indices Applied to Statistical Physics of Criticality in an Impregnated Fiber Bundle Model[J]. Mechanics of Composite Materials, 2023, 59(5): 841-846. doi: 10.1007/s11029-023-10137-3
    [30] SCHÄFER F, WERNER H O, HENNING F, et al. A hyperelastic material model considering biaxial coupling of tension–compression and shear for the forming simulation of woven fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2023, 165: 107323. doi: 10.1016/j.compositesa.2022.107323
    [31] GONG Y, SONG Z, NING H, et al. A comprehensive review of characterization and simulation methods for thermo-stamping of 2D woven fabric reinforced thermoplastics[J]. Composites Part B: Engineering, 2020, 203: 108462. doi: 10.1016/j.compositesb.2020.108462
    [32] LIU L S, ZHANG T, WANG P, et al. Influence of the tufting yarns on formability of tufted 3-Dimensional composite reinforcement[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 403-411. doi: 10.1016/j.compositesa.2015.07.014
    [33] SHEN H, WANG P, LEGRAND X, et al. Influence of the tufting pattern on the formability of tufted multi-layered preforms[J]. Composite Structures, 2019, 228: 111356. doi: 10.1016/j.compstruct.2019.111356
    [34] SHEN H, WANG P, LEGRAND X, et al. Characterisation and optimisation of wrinkling during the forming of tufted three-dimensional composite preforms[J]. Composites Part A: Applied Science and Manufacturing, 2019, 127: 105651. doi: 10.1016/j.compositesa.2019.105651
    [35] SHEN H, YAO L, LEGRAND X, et al. Characterization of wrinkle morphologies by surface waviness evaluation method during deep forming of multilayer composite preforms[J]. Composite Structures, 2023, 306: 116586. doi: 10.1016/j.compstruct.2022.116586
    [36] CHEN S, ENDRUWEIT A, HARPER L T, et al. Inter-ply stitching optimisation of highly drapeable multi-ply preforms[J]. Composites Part A: Applied Science and Manufacturing, 2015, 71: 144-156. doi: 10.1016/j.compositesa.2015.01.016
    [37] DUHOVIC M, MITSCHANG P, BHATTACHARYYA D. Modelling approach for the prediction of stitch influence during woven fabric draping[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(8): 968-978. doi: 10.1016/j.compositesa.2011.03.025
    [38] HUANG J, BOISSE P, HAMILA N. Simulation of the forming of tufted multilayer composite preforms[J]. Composites Part B: Engineering, 2021, 220: 108981. doi: 10.1016/j.compositesb.2021.108981
    [39] ANNO GD. Effect of tufting on the mechanical behavior of carbon fabric/epoxy composites[D]. Cranfield 2007.
    [40] LOMBETTI DM. Tufting of complex composite structures[D]. Cranfield 2015.
    [41] TREIBER JWG. Performance of tufted carbin fibre/epoxy composites[D]. Cranfield 2011.
    [42] 王显峰, 高天成, 肖军. 复合材料缝合技术的研究进展[J]. 纺织学报, 2019, 40(12): 169-177.

    WANG Xianfeng, GAO Tiancheng, XIAO Jun. Research progress of stitching technology of composite materials[J]. Journal of Textile Research, 2019, 40(12): 169-177 (in Chinese)
    [43] 董九志, 耿争言, 王立文, 等. 复合材料预制体单边缝合技术研究进展[J]. 航空制造技术, 2022, 65(16): 46-53.

    DONG Jiuzhi, GENG Zhenyan, WANG Liwen, et al. Research Progress on one-sided stitching technology for composite preforms[J]. Aeronautical Manufacturing Technology, 2022, 65(16): 46-53(in Chinese).
    [44] 王立文, 董九志, 陈云军, 等. 碳纤维复合材料单边缝合机构运动轨迹设计[J]. 复合材料科学与工程, 2021, (11): 75-81.

    WANG Liwen, DONG Jiuzhi, CHEN Yunjun, et al. Motive trajectory design of one-sided stitching mechanism for carbon fiber composite[J]. Composites Science and Engineering, 2021, (11): 75-81(in Chinese).
    [45] 林东, 董九志, 陈云军, 等. 硬质夹层三明治结构复合材料预制体缝合头参数化设计[J]. 复合材料科学与工程, 2021, (6): 94-101.

