留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于锂离子电池的固态聚合物电解质基质的研究进展

张昊 陈钰 魏剑 冯晓梅 赵甜 高昊楠 张军战

张昊, 陈钰, 魏剑, 等. 用于锂离子电池的固态聚合物电解质基质的研究进展[J]. 复合材料学报, 2024, 42(0): 1-15.
引用本文: 张昊, 陈钰, 魏剑, 等. 用于锂离子电池的固态聚合物电解质基质的研究进展[J]. 复合材料学报, 2024, 42(0): 1-15.
ZHANG Hao, CHEN Yu, WEI Jian, et al. Advances in solid polymer electrolyte matrices for lithium-ion batteries[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Hao, CHEN Yu, WEI Jian, et al. Advances in solid polymer electrolyte matrices for lithium-ion batteries[J]. Acta Materiae Compositae Sinica.

用于锂离子电池的固态聚合物电解质基质的研究进展

基金项目: 陕西省科技厅重点研发项目(No.2023-YBGY-500)
详细信息
    通讯作者:

    张军战,博士,副教授,硕士生导师,研究方向为多孔陶瓷,陶瓷材料快速烧结工艺 E-mail:xajzzhang@126.com

  • 中图分类号: TB332

Advances in solid polymer electrolyte matrices for lithium-ion batteries

Funds: Key Research and Development Programs of Shaanxi (No.2023-YBGY-500)
  • 摘要: 固态聚合物电解质(SPE)因具有安全性高、机械强度高与电极界面接触性良好等优势,在固态锂离子电池有更广泛的应用前景。聚合物基质在SPE中作主体,起着骨架支撑和促进锂离子的解离和运输作用,是SPE中不可缺少的部分。本文综述了目前对聚合物基质最新的改性策略,以提升SPE的电化学性能和力学性能。通过调节聚合物基质结构、形貌、制备工艺以及添加无机填料方面来改善聚合物基质的结晶度和锂离子传输通道,提升SPE的电化学性能,有望为固态锂离子电池商业化做出贡献。

     

  • 图  1  固态电解质性能的雷达图: 氧化物固态电解质(a)、硫化物固态电解质(b)、NASICON型固态电解质(c)、固态聚合物电解质(d)、凝胶聚合物电解质性能(e)[13-15]

    Figure  1.  Radar Chart of Solid Electrolyte Performance: oxide solid electrolyte(a), sulfide solid electrolyte(b), NASICON solid electrolyte(c), solid polymer electrolyte(d), gel polymer electrolyte(e) [13-15]

    图  2  固态聚合物电解质的结构示意图[16]

    Figure  2.  Structure diagram of solid polymer electrolyte[16]

    图  3  聚合物基质的发展史[17]

    Figure  3.  The development history of polymer matrix[17]

    图  4  无机填料LLZO与PEO形成CPE示意图(a)[52]、Li+分布在PEO基体中;PEO基体和PEO/陶瓷界面处;PEO基体和陶瓷相及PEO/陶瓷界面处的传导途径示意图(b)[51]、Li+在LLZO -PEO -LiTFSI不同比例的复合电解质中的路径示意图(c)[52]

    Figure  4.  Inorganic filler LLZO and PEO form CPE diagram(a)[52], Li+ is distributed in the PEO matrix; PEO matrix and PEO / ceramic interface; the conduction pathway diagram of PEO matrix and ceramic phase and PEO / ceramic interface(b)[51], the path diagram of Li+ in LLZO-PEO-LiTFSI composite electrolyte with different proportions(c) [52]

    图  5  采用溶液浇铸法制备PEO- LiClO4-LLZTO复合固态电解质流程示意图(a)[46]制备三维多孔导LATP骨架和抑制锂枝晶生长示意图(b)[50]

    Figure  5.  Preparation of PEO-LiClO4-LLZTO composite solid electrolyte by solution casting process schematic diagram(a)[53], preparation of three-dimensional porous LATP skeleton and inhibition of lithium dendrite growth schematic diagram(b)[50]

    图  6  PVDF和PVBL电解质中Li+的状态以及耦合的BTO - LLTO在PVBL电解质中Li盐的解离示意图(a)、NCM811 /PVBL/ Li固态电池循环测试示意图(b)[57]

