Processing math: 0%

用于锂离子电池的固态聚合物电解质基质的研究进展

张昊, 陈钰, 魏剑, 冯晓梅, 赵甜, 高昊楠, 张军战

张昊, 陈钰, 魏剑, 等. 用于锂离子电池的固态聚合物电解质基质的研究进展[J]. 复合材料学报, 2025, 42(5): 2434-2448. DOI: 10.13801/j.cnki.fhclxb.20240826.003
引用本文: 张昊, 陈钰, 魏剑, 等. 用于锂离子电池的固态聚合物电解质基质的研究进展[J]. 复合材料学报, 2025, 42(5): 2434-2448. DOI: 10.13801/j.cnki.fhclxb.20240826.003
ZHANG Hao, CHEN Yu, WEI Jian, et al. Advances in solid polymer electrolyte matrices for lithium-ion batteries[J]. Acta Materiae Compositae Sinica, 2025, 42(5): 2434-2448. DOI: 10.13801/j.cnki.fhclxb.20240826.003
Citation: ZHANG Hao, CHEN Yu, WEI Jian, et al. Advances in solid polymer electrolyte matrices for lithium-ion batteries[J]. Acta Materiae Compositae Sinica, 2025, 42(5): 2434-2448. DOI: 10.13801/j.cnki.fhclxb.20240826.003

用于锂离子电池的固态聚合物电解质基质的研究进展

基金项目: 陕西省科技厅重点研发项目(2023-YBGY-500)
详细信息
    通讯作者:

    张军战,博士,副教授,硕士生导师,研究方向为多孔陶瓷、陶瓷材料快速烧结工艺 E-mail:xajzzhang@126.com

  • 中图分类号: TB332

Advances in solid polymer electrolyte matrices for lithium-ion batteries

Funds: Key Research and Development Programs of Shaanxi Province (2023-YBGY-500)
  • 摘要:

    固态聚合物电解质(SPE)因具有安全性高、机械强度高与电极界面接触性良好等优势,在固态锂离子电池有更广泛的应用前景。聚合物基质在SPE中作主体,起着骨架支撑和促进锂离子的解离和运输作用,是SPE中不可缺少的部分。本文综述了目前对聚合物基质最新的改性策略,以提升SPE的电化学性能和力学性能。通过调节聚合物基质结构、形貌、制备工艺及添加无机填料方面来改善聚合物基质的结晶度和锂离子传输通道,提升SPE的电化学性能,有望为固态锂离子电池商业化做出贡献。

     

    Abstract:

    Solid state polymer electrolyte (SPE) has a wider application prospect in solid state lithium ion batteries due to its advantages of high safety, high mechanical strength and good contact with electrode interface. Polymer matrix is an indispensable part of SPE as the main body, which plays the roles of skeleton support and promotion of lithium ion dissociation and transport. This paper reviews the latest modification strategies of polymer matrix to enhance the electrochemical and mechanical properties of SPE. Improving the crystallinity and lithium ion transport channels of the polymer matrix by modifying its structure, morphology, preparation process, and addition of inorganic fillers to enhance the electrochemical performance of SPE is expected to contribute to the commercialisation of solid-state lithium-ion batteries.

     

  • 碳纤维复合材料层合板因具有优异的力学性能,特别是其最佳的比强度和比刚度,而广泛应用于航空航天等领域[1-2]。这些层合板结构在服役过程中,不可避免会遇到工具坠落或者外物低速冲击。因为多层、非均质和弹性各向异性特点[3],导致其对垂直于铺层方向的冲击载荷较为敏感,即使在低速冲击下,内部也可能产生不可见的冲击损伤[4]。由于结构内部复杂的应力作用,多种损伤机制之间相互耦合,导致损伤不断演变和扩展,结构的强度严重降低甚至失效。为解决这一问题,众多学者通过试验手段,开展大量动态冲击测试,研究层合板损伤机制、设计结构安全系数等。此外,动态原位试验技术也得到了发展[5-6]。结合高速摄像、微观X射线计算机断层扫描技术和深度学习语义分割算法,可以更深入认识试样损伤状态,但也存在内部损伤捕捉不足、实时监测成本高等问题,导致材料渐进损伤行为描述存在局限。因此,开展低速冲击过程的数值模拟研究显得尤为关键。