    LIN Dong, DONG Jiuzhi, CHEN Yunjun, et al. Parametric design of precast suture head of rigid sandwich structural composite[J]. Composites Science and Engineering, 2021, (6): 94-101(in Chinese).
    [46] HENAO A, CARRERA M, MIRAVETE A, et al. Mechanical performance of through-thickness tufted sandwich structures[J]. Composite structures, 2010, 92(9): 2052-2059. doi: 10.1016/j.compstruct.2009.11.005
    [47] MARTINS A T, ABOURA Z, HARIZI W, et al. Analysis of the impact and compression after impact behavior of tufted laminated composites[J]. Composite Structures, 2018, 184: 352-361. doi: 10.1016/j.compstruct.2017.09.096
    [48] CHEN X, ZHANG Y, XIE J, et al. Robot needle-punching path planning for complex surface preforms[J]. Robotics and Computer-Integrated Manufacturing, 2018, 52: 24-34. doi: 10.1016/j.rcim.2018.02.004
    [49] PAPPAS G, JONCAS S, MICHAUD V, et al. The influence of through-thickness reinforcement geometry and pattern on delamination of fiber-reinforced composites: Part I–Experimental results[J]. Composite Structures, 2018, 184: 924-934. doi: 10.1016/j.compstruct.2017.09.091
    [50] HENAO A, GUZMÁN DE VILLORIA R, CUARTERO J, et al. Enhanced impact energy absorption characteristics of sandwich composites through tufting[J]. Mechanics of Advanced Materials and Structures, 2015, 22(12): 1016-1023. doi: 10.1080/15376494.2014.918221
    [51] VERMA K K, VISWAMURTHY S R, GADDIKERI K M, et al. Tufting thread and density controls the mode-I fracture toughness in carbon/epoxy composite[J]. Composite Structures, 2021, 261: 113272. doi: 10.1016/j.compstruct.2020.113272
    [52] HUI C, WANG P, LEGRAND X. Improvement of tufting mechanism during the advanced 3-dimensional tufted composites manufacturing: To the optimisation of tufting threads degradation[J]. Composite Structures, 2019, 220: 423-430. doi: 10.1016/j.compstruct.2019.04.019
    [53] LOMBETTI D M, SKORDOS A A. Lightning strike and delamination performance of metal tufted carbon composites[J]. Composite Structures, 2019, 209: 694-699. doi: 10.1016/j.compstruct.2018.11.005
    [54] MCGARRIGLE C, FERNÁNDEZ D, MIDDENDORF P, et al. Extruded high-temperature thermoplastic tufting yarns for enhanced mechanical properties of composites[J]. Journal of Reinforced Plastics and Composites, 2020, 39(7-8): 249-259. doi: 10.1177/0731684419886368
    [55] MCGARRIGLE C, WEGRZYN M, HAN Y, et al. Influence of extrusion parameters on filled polyphenylsulfone tufting yarns on open-hole tensile strength[J]. Journal of Reinforced Plastics and Composites, 2023, 42(21-22): 1167-1175. doi: 10.1177/07316844221146984
    [56] KHOR W, RAVINDRAN A R, LADANI R B, et al. Material-enabled damage inspection of multifunctional shape memory alloy tufted composite T-joints[J]. NDT & E International, 2024, 142: 103002.
    [57] KHOR W, RAVINDRAN A R, CIAMPA F, et al. Improving the damage tolerance of composite T-joints using shape memory alloy tufts[J]. Composites Part A: Applied Science and Manufacturing, 2023, 168: 107474. doi: 10.1016/j.compositesa.2023.107474
    [58] MALLACH A, HÄRTEL F, HEIECK F, et al. Experimental comparison of a macroscopic draping simulation for dry non-crimp fabric preforming on a complex geometry by means of optical measurement[J]. Journal of Composite Materials, 2017, 51(16): 2363-2375. doi: 10.1177/0021998316670477
    [59] ALLAOUI S, HIVET G, SOULAT D, et al. Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement[J]. International Journal of Material Forming, 2014, 7: 155-165. doi: 10.1007/s12289-012-1116-5
    [60] 徐艺榕, 孙颖, 韩朝锋, 等. 复合材料用三维机织物成型性的研究进展[J]. 纺织学报, 2014, 35(9): 165-172.