    Figure  6.  The state of Li+ in PVDF and PVBL electrolytes and the dissociation diagram of Li salt in PVBL electrolyte (a), the cycle test diagram of NCM811 / PVBL / Li solid-state battery (b)[57]

    图  7  CEPZ制备过程示意图(a)、Li+在CPEZ中可能的传输路径示意图(b)[59]

    Figure  7.  The schematic diagram of the preparation process of CEPZ(a), the schematic diagram of the possible transmission path of Li+ in CPEZ(b)[59]

    图  8  PEO/PAN-LATP的双层复合电解质制备流程和C≡N基团与O原子通过氢键作用的钝化机理示意图[61]

    Figure  8.  The preparation process of PEO / PAN-LATP double-layer composite electrolyte and the passivation mechanism of C≡N group and O atom through hydrogen bonding are illustrated[61]

    图  9  AAO -聚合物复合电解质的结构设计和电化学性能测试: 内部锂离子传输通道示意图(a)、复合电解质的制备工艺示意图(b)、APCE的在0.25 mA / cm2电流密度下测得的锂对称电池中锂沉积/剥离示意图(c)[62]

    Figure  9.  The structure design and electrochemical performance test of AAO-polymer composite electrolyte: schematic diagram of internal lithium ion transport channel (a), schematic diagram of preparation process of composite electrolyte (b), schematic diagram of lithium deposition / stripping in lithium symmetric battery measured by APCE at a current density of 0.25 mA / cm2 (c)[62]

    图  10  Li/CSSPE/Li电池在不同电流密度下的沉积/剥离测试(a)[65]添加不同粒径TiO2后的离子电导率(b)[66]

    Figure  10.  Deposition / stripping test of Li / CSSPE / Li battery at different current densities(a)[65]、 The ionic conductivity after adding TiO2 with different particle sizes(b) [66]

    图  11  PAMAM – CNT作电池中间层的机理示意图[66]

    Figure  11.  The mechanism diagram of PAMAM-CNT as the intermediate layer of the battery[66]

    图  12  制备固态聚合物电解质( HBPS - ( PTFEMA-b-PPEGMA ))27)/ LiTFSI及循环性能示意图[67]

    Figure  12.  Preparation of solid polymer electrolyte ( HBPS- ( PTFEMA-b-PPEGMA ) ) 27 ) / LiTFSI and cycle performance diagram[67]

    图  13  3D复合纤维网增强CPE的制备示意图[74]

    Figure  13.  Preparation diagram of 3D composite fiber network reinforced CPE[74]

    图  14  PVDF-PMMA接枝共聚过程示意图(a) [77]、PVDF-PMMA复合膜的离子电导率示意图(b) [77]、PMMA/PVDF共混膜横截面的SEM示意图(c) [76]

    Figure  14.  Diagram of PVDF-PMMA graft copolymerization process(a) [77],ion conductivity diagram of PVDF-PMMA composite membrane(b)[77], SEM diagram of PMMA / PVDF blend membrane cross section(c)[76]

    表  1  PEO与其他聚合物共混后离子电导率[13]

    Table  1.   The ionic conductivity of PEO after blending with other polymers was studied [13]

    polymer matrix lithium salt temperature/
    Ionic conductivity/
    (S·cm−1)
    PEO/MEEP LiBF4 25 4 × 10−6
    PEO/PES LiClO4 25 1.0 × 10−5
    PEO/PET LiClO4 25 2.0 × 10−5
    PEO/PVDF LiClO4 30 2.6 × 10−5
    PEO/PVDF LiTFSI 30 4.9 × 10−3
    下载: 导出CSV
  • [1] 王蔼廉, 计文希, 陈婧, 等. 锂电池用固态电解质研究进展[J]. 高分子通报, 2019, (9): 1-14.