    已有数值模拟研究中,宏观渐进分析方法因考虑了从损伤起始到失效的完整演化过程得到重视[7]。该方法包括损伤起始准则、演化方法和渐进本构关系。损伤起始判定可分与失效模式无关的第一类准则和与失效模式相关的第二类准则。第一类如最大应力准则、Tsai-Hill失效准则和Tsai-Wu准则等,它们是根据局部的应力或应变条件判断层合板整体是否失效,预测结果往往过于保守。第二类准则以试验现象和失效机理为依据,适用于复合材料损伤机理和复杂结构强度的分析,如Chang-Chang[8]、Hou[9]、Hashin[10]和Puck[11]等准则。其中,Chang-Chang、Hou和Hashin准则相对简单,多用于复材的冲击损伤分析[12-14]。然而也因自身存在的劣势,例如,Chang-Chang忽略了面外的剪切作用[12],Hou没有考虑贯穿厚度方向的应力作用[13],Hashin没有考虑压缩载荷下断裂面的影响,导致损伤预测结果有偏差[14]。为了考虑在横向压缩载荷对抗剪强度的增强作用,Puck准则引入了基体损伤断裂面的概念,可精确描述压缩状态下的层合板脆性断裂行为[15]

    损伤发生后,后续的扩展规律遵循特定损伤演化方法[16-19]。合理的演化方法可以解释物理机制,并具有良好的数值收敛性和计算精度[16]。演化方法可分为直接和渐进刚度退化两种。直接退化方法假定弹性模量和泊松比下降到预定值,可用于结构强度的粗略估计[17]。然而,该方法严重依赖于经验知识,其物理机制难以解释。此外,该方法对预测整体结构强度以及内部分层和基体损伤通常过于保守[18]。相比之下,渐进退化方法将损伤扩展描述为一个连续演化的过程。损伤起始后,有较多微裂纹产生并分散在结构内部,在宏观尺度上反映出弹性模量等力学性能降低。随着冲击加载持续,微裂纹逐渐积累并最终升级为宏观裂纹,外在反映出结构的承载能力降低甚至失效[17]。在该方法中,当前损伤程度是通过计算损伤区域附近的应变和位移等力学参数获得损伤状态变量进而确定的。然而,在计算之前,该方法需要预先定义刚度退化的趋势,常用的有线性和指数型两种[12-19]。因此,渐进退化可分为线性/指数型等效应变/位移方法。

    针对层合板冲击损伤问题的分析,不同学者将损伤起始准则和演化方法进行了不同的组合[12-22]。早期研究主要是将单一损伤起始准则和单一演化方法相结合作为一种辅助分析手段,重点采用实验方法对纤维增强复合材料层合板以及三明治夹芯结构的损伤机制和剩余压缩强度等问题进行研究[12-20],而不同起始准则、演化方法对损伤预测影响并没有涉及。为此,在新近的研究中对比了不同组合对冲击损伤的预测能力,例如Hashin、Chang-Chang和Puck准则分别结合线性等效应变演化方法(E1)[21]。在此基础上,最大应力、Tsai-Wu及Hou准则结合E1和等效位移(E2)两种线性演化方法对预测能力的影响也得到进一步分析[22]。因为最大应力准则倾向于过度预测复合材料在轴向拉伸下的破坏载荷,而Tsai-Wu准则却低估了它们;且Tsai-Wu准则不是独立方程形式,未能区分基体拉伸、压缩损伤。故而,探讨这两个准则对预测层合板损伤的意义不大。此外,指数型演化方法(E3)的损伤预测结果在报道中更符合实际情况[18]。有学者将E3方法与直接演化方法进行对比,验证了该方法的预测能力[23],但不同起始准则对其预测能力的影响尚未开展研究。因此,为准确揭示渐进损伤行为、解释损伤形成机制,不同损伤起始准则、演化方法对层合板冲击损伤预测的影响仍需进一步探索。相关研究对发展可靠的工程预测方法很有意义。