    XU Yirong, SUN Yin, HAN Chaofeng, et al. Research Progress of 3D Woven Fabric Formability for Composite Materials[J]. Journal of Textile Research, 2014, 35(9): 165-172(in Chinese).
    [61] JIAO W, CHEN L, XIE J, et al. Deformation mechanisms of 3D LTL woven preforms in hemisphere forming tests[J]. Composite Structures, 2022, 283: 115156. doi: 10.1016/j.compstruct.2021.115156
    [62] LABANIEH A R, GARNIER C, OUAGNE P, et al. Intra-ply yarn sliding defect in hemisphere preforming of a woven preform[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 432-446. doi: 10.1016/j.compositesa.2018.01.018
    [63] LI L, ZHAO Y, LIU G, et al. Draping behavior of carbon non-crimp fabrics and its effects on mechanical performance of the hemispherical composites[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33: 720-728. doi: 10.1007/s11595-018-1884-y
    [64] HUANG J, BOISSE P, HAMILA N, et al. Experimental and numerical analysis of textile composite draping on a square box. Influence of the weave pattern[J]. Composite Structures, 2021, 267: 113844. doi: 10.1016/j.compstruct.2021.113844
    [65] WANG P, LEGRAND X, BOISSE P, et al. Experimental and numerical analyses of manufacturing process of a composite square box part: Comparison between textile reinforcement forming and surface 3D weaving[J]. Composites Part B: Engineering, 2015, 78: 26-34. doi: 10.1016/j.compositesb.2015.03.072
    [66] ALLAOUI S, BOISSE P, CHATEL S, et al. Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(6): 612-622. doi: 10.1016/j.compositesa.2011.02.001
    [67] BARDL G, NOCKE A, HÜBNER M, et al. Analysis of the 3D draping behavior of carbon fiber non-crimp fabrics with eddy current technique[J]. Composites Part B: Engineering, 2018, 132: 49-60. doi: 10.1016/j.compositesb.2017.08.007
    [68] DONG L, LEKAKOU C, BADER M G. Solid-mechanics finite element simulations of the draping of fabrics: a sensitivity analysis[J]. Composites Part A: applied science and manufacturing, 2000, 31(7): 639-652. doi: 10.1016/S1359-835X(00)00046-4
    [69] CAPELLE E, OUAGNE P, SOULAT D, et al. Complex shape forming of flax woven fabrics: Design of specific blank-holder shapes to prevent defects[J]. Composites Part B: Engineering, 2014, 62: 29-36. doi: 10.1016/j.compositesb.2014.02.007
    [70] 孔令国, 王继辉, 陈宏达, 等. 压边力对非平衡平纹机织物预制体成型作用规律[J]. 复合材料学报, 2022, 39(4): 1798-1812.