    WANG Gelian, JI Wenxi, CHEN Jing, et al. Research progress of solid electrolyte for lithium battery[J]. Polymer bulletin, 2019, (9): 1-14(in Chinese).
    [2] CHENG H, SHAPTER J G, LI Y, et al. Recent progress of advanced anode materials of lithium-ion batteries[J]. Journal of Energy Chemistry, 2021, 57: 451-468. doi: 10.1016/j.jechem.2020.08.056
    [3] 邢宝林, 鲍倜傲, 李旭升, 等. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068. doi: 10.11896/cldb.19080114

    XING Baolin, BAO Chouao, LI Xusheng, et al. Research Progress on Structure Regulation and Surface Modification of Graphite Anode Materials for Lithium Ion Batteries[J]. Materials Review, 2020, 34(15): 15063-15068(in Chinese). doi: 10.11896/cldb.19080114
    [4] MA S, JIANG M, TAO P, et al. Temperature effect and thermal impact in lithium-ion batteries: A review[J]. Progress in Natural Science-Materials International, 2018, 28(6): 653-666. doi: 10.1016/j.pnsc.2018.11.002
    [5] 詹元杰, 武怿达, 晓威, 等. 基于碳酸酯基电解液的4.5V电池[J]. 储能科学与技术, 2020, 9(02): 319-330.

    ZHAN Yuanjie , WU Yida, XIAO Wei, et al. 4.5 V Li-ion battery with a carbonate ester-based electrolyte[J]. Energy Storage Science and Technology, 2020, 9(02): 319-330(in Chinese).
    [6] 吴晨, 周颖, 朱晓龙, 等. 锂金属电池用高浓度电解液体系研究进展[J]. 物理化学学报, 2021, 37 (02): 36-52.

    WU Chen, ZHOU Ying, ZHU Xiaolong , et al. Research Progress on High Concentration Electrolytes for Li Metal Batteries[J]. Acta Physico-Chimica Sinica, 2021, 37 (02): 36-52(in Chinese).
    [7] DU G, ZHENG L, ZHANG Z, et al. Overview of research on thermal safety of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(3): 500-505.
    [8] ZHANG J, DONG T, YANG J, et al. Research progress, challenge and perspective of all-solid-state polymer lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(5): 861-868.
    [9] MINDEMARK J, LACEY M J, BOWDEN T, et al. Beyond PEO—Alternative Host Materials for Li+ Conducting Solid Polymer Electrolytes[J]. Progress in Polymer Science 2018, 81: 114-143.
    [10] LIU J, YUAN H, LIU H, et al. Unlocking the Failure Mechanism of Solid State Lithium Metal Batteries[J]. Advanced Energy Materials, 2022, 12(4): 2100748. doi: 10.1002/aenm.202100748
    [11] CHEN X, GUAN Z, CHU F, et al. Air-stable inorganic solid-state electrolytes for high energy density lithium batteries: Challenges, strategies, and prospects[J]. Infomat, 2022, 4(1): 12248. doi: 10.1002/inf2.12248
    [12] MA J, CHEN B, WANG L, et al. Progress and prospect on failure mechanisms of solid-state lithium batteries[J]. Journal of Power Sources, 2018, 392: 94-115. doi: 10.1016/j.jpowsour.2018.04.055
    [13] XUE Z, HE D, XIE X. Poly (ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. doi: 10.1039/C5TA03471J
    [14] ZHAO N, KHOKHAR W, BI Z, et al. Solid garnet batteries[J]. Joule, 2019, 3(5): 1190-1199. doi: 10.1016/j.joule.2019.03.019
    [15] DUAN H, ZHENG H, ZHOU Y, et al. Stability of garnet-type Li ion conductors: An overview[J]. Solid State Ionics, 2018, 318: 45-53. doi: 10.1016/j.ssi.2017.09.018
    [16] FAN X, ZHONG C, LIU J, et al. Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid / solid electrolytes[J]. Chemical Reviews, 2022, 122(23): 17155-17239. doi: 10.1021/acs.chemrev.2c00196
    [17] 谷琪, 刘夏夏, 周鑫宇, 等. 用于锂金属电池的聚合物固态电解质的研究进展[J]. 化学学报, 2024, 82(04): 449-457.

    GU Qi, LIU Xiaxia , ZHOU Xinyu , et al. Recent Progress on Polymer Solid Electrolytes for Lithium Metal Batteries[J]. Atca Chimica Sinica, 2024, 82(04): 449-457(in Chinese).
    [18] 王青磊, 王涵, 马静, 等. 聚环氧乙烷聚合物固态电解质的现状及改性策略[J]. 高分子材料科学与工程, 2022, 38(04): 165-173.