    本文旨在评估Hashin应力、Hashin应变和Puck三种损伤起始准则以及E1、E2和非线性指数型等效位移(E3)三种损伤演化方法对复合材料层合板低速冲击损伤预测的影响。为此,建立了低速冲击损伤三维有限元数值模型,设计了冲击损伤动态渐进行为模拟流程,并将其编码在ABAQUS/Explicit的VUMAT子程序中。提出一种通过损伤状态变量表征损伤面积的方法,为阐释损伤行为提供有力工具。在此基础上,对本文数值模拟进行验证并探讨了不同起始准则和演化方法的损伤预测能力。

    低速冲击载荷引起层合板损伤有多种模式,可分为在层内发生的纤维/基体拉伸/压缩损伤和在层间发生的分层损伤。针对这多模式的冲击损伤,本文采用基于连续损伤力学理论的渐进分析方法研究损伤的起始判定以及累积和扩展行为。

    起始准则多以应力作为判定参数。但是,层合板在冲击载荷的作用下,其内部应力会因损伤的产生而导致剧烈变化,而应变参数变化较为连续,故而认为应变形式准则更适合用作损伤预测[19]。因此,本文基于应力的Hashin-Stress和Puck以及应变的Hashin-Strain三种准则为研究对象,探讨其损伤预测性能。

    纤维损伤起始准则[24]

    拉伸(ε11):

    {\xi _{{\mathrm{ft}}}} = {\left( {\frac{{{\varepsilon _{11}}}}{{\varepsilon _{11}^{\mathrm{T}}}}} \right)^2} + {\left( {\frac{{{\varepsilon _{12}}}}{{\varepsilon _{12}^{\mathrm{G}}}}} \right)^2} + {\left( {\frac{{{\varepsilon _{13}}}}{{\varepsilon _{13}^{\mathrm{G}}}}} \right)^2} \geqslant 1 (1)

    压缩( {\varepsilon _{11}} < 0 ):

    {\xi _{{\mathrm{fc}}}} = {\left( {\frac{{{\varepsilon _{11}}}}{{\varepsilon _{11}^{\mathrm{C}}}}} \right)^2} \geqslant 1 (2)

    基体损伤起始准则[17,21,25]

    Hashin-Stress准则,

    拉伸( {\sigma _{22}} + {\sigma _{33}} \geqslant 0 ):

    \begin{aligned} \xi_{\mathrm{mt}}= & \left(\frac{\sigma_{22}+\sigma_{33}}{Y_{\mathrm{T}}}\right)^2+\frac{1}{S_{23}^2}\left(\sigma_{23}^2-\sigma_{22} \sigma_{33}\right) + \\ &\left(\frac{\sigma_{12}}{S_{12}}\right)^2+\left(\frac{\sigma_{13}}{S_{13}}\right)^2 \geqslant 1 \end{aligned} (3)

    压缩( {\sigma _{22}} + {\sigma _{33}} < 0 ):

    \begin{array}{l}{\xi }_{{\mathrm{mc}}}={\left(\dfrac{{\sigma }_{22}+{\sigma }_{33}}{2{S}_{23}}\right)}^{2}+\dfrac{{\sigma }_{22}+{\sigma }_{33}}{{Y}_{{\mathrm{C}}}}\left[{\left(\dfrac{{Y}_{{\mathrm{C}}}}{2{S}_{23}}\right)}^{2}-1\right]+\\ \begin{array}{cc}& \end{array}\dfrac{1}{{S}_{23}^{2}}\left({\sigma }_{23}^{2}-{\sigma }_{22}{\sigma }_{33}\right)+{\left(\dfrac{{\sigma }_{12}}{{S}_{12}}\right)}^{2}+{\left(\dfrac{{\sigma }_{13}}{{S}_{13}}\right)}^{2}\geqslant1\end{array} (4)