    KONG Lingguo, WANG Jihui, CHEN Hongda, et al. Influence of blank-holder force on the draping process of unbalanced plain woven fabric preform[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1798-1812(in Chinese).
    [71] LEE J S, HONG S J, YU W R, et al. The effect of blank holder force on the stamp forming behavior of non-crimp fabric with a chain stitch[J]. Composites science and technology, 2007, 67(3-4): 357-366. doi: 10.1016/j.compscitech.2006.09.009
    [72] LIU L S, ZHANG T, WANG P, et al. Influence of the tufting yarns on formability of tufted 3-Dimensional composite reinforcement[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 403-411. doi: 10.1016/j.compositesa.2015.07.014
    [73] DUFOUR C, WANG P, BOUSSU F, et al. Experimental investigation about stamping behaviour of 3D warp interlock composite preforms[J]. Applied Composite Materials, 2014, 21(5): 725-738. doi: 10.1007/s10443-013-9369-9
    [74] ALLAOUI S, CELLARD C, HIVET G. Effect of inter-ply sliding on the quality of multilayer interlock dry fabric preforms[J]. Composites Part A: Applied Science and Manufacturing, 2015, 68: 336-345. doi: 10.1016/j.compositesa.2014.10.017
    [75] ALLAOUI S, HIVET G, WENDLING A, et al. Influence of the dry woven fabrics meso-structure on fabric/fabric contact behavior[J]. Journal of Composite Materials, 2012, 46(6): 627-639. doi: 10.1177/0021998311424627
    [76] GUZMAN-MALDONADO E, WANG P, HAMILA N, et al. Experimental and numerical analysis of wrinkling during forming of multi-layered textile composites[J]. Composite Structures, 2019, 208: 213-223. doi: 10.1016/j.compstruct.2018.10.018
    [77] BEL S. Analyse et simulation de la mise en forme des renforts de composites NCF[D], INSA Lyon, 2011.
    [78] BEL S, HAMILA N, BOISSE P, et al. Finite element model for NCF composite reinforcement preforming: Importance of inter-ply sliding[J]. Composites Part A: Applied science and manufacturing, 2012, 43(12): 2269-2277. doi: 10.1016/j.compositesa.2012.08.005
    [79] BOISSE P, HAMILA N, VIDAL-SALLÉ E, et al. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology, 2011, 71(5): 683-692. doi: 10.1016/j.compscitech.2011.01.011
    [80] MEI M, HUANG J, YU S, et al. Shear deformation characterization and normalized method of tricot-stitched unidirectional non-crimp fabric[J]. Composites Science and Technology, 2024, 246: 110391. doi: 10.1016/j.compscitech.2023.110391
    [81] BOISSE P, HAMILA N, GUZMAN-MALDONADO E, et al. The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review[J]. International Journal of Material Forming, 2017, 10: 473-492. doi: 10.1007/s12289-016-1294-7
    [82] PRODROMOU A G, CHEN J. On the relationship between shear angle and wrinkling of textile composite preforms[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(5): 491-503. doi: 10.1016/S1359-835X(96)00150-9
    [83] BOISSE P, COLMARS J, HAMILA N, et al. Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations[J]. Composites Part B: Engineering, 2018, 141: 234-249. doi: 10.1016/j.compositesb.2017.12.061
    [84] VANCLOOSTER K, LOMOV S V, VERPOEST I. Experimental validation of forming simulations of fabric reinforced polymers using an unsymmetrical mould configuration[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(4): 530-539. doi: 10.1016/j.compositesa.2009.02.005
    [85] MOLNAR P, OGALE A, LAHR R, et al. Influence of drapability by using stitching technology to reduce fabric deformation and shear during thermoforming[J]. Composites Science and Technology, 2007, 67(15-16): 3386-3393. doi: 10.1016/j.compscitech.2007.03.022
    [86] SHEN H, WANG P, LEGRAND X. In-plane shear characteristics during the forming of tufted carbon woven fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2021, 141: 106196. doi: 10.1016/j.compositesa.2020.106196
    [87] GNABA I. Étude du comportement mécanique et de la déformabilité de préformes fibreuses renforcées dans l’épaisseur par piquage[D], University of Lille, 2019.
    [88] WANKHEDE P, SURESH K. A review on the evaluation of formability in sheet metal forming[J]. Advances in Materials and Processing Technologies, 2020, 6(2): 458-485. doi: 10.1080/2374068X.2020.1731229