    WANG Qinglei , WANG Han, MA Jing, et al. Current Situation and Modification Strategy of Poly(ethylene oxide) Polymer Solid State Electrolyte. Polymer Materials Science and Engineering, 2022, 38(04): 165-173(in Chinese).
    [19] 宋彦, 马静, 秦恩博, 等. 聚合物固态电解质的研究进展[J]. 盐湖研究, 2023, 52(10): 1-12.

    SONG Yan, MA Jing, QING Enbo, et al. Research Progress of Polymer Solid Electrolyte[J]. Journal of salt lake research, 2023, 52(10): 1-12(in Chinese).
    [20] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(10): 16103.
    [21] 王永勤, 薛旭金, 郭贤慧, 等. PEO基聚合物电解质的研究进展[J]. 塑料工业, 2017, 45(09): 1-8.

    WANG Yongqin , XUE Xujin , GUO Xianhui , et al. Research Progress on PEO-based Polymer Electrolyte[J]. China plastics industry, 2017, 45(09): 1-8.
    [22] WANG R, MEI H, REN W, et al. New Progress of the Research on the Modification of PEO Polymer Matrix and Its High-performance Solid Polymer Electrolyte Materials[J]. Materials Review, 2016, 30(6A): 63-67.
    [23] ZHAO X D, ZHU W, LI J R, et al. Research Progress in PEO Based Polymer Electrolytes of All Solid State Lithium Ion Battery[J]. Materials Review, 2014, 28(7): 13-17+44.
    [24] YU X Y, LI M, WEI L, et al. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery[J]. Progress in Chemistry, 2023, 35(3): 390-406.
    [25] 刘汉奎, 刘芹, 贾维尚, 等. PEO-PAN-PEO三明治结构新型固态聚合物电解质的研究[J]. 四川大学学报(自然科学版), 2018, 55(04): 833-837.

    LIU Hankui , LIU Qin, JIA Weishang , et al. A novel all-solid-state polymer electrolyte basedon PEO-PAN-PEO sandwich structure[J]. Journal of Sichuan University (Natural Science Edition), 2018, 55(04): 833-837(in Chinese).
    [26] 唐致远, 王占良. 聚丙烯腈基聚合物电解质[J]. 化学通报, 2002, 65(6): 379-384.

    TANG Zhiyuan, WANG Zhanliang. Polyacrylonitrile-based polymer electrolyte[J]. Chemistry, 2002, 65(6): 379-384(in Chinese).
    [27] LIU F, HASHIM N A, LIU Y, et al. Progress in the production and modification of PVDF membranes[J]. Journal of membrane science, 2011, 375(1-2): 1-27. doi: 10.1016/j.memsci.2011.03.014
    [28] KANG G , CAO Y , Application and modification of poly (vinylidene fluoride)(PVDF) membranes–a review[J]. Journal of membrane science, 2014, 463: 145-165.
    [29] CHOI W, KANG Y, KIM I J, et al. Stable Cycling of a 4 V Class Lithium Polymer Battery Enabled by In Situ Cross-Linked Ethylene Oxide/Propylene Oxide Copolymer Electrolytes with Controlled Molecular Structures[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 35664-35676.
    [30] 臧玉莉, 石琨, 邹雷, 等. 3D交联复合结构凝胶聚合物电解质制备研究[J]. 电源技术, 2022, 46(01): 30-33.

    ZANG Yuli , SHI Kun, ZOU Lei, et al. Preparation of 3D cross-linked gel composite polymer electrolytes[J]. Journal of Power Sources, 2022, 46(01): 30-33(in Chinese).
    [31] 张政, 贾弼超, 贺艳兵. PVDF基聚合物固态电解质的组成与改性研究[J]. 电池工业, 2024, 28(03), 1-13.

    ZHANG Zheng, JIA Bichao , HE Yanbing . Composition and modification designs of PVDF-based polymer solid-state electrolytes[J]. Chinese Battery Industry, 2024, 2024, 28(03), 1-13(in Chinese).
    [32] 薄扩, 李志义, 魏炜, 等. 超临界法制备PVDF-HFP-PEO共混聚合物电解质及其性能研究[J]. 现代化工, 2022, 42(12): 229-234.