    Hashin-Strain准则

    拉伸( {\varepsilon _{22}} + {\varepsilon _{33}} \geqslant 0 ):

    {\xi _{{\mathrm{mt}}}} = {\left( {\frac{{{\varepsilon _{22}}}}{{\varepsilon _{22}^{\mathrm{T}}}}} \right)^2} \geqslant 1 (5)

    压缩( {\varepsilon _{22}} + {\varepsilon _{33}} < 0 ):

    \begin{gathered} {\xi _{{\mathrm{mc}}}} = \frac{{{{\left( {{\varepsilon _{22}} + {\varepsilon _{33}}} \right)}^2}}}{{\varepsilon _{22}^{\mathrm{C}} \cdot \varepsilon _{33}^{\mathrm{C}}}} + \left( {\frac{{\varepsilon _{22}^{\mathrm{C}}}}{{2 \cdot \varepsilon _{12}^{\mathrm{G}}}} - 1} \right) \cdot \frac{{{\varepsilon _{22}} + {\varepsilon _{33}}}}{{\varepsilon _{22}^{\mathrm{C}}}} \\ \begin{array}{*{20}{c}} {}&{} \end{array} - \frac{{{\varepsilon _{22}} \cdot {\varepsilon _{33}}}}{{{{\left( {\varepsilon _{23}^{\mathrm{G}}} \right)}^2}}} + {\left( {\frac{{{\varepsilon _{12}}}}{{\varepsilon _{12}^{\mathrm{G}}}}} \right)^2} + {\left( {\frac{{{\varepsilon _{13}}}}{{\varepsilon _{13}^{\mathrm{G}}}}} \right)^2} + {\left( {\frac{{{\varepsilon _{23}}}}{{\varepsilon _{23}^{\mathrm{G}}}}} \right)^2} \geqslant 1 \\ \end{gathered} (6)

    Puck准则

    拉伸( {\sigma _{{\mathrm{nn}}}}(\theta ) \geqslant 0 ):

    {\xi _{{\mathrm{mt}}}}(\theta ) = {\left( {\frac{{{\sigma _{{\mathrm{nn}}}}(\theta )}}{{{Y_{\mathrm{T}}}}}} \right)^2} + {\left( {\frac{{{\sigma _{{\mathrm{nt}}}}(\theta )}}{{S_{23}^{\mathrm{A}}}}} \right)^2} + {\left( {\frac{{{\sigma _{{\mathrm{nl}}}}(\theta )}}{{{S_{12}}}}} \right)^2} \geqslant 1 (7)

    压缩( {\sigma _{{\mathrm{nn}}}}(\theta ) < 0 ):

    {\xi _{{\mathrm{mc}}}}(\theta ) = {\left( {\frac{{{\sigma _{{\mathrm{nt}}}}(\theta )}}{{S_{23}^{\mathrm{A}} - {\mu _{{\mathrm{nt}}}}{\sigma _{{\mathrm{nn}}}}(\theta )}}} \right)^2} + {\left( {\frac{{{\sigma _{{\mathrm{nl}}}}(\theta )}}{{{S_{12}} - {\mu _{{\mathrm{nl}}}}{\sigma _{{\mathrm{nl}}}}(\theta )}}} \right)^2} \geqslant 1 (8)