    [89] GEREKE T, DÖBRICH O, HÜBNER M, et al. Experimental and computational composite textile reinforcement forming: A review[J]. Composites Part A: Applied Science and Manufacturing, 2013, 46: 1-10. doi: 10.1016/j.compositesa.2012.10.004
    [90] BAI R, CHEN B, COLMARS J, et al. Physics-based evaluation of the drapability of textile composite reinforcements[J]. Composites Part B: Engineering, 2022, 242: 110089. doi: 10.1016/j.compositesb.2022.110089
    [91] ARNOLD S E, SUTCLIFFE M P F, ORAM W L A. Experimental measurement of wrinkle formation during draping of non-crimp fabric[J]. Composites Part A: Applied Science and Manufacturing, 2016, 82: 159-169. doi: 10.1016/j.compositesa.2015.12.011
    [92] VIISAINEN J V, SUTCLIFFE M P F. Characterising the variability in wrinkling during the preforming of non-crimp fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106536. doi: 10.1016/j.compositesa.2021.106536
    [93] VIISAINEN J V, HOSSEINI A, SUTCLIFFE M P F. Experimental investigation, using 3D digital image correlation, into the effect of component geometry on the wrinkling behaviour and the wrinkling mechanisms of a biaxial NCF during preforming[J]. Composites Part A: Applied Science and Manufacturing, 2021, 142: 106248. doi: 10.1016/j.compositesa.2020.106248
    [94] LIANG B, COLMARS J, BOISSE P. A shell formulation for fibrous reinforcement forming simulations[J]. Composites Part A: Applied Science and Manufacturing, 2017, 100: 81-96. doi: 10.1016/j.compositesa.2017.04.024
    [95] BAI R, COLMARS J, NAOUAR N, et al. A specific 3D shell approach for textile composite reinforcements under large deformation[J]. Composites Part A: Applied Science and Manufacturing, 2020, 139: 106135. doi: 10.1016/j.compositesa.2020.106135
    [96] CHARMETANT A, VIDAL-SALLÉ E, BOISSE P. Hyperelastic modelling for mesoscopic analyses of composite reinforcements[J]. Composites Science and Technology, 2011, 71(14): 1623-1631. doi: 10.1016/j.compscitech.2011.07.004
    [97] CHEN B, COLMARS J, BAI R, et al. Kinematic modeling of transverse shear in textile composite reinforcements forming[J]. International journal of mechanical sciences, 2023, 245: 108129. doi: 10.1016/j.ijmecsci.2023.108129
    [98] DE LUYCKER E, MORESTIN F, BOISSE P, et al. Simulation of 3D interlock composite preforming[J]. Composite Structures, 2009, 88(4): 615-623. doi: 10.1016/j.compstruct.2008.06.005
    [99] XIONG H, HAMILA N, BOISSE P. Consolidation modeling during thermoforming of thermoplastic composite prepregs[J]. Materials, 2019, 12(18): 2853. doi: 10.3390/ma12182853
    [100] WANG J, WANG P, HAMILA N, et al. Mesoscopic analyses of the draping of 3D woven composite reinforcements based on macroscopic simulations[J]. Composite Structures, 2020, 250: 112602. doi: 10.1016/j.compstruct.2020.112602
    [101] YANG Z, JIAO Y, XIE J, et al. Modeling of 3D woven fibre structures by numerical simulation of the weaving process[J]. Composites Science and Technology, 2021, 206: 108679. doi: 10.1016/j.compscitech.2021.108679
    [102] CREECH G, PICKETT A K. Meso-modelling of non-crimp fabric composites for coupled drape and failure analysis[J]. Journal of materials science, 2006, 41: 6725-6736. doi: 10.1007/s10853-006-0213-6
    [103] ZHENG R, SCHÄFER B, PLATZER A, et al. A unit-cell mesoscale modelling of biaxial non-crimp-fabric based on a hyperelastic approach[C], 26th International ESAFORM Conference on Material Forming. 2023, 28: 285-292.
    [104] SCHIRMAIER F J, DÖRR D, HENNING F, et al. A macroscopic approach to simulate the forming behaviour of stitched unidirectional non-crimp fabrics (UD-NCF)[J]. Composites Part A: Applied Science and Manufacturing, 2017, 102: 322-335. doi: 10.1016/j.compositesa.2017.08.009
    [105] HUANG J, BOISSE P, HAMILA N, et al. Simulation of wrinkling during bending of composite reinforcement laminates[J]. Materials, 2020, 13(10): 2374. doi: 10.3390/ma13102374
  • 加载中
计量
  • 文章访问数:  137
  • HTML全文浏览量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-30
  • 修回日期:  2024-03-29
  • 录用日期:  2024-04-05
  • 网络出版日期:  2024-05-06

目录

    /

    返回文章
    返回