    BAO Kuo, LI Zhiyi , WEI Wei, et al. Preparation of PVDF-HFP-PEO blending polymer electrolyte by supercritical method and study on its properties[J]. Modern Chemical Industry, 2022, 42(12): 229-234(in Chinese).
    [33] HE C, LIU J, LI J, et al. Blending based polyacrylonitrile/poly(vinyl alcohol) membrane for rechargeable lithium ion batteriers[J]. Journal of Membrane Science, 2018, 560: 30-37. doi: 10.1016/j.memsci.2018.05.013
    [34] REDDEPPA N, SHARMA A K, RAO V V R N, et al. Preparation and characterization of pure and KBr doped polymer blend (PVC/PEO) electrolyte thin films[J]. Microelectronic Engineering, 2013, 112: 57-62. doi: 10.1016/j.mee.2013.05.015
    [35] ZOU L, SHI K, LIU H, et al. Polybenzimidazole-reinforced polyethylene oxide-based polymer-in-salt electrolytes enabling excellent structural stability and superior electrochemical performance for lithium metal batteries[J]. Chemical Engineering Journal, 2023, 465: 142794. doi: 10.1016/j.cej.2023.142794
    [36] 宋鑫, 高志浩, 骆林, 等. 全固态锂电池有机-无机复合电解质研究进展[J]. 复合材料学报, 2023, 40(4): 1857-1878.

    SONG Xin, GAO Zhihao, LUO Lin, et al. Research progress of organic-inorganic composite electrolytes for all-solid-state lithium batteries[J]. Atca Materiae Compositae Sinica, 2023, 40(4): 1857-1878(in Chinese).
    [37] 刘聪, 钟霖峰, 宫萧琪, 等. 固态锂电池用有机-无机复合电解质的研究进展[J]. 复合材料学报, 2024, 41(1): 1-15.

    LIU Cong, ZHONG Linfeng, GONG Xiaoqi, et al. Research progress of organic-inorganic composite electrolytes for solid-state lithium batterie[J]. Atca Materiae Compositae Sinica, 2024, 41(1): 1-15(in Chinese).
    [38] TANG S, GUO W, FU Y. Advances in composite polymer electrolytes for lithium batteries and beyond[J]. Advanced Energy Materials, 2021, 11(2): 2000802. doi: 10.1002/aenm.202000802
    [39] LIANG H, WANG L, WANG A, et al. Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review[J]. Nano-Micro Letters, 2023, 15(1): 42. doi: 10.1007/s40820-022-00996-1
    [40] 李香莉, 肖凯军, 郭祀远. PVDF/Al2O3杂化膜的制备与性能表征[J]. 华南理工大学学报(自然科学版), 2010, 38(07): 112-116.