    式中,Hashin和Puck是一种独立方程式准则,用于拉、压载荷下纤维和基体不同损伤模式的评估。同时也是一种交互式准则,对于基体损伤,考虑了横向应力和面内剪应力之间的相互关系,提高了损伤分析精度。 \xi 为失效因子,下标ft、fc、mt和mc指纤维拉伸/压缩和基体拉伸/压缩状态,当 \xi \geqslant 1 时,表示层合板产生损伤。下标1、2和3分别指纤维方向、面内横向和面外法向。X、Y为纤维方向和面内横向的强度,其下标TC代表拉/压状态。S12S13S23表示面内、面外抗剪强度。其中,对于Puck准则[11],它认为在层合板中存在一个平行于纤维方向的潜在断裂面,而且在该面上存在沿着法向、纵向剪切和横向剪切方向的特定应力分量,即 {\sigma _{{\mathrm{nn}}}}(\theta ) {\sigma _{{\mathrm{nt}}}}(\theta ) {\sigma _{{\mathrm{nl}}}}(\theta ) ,如图1所示。由于这些应力分量的共同作用,在该断裂面上发生失效的概率最大。单元在三维应力加载情况下,识别和计算断裂面角度是使用该准则的重要前提[16]。鉴于断裂面为基体损伤因子 {\xi _{{\mathrm{mt}}/{\mathrm{c}}}}(\theta ) 最大值对应的角度,本文采用黄金搜索方法对该角度进行求解[15]。此外, S_{23}^{\mathrm{A}} 为断裂面的横向抗剪强度, {\mu _{{\mathrm{nt}}}}(\theta ) {\mu _{{\mathrm{nl}}}}(\theta ) 为摩擦系数,计算如下式所示:

    \left\{\begin{array}{l} \varepsilon_{11}^{\mathrm{T}}=\dfrac{X_{\mathrm{T}}}{E_{11}}, \varepsilon_{11}^{\mathrm{C}}=\dfrac{X_{\mathrm{C}}}{E_{11}}, \varepsilon_{22}^{\mathrm{T}}=\dfrac{Y_{\mathrm{T}}}{E_{22}}, \varepsilon_{22}^{\mathrm{C}}=\dfrac{Y_{\mathrm{C}}}{E_{22}} \\ \varepsilon_{33}^{\mathrm{C}}=\dfrac{Z_{\mathrm{C}}}{E_{33}}, \varepsilon_{12}^{\mathrm{G}}=\dfrac{S_{12}}{2 \cdot G_{12}}, \varepsilon_{13}^{\mathrm{G}}=\dfrac{S_{13}}{2 \cdot G_{13}}, \varepsilon_{23}^{\mathrm{G}}=\dfrac{S_{23}}{2 \cdot G_{23}} \end{array}\right. (9)
    \left\{\begin{aligned} & \sigma_{\mathrm{nn}}(\theta)=\sigma_{22} \cos ^2 \theta+\sigma_{33} \sin ^2 \theta+2 \sigma_{23} \cos \theta \sin \theta \\ & \sigma_{\mathrm{n} 1}(\theta)=\sigma_{12} \cos \theta+\sigma_{13} \sin \theta \\ & \sigma_{\mathrm{nt}}(\theta)=-\sigma_{22} \cos \theta \sin \theta+\sigma_{33} \cos \theta \sin \theta+ \\ &\qquad 2 \sigma_{23}\left(2 \cos ^2 \theta-1\right) \\ & \mu_{\mathrm{n} 1}(\theta)= \tan \left(2 \theta-90^{\circ}\right), \frac{\mu_{\mathrm{nt}}(\theta)}{S_{23}^{\mathrm{A}}}=\frac{\mu_{\mathrm{n} 1}(\theta)}{S_{12}} \\ & S_{23}^{\mathrm{A}}=\frac{Y_{\mathrm{C}}}{2}\left(\frac{1-\sin \phi}{\cos \phi}\right), \phi=2 \theta-90^{\circ} \end{aligned}\right. (10)
    图  1  Puck准则中横向压缩载荷下塑性断裂行为
    Figure  1.  Damage fracture under transverse compression for Puck criterion

    层合板损伤发生后,后续过程进入演化阶段,即损伤区域内应力下降,宏观力学性能表现为刚度退化。演化方法包括直接和渐进刚度退化两种方法。直接方法依赖经验,缺乏理论支持,且常低估力学性能,而渐进方法考虑了损伤逐渐累积过程,使演化行为得以很好描述。本文主要研究线性和指数型渐进演化方法,如图2所示。