    LI Xiangli , XIAO Kaijun , GUO Siyuan. Preparation and Characterization of Hybrid PVDF /Al2O3 Membrane[J]. Journal of South China University of Technology (Natural Science Edition) , 2010, 38(07): 112-116(in Chinese).
    [41] DAMIN G, YICAI L, LIU Y, et al. Research on the Electrochemical Properties of PEO8-LiClO4-SiO2-SCA[J]. Acta Chimica Sinica, 2010, 68(22): 2367-2372.
    [42] CROCE F, SETTIMI L, SCROSATI B. Superacid ZrO2-added, composite polymer electrolytes with improved transport properties[J]. Electrochemistry communications, 2006, 8(2): 364-368. doi: 10.1016/j.elecom.2005.12.002
    [43] WANG C, YANG T, ZHANG W, et al. Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2022, 10(7): 3400-3408. doi: 10.1039/D1TA10607D
    [44] NGUYEN Q H, PARK M G, Nguyen H L, et al. Cubic garnet solid polymer electrolyte for room temperature operable all-solid-state-battery[J]. Journal of Materials Research and Technology, 2021, 15: 5849-5863. doi: 10.1016/j.jmrt.2021.11.055
    [45] HUANG J, HUANG Y, ZHANG Z, et al. Li6.7La3Zr1.7Ta0. 3O12 reinforced PEO/PVDF-HFP based composite solid electrolyte for all solid-state lithium metal battery[J]. Energy & Fuels, 2020, 34(11): 15011-15018.
    [46] ZHANG X, FU C, CHENG S, et al. Novel PEO-based composite electrolyte for low-temperature all-solid-state lithium metal batteries enabled by interfacial cation-assistance[J]. Energy Storage Materials, 2023, 56: 121-131. doi: 10.1016/j.ensm.2022.12.048
    [47] LIU K, ZHANG R, SUN J, et al. Polyoxyethylene (PEO)| PEO–perovskite| PEO composite electrolyte for all-solid-state lithium metal batteries[J]. ACS applied materials & interfaces, 2019, 11(50): 46930-46937.
    [48] ZHU P, YAN C, DIRICAN M, et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2018, 6(10): 4279-4285. doi: 10.1039/C7TA10517G
    [49] ZHAI H, XU P, NING M, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J]. Nano Letters, 2017, 17(5): 3182-3187. doi: 10.1021/acs.nanolett.7b00715
    [50] WANG G, LIU H, LIANG Y, et al. Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries[J]. Energy Storage Materials, 2022, 45: 1212-1219. doi: 10.1016/j.ensm.2021.11.021
    [51] SUY, XU F, ZHANG X, et al. Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries[J]. Nano-Micro Letters, 2023, 15(1): 82. doi: 10.1007/s40820-023-01055-z
    [52] ZHENG J, Hu Y Y. New insights into the compositional dependence of Li-ion transport in polymer–ceramic composite electrolytes[J]. ACS applied materials & interfaces, 2018, 10(4): 4113-4120.
    [53] WANG X, ZHAO C, LIU B, et al. Creating Edge Sites within the 2D Metal-Organic Framework Boosts Redox Kinetics in Lithium–Sulfur Batteries[J]. Advanced Energy Materials, 2022, 12(42): 2201960. doi: 10.1002/aenm.202201960
    [54] SUN W, TANG X, YANG Q, et al. Coordination-induced interlinked covalent-and metal–organic-framework hybrids for enhanced lithium storage[J]. Advanced Materials, 2019, 31(37): 1903176. doi: 10.1002/adma.201903176
    [55] SHEN L, WU H B, LIU F, et al. Creating lithium-ion electrolytes with biomimetic ionic channels in metal–organic frameworks[J]. Advanced Materials, 2018, 30(23): 1707476. doi: 10.1002/adma.201707476
    [56] YUAN Y, CHEN L, LI Y, et al. Functional LiTaO3 filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte[J]. Energy Materials and Devices, 2023, 1(1): 9370004. doi: 10.26599/EMD.2023.9370004
    [57] SHI P, MA J, LIU M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nature Nanotechnology, 2023, 18(6): 602-610. doi: 10.1038/s41565-023-01341-2
    [58] HUANG W, WANG S, ZHANG X, et al. Universal F4-Modified Strategy on Metal–Organic Framework to Chemical Stabilize PVDF-HFP as Quasi-Solid-State Electrolyte[J]. Advanced Materials, 2023, 35(52): 2310147. doi: 10.1002/adma.202310147
    [59] JIANG Y, XU C, XU K, et al. Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes[J]. Chemical Engineering Journal, 2022, 442: 136245. doi: 10.1016/j.cej.2022.136245
    [60] FURUKAWA H, CORDOVA K E, KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. doi: 10.1126/science.1230444
    [61] WANG X, HAO X, XIA Y, et al. A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries[J]. Journal of membrane science, 2019, 582: 37-47. doi: 10.1016/j.memsci.2019.03.048
    [62] ZHANG X, XIE J, SHI F, et al. Vertically aligned and continuous nanoscale ceramic–polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity[J]. Nano letters, 2018, 18(6): 3829-3838. doi: 10.1021/acs.nanolett.8b01111
    [63] LIU Y, ZENG Q, LI Z, et al. Recent development in topological polymer electrolytes for rechargeable lithium batteries[J]. Advanced Science, 2023, 10(15): 2206978. doi: 10.1002/advs.202206978
    [64] WANG S, ZHANG L, ZENG Q, et al. Cellulose microcrystals with brush-like architectures as flexible all-solid-state polymer electrolyte for lithium-ion battery[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3200-3207.
    [65] REN S, ZHENG T, ZHOU Q, et al. Preparation and ionic conductivity of composite polymer electrolytes based on hyperbranched star polymer[J]. Ionics, 2014, 20: 1225-1234. doi: 10.1007/s11581-013-1061-4
    [66] LI S, ZHANG H, CHEN W, et al. Toward commercially viable Li-S batteries: Overall performance improvements enabled by a multipurpose interlayer of hyperbranched polymer-grafted carbon nanotubes[J]. ACS applied materials & interfaces, 2020, 12(23): 25767-25774.
    [67] XU H, WANG A, LIU X, et al. A new fluorine-containing star-branched polymer as electrolyte for all-solid-state lithium-ion batteries[J]. Polymer, 2018, 146: 249-255. doi: 10.1016/j.polymer.2018.05.045
    [68] OSMAN Z, MDISA K B, AHMAD A, et al. A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes[J]. Ionics, 2010, 16: 431-435. doi: 10.1007/s11581-009-0410-9
    [69] 康树森, 杨程响, 杨泽林, 等. 旋涂法制备 PEO-PAN-PMMA 三组分共混凝胶聚合物电解质[J]. 化学学报, 2020, 78(12): 1441. doi: 10.6023/A20080356