    图  2  渐进演化方法中应力、损伤变量与位移的关系
    Figure  2.  Relationship between stress, damage variables and displacement in progressive evolution methods
    {\delta }_{\mathrm{e}\mathrm{q},i} and {\sigma }_{\mathrm{e}\mathrm{q},i} are equivalent displacement and stress; {\delta }_{\mathrm{e}\mathrm{q},i}^{\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}} and {\sigma }_{\mathrm{e}\mathrm{q},i}^{\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}} are initiation equivalent displacement and stress. {\delta }_{\mathrm{e}\mathrm{q},i}^{\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l}} is failure equivalent displacement. {d}_{i} is damage state variable. {G}_{i} is fracture energy

    基于断裂能的具有线性退化趋势的损伤演化有等效应变(E1)和等效位移(E2)两种方法。本节首先介绍E1演化方法。采用损伤状态变量di定义渐进损伤刚度折减方案,其表达式:

    d_i=\frac{\varepsilon_{\mathrm{eq}, i}^{\text {final }}}{\varepsilon_{\text {eq }, i}^{\text {final }}-\varepsilon_{\text {eq }, i}^{\text {initial }}} \cdot\left(1-\frac{\varepsilon_{\mathrm{eq}, i}^{\text {initial }}}{\varepsilon_{\text {eq }, i}}\right) d_i \in[0,1] (11)

    下标i为损伤模式; \varepsilon _{{\mathrm{eq}},i}^{} 为等效应变,表示前一增量步结束时输出的单元节点应变; \varepsilon _{{\mathrm{eq}},i}^{{\mathrm{initial}}} \varepsilon _{{\mathrm{eq}},i}^{{\mathrm{final}}} 为损伤起始和临界失效的等效应变。当di = 0时,表示单元处于损伤将要产生的临界状态,其与 \xi = 1 相对应;而di = 1表示单元完全失效。

    网格单元完全失效所释放的临界断裂能 {G_i} (图2中紫色线所围的三角形面积)可表示为

    {G_i} = \frac{1}{2} \cdot \sigma _{{\mathrm{eq}},i}^{{\mathrm{initial}}} \cdot \varepsilon _{{\mathrm{eq}},i}^{{\mathrm{final}}} \cdot {l^{\mathrm{c}}} (12)

    所以 \varepsilon _{{\mathrm{eq}},i}^{{\mathrm{final}}} 表示:

    \varepsilon _{{\mathrm{eq}},i}^{{\mathrm{final}}} = \frac{{2 \cdot {G_i}}}{{\sigma _{{\mathrm{eq}},i}^{{\mathrm{initial}}} \cdot {l^{\mathrm{c}}}}} (13)

    式中, \sigma _{{\mathrm{eq}},i}^{{\mathrm{initial}}} 为损伤起始应力,计算中将其等效为材料的强度; {l^{\mathrm{c}}} 为单元特征长度,可正则化断裂能,减轻损伤演化过程中对网格大小的依赖,其值是单元体积的立方根。此外 \varepsilon _{{\mathrm{eq}},i}^{{\mathrm{initial}}} 表示:

    \varepsilon _{{\mathrm{eq}},i}^{{\mathrm{initial}}} = \frac{{\sigma _{{\mathrm{eq}},i}^{{\mathrm{initial}}}}}{{E_j^{}}} (14)

    E_j^{} 为对应方向的弹性模量。

    为保证材料刚度的持续退化,损伤变量 {d_i} 要服从演化过程中的不可逆原则:

    \begin{gathered} {d_i}\left( {t + \Delta t} \right) = \max \left\{ {0,\min \left[ {1,{d_i}\left( {t + \Delta t} \right)} \right]} \right\} \\ {d_i}\left( {t + \Delta t} \right) \geqslant {d_i}\left( t \right) \\ \end{gathered} (15)

    基于等效位移的损伤变量表达式为

    d_i=\frac{\delta_{\mathrm{eq}, i}^{\text {inal }}}{\delta_{\mathrm{eq}, i}^{\text {inal }}-\delta_{\mathrm{eq}, i}^{\text {initial }}} \cdot\left(1-\frac{\delta_{\mathrm{eq}, i}^{\text {initial }}}{\delta_{\mathrm{eq}, i}}\right) (16)