    KANG Shusen, YANG Chengxiang, YANG Zelin, et al. Blending Based PEO-PAN-PMMA Gel Polymer Electrolyte Prepared by Spaying Casting for Solid-state Lithium Metal Batteries[J]. Acta Chimica sinic, 2020, 78(12): 1441(in Chinese) doi: 10.6023/A20080356
    [70] 徐疆兰. 锂离子电池用PAN/TPU/PPC三元凝胶聚合物电解质的制备与研究[D]. 湘潭: 湘潭大学, 2019.

    XU Jianglan. Preparation and Study of Ternary PAN/TPU/PPC Gel Polymer Electrolytes for Lithium Ion Battery[D]. Xiangtan: Xiangtan University, 2019.
    [71] VIJAYAKUMAR V, ANOTHUMAKKOOL B, KURUNGO S, et al. In situ polymerization process: an essential design tool for lithium polymer batteries[J]. Energy & environmental science, 2021, 14(5): 2708-2788.
    [72] HUANG S, CUI Z, QIAO L, et al. An in-situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries[J]. Electrochimica Acta, 2019, 299: 820-827. doi: 10.1016/j.electacta.2019.01.039
    [73] LEI Z, QIU Q, SHEN J, et al. Room-Temperature Solid-State Lithium Metal Batteries Using Metal Organic Framework Composited Comb-Like Methoxy Poly (ethylene glycol) Acrylate Solid Polymer Electrolytes[J]. Macromolecular Materials and Engineering, 2021, 306(10): 2100336. doi: 10.1002/mame.202100336
    [74] JIN Y, ZONG X, ZHANG X, et al. Constructing 3D Li+ percolated transport network in composite polymer electrolytes for re- chargeable quasi-solid-state lithium batteries[J]. Energy Storage Materials, 2022, 49: 433-444. doi: 10.1016/j.ensm.2022.04.035
    [75] 何双莉, 苏子秋, 李德阳, 等. PAN基耐高压聚合物电解质的制备及性能研究[J]. 北京服装学院学报(自然科学版), 2022, 42(2): 27-32.

    HE Shuangli, SU Ziqiu, LI Deyang, et al. Preparation and Performance of PAN-based High Voltage Polymer Electrolyte[J]. Journal of Beijing Institute of Fashion Technology( Natural Science Edition), 2022, 42(2): 27-32(in Chinese).
    [76] MA T, CUI Z, WU Y, et al. Preparation of PVDF based blend microporous membranes for lithium ion batteries by thermally induced phase separation: I. Effect of PMMA on the membrane formation process and the properties[J]. Journal of Membrane Science, 2013, 444: 213-222. doi: 10.1016/j.memsci.2013.05.028
    [77] LI Z, WEI J, SHAN F, et al. PVDF/PMMA brushes membrane for lithium-ion rechargeable batteries prepared via preirradiation grafting technique[J]. Journal of Polymer Science Part B: Polymer Physics, 2008, 46(7): 751-758. doi: 10.1002/polb.21408
  • 加载中
计量
  • 文章访问数:  272
  • HTML全文浏览量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-03
  • 修回日期:  2024-07-29
  • 录用日期:  2024-08-06
  • 网络出版日期:  2024-08-30

目录

    /

    返回文章
    返回