    \delta _{{\mathrm{eq}},i}^{{\mathrm{initial}}} \delta _{{\mathrm{eq}},i}^{{\mathrm{final}}} 为损伤起始和临界失效的等效位移:

    \delta_{\mathrm{eq}, i}^{\text {final }}=\frac{2 \cdot G_i}{\sigma_{\mathrm{eq}, i}^{\text {initial }}}, \delta_{\mathrm{eq}, i}^{\text {initial }}=\frac{\delta_{\mathrm{eq}, i}}{\sqrt{\xi_i}} (17)

    \sigma _{{\mathrm{eq}},i}^{{\mathrm{initial}}} 为起始等效应力:

    \sigma _{{\mathrm{eq}},i}^{{\mathrm{initial}}} = \frac{{\sigma _{{\mathrm{eq}},i}^{}}}{{\sqrt {{\xi _i}} }} (18)

    式中, \delta _{{\mathrm{eq}},i}^{} \sigma _{{\mathrm{eq}},i}^{} 为等效位移和等效应力,其计算方法如表1所示。

    本节指数型损伤演化方法(E3)是基于等效位移变化而言的。网格单元在外部载荷作用下,其节点等效位移达到损伤起始点 \delta _{{\mathrm{eq}},i}^{{\mathrm{initial}}} 之后,则进入演化阶段。随着载荷持续作用,其位移将继续增加,对应的损伤演化将按照指数型方式进行,直至单元完全失效,如图2中绿色曲线所示。该方法损伤变量表达式为

    {d_i} = 1 - \frac{1}{{{{\sqrt \xi }_i}}} \cdot \exp\left[ {\frac{{\left( {1 - \sqrt {{\xi _i}} } \right){{\left( {S_j^{}} \right)}^2}{l^{\mathrm{c}}}}}{{E_j^{} \cdot {G_i}}}} \right] (19)

    式中,临界失效的等效位移的计算同E2方法。

    表  1  不同损伤模式下的等效位移和等效应力
    Table  1.  Equivalent displacement and equivalent stress for different damage modes
    Modes Equivalent displacement Equivalent stress
    ft \delta _{{\mathrm{eq,ft}}}^{} = {l^{\mathrm{c}}} \cdot \sqrt {{{\left\langle {{\varepsilon _{11}}} \right\rangle }^2} + {{\left( {{\varepsilon _{12}}} \right)}^2} + {{\left( {{\varepsilon _{13}}} \right)}^2}} \sigma _{{\mathrm{eq,ft}}}^{} = {l^{\mathrm{c}}} \cdot \dfrac{{\left\langle {{\sigma _{11}}} \right\rangle \left\langle {{\varepsilon _{11}}} \right\rangle + {\sigma _{12}}{\varepsilon _{12}} + {\sigma _{13}}{\varepsilon _{13}}}}{{\delta _{{\mathrm{eq,ft}}}^{}}}
    fc \delta _{{\mathrm{eq,fc}}}^{} = {l^{\mathrm{c}}} \cdot \left\langle { - {\varepsilon _{11}}} \right\rangle \sigma _{{\mathrm{eq,fc}}}^{} = {l^{\mathrm{c}}} \cdot \dfrac{{\left\langle { - {\sigma _{11}}} \right\rangle \left\langle { - {\varepsilon _{11}}} \right\rangle }}{{\delta _{{\mathrm{eq,fc}}}^{}}}
    mt \delta _{{\mathrm{eq,mt}}}^{} = {l^{\mathrm{c}}} \cdot \sqrt {{{\left\langle {{\varepsilon _{22}}} \right\rangle }^2} + {{\left\langle {{\varepsilon _{33}}} \right\rangle }^2} + {{\left( {{\varepsilon _{12}}} \right)}^2} + {{\left( {{\varepsilon _{23}}} \right)}^2} + {{\left( {{\varepsilon _{13}}} \right)}^2}} \sigma _{{\mathrm{eq,mt}}}^{} = {l^{\mathrm{c}}} \cdot \dfrac{{\left\langle {{\sigma _{22}}} \right\rangle \left\langle {{\varepsilon _{22}}} \right\rangle + \left\langle {{\sigma _{33}}} \right\rangle \left\langle {{\varepsilon _{33}}} \right\rangle + {\sigma _{12}}{\varepsilon _{12}} + {\sigma _{13}}{\varepsilon _{13}} + {\sigma _{23}}{\varepsilon _{23}}}}{{\delta _{{\mathrm{eq,mt}}}^{}}}
    mc \delta _{{\mathrm{eq,mc}}}^{} = {l^{\mathrm{c}}} \cdot \sqrt {{{\left\langle { - {\varepsilon _{22}}} \right\rangle }^2} + {{\left\langle { - {\varepsilon _{33}}} \right\rangle }^2} + {{\left( {{\varepsilon _{12}}} \right)}^2} + {{\left( {{\varepsilon _{23}}} \right)}^2} + {{\left( {{\varepsilon _{13}}} \right)}^2}} \sigma _{{\mathrm{eq,mc}}}^{} = {l^{\mathrm{c}}} \cdot \dfrac{{\left\langle { - {\sigma _{22}}} \right\rangle \left\langle { - {\varepsilon _{22}}} \right\rangle + \left\langle { - {\sigma _{33}}} \right\rangle \left\langle { - {\varepsilon _{33}}} \right\rangle + {\sigma _{12}}{\varepsilon _{12}} + {\sigma _{13}}{\varepsilon _{13}} + {\sigma _{23}}{\varepsilon _{23}}}}{{\delta _{{\mathrm{eq,mc}}}^{}}}
    Notes: < > is Macaulay bracket. {\sigma }_{\mathrm{e}\mathrm{q},i} and {\delta }_{\mathrm{e}\mathrm{q},i} is equivalent stress and displacement, where i= ft, fc, mt and mc damage model. {l}^{\mathrm{c}} is the characteristic length of element.
    下载: 导出CSV 
    | 显示表格

    层合板在冲击载荷下的持续作用下,内部损伤不断累积和扩展导致刚度逐渐退化,故而需及时更新材料本构关系。采用方法是将损伤状态变量引入到原始本构方程中,按弹性各向异性进行相应比例的刚度衰减。材料原始本构方程:

    {\sigma _{ij}} = {C_{ijkl}} \cdot {\varepsilon _{kl}} (20)

    式中, {\sigma _{ij}} {\varepsilon _{kl}} {C_{ijkl}} (i, j, k, l = 1, 2, 3)分别表示工程应力、工程应变和刚度矩阵分量。指数1、2、3分别为纤维方向、面内横向和面外方向。由于层合板中的每一层均可看作是横观各向同性材料,这意味着E22 = E33ν12 = ν13G12 = G13。因此独立的工程常数EijνijGij可以减少为5个。引入损伤变量退化后的刚度矩阵Cd可表示:

    {C_d} = \frac{1}{\Delta } \cdot \left[ {\begin{array}{*{20}{c}} {c_{11}^d}&{c_{12}^d}&{c_{13}^d}&{}&{}&{} \\ {}&{c_{22}^d}&{c_{23}^d}&{}&{}&{} \\ {}&{}&{c_{33}^d}&{}&{}&{} \\ {}&{}&{}&{c_{44}^d}&{}&{} \\ {}&{}&{}&{}&{c_{55}^d}&{} \\ {}&{}&{}&{}&{}&{c_{66}^d} \end{array}} \right] (21)
    \left\{ \begin{gathered} c_{11}^{\rm {d}} = {d_{\rm {f}}}{E_{11}}\left( {1 - {d_{\rm {m}}}{\upsilon _{23}}{\upsilon _{32}}} \right) \\ c_{12}^{\rm {d}} = {d_{\rm {f}}}{d_{\rm {m}}}{E_{11}}\left( {{\upsilon _{21}} + {d_{\rm {m}}}{\upsilon _{23}}{\upsilon _{31}}} \right) \\ c_{13}^{\rm {d}} = {d_{\rm {f}}}{E_{11}}\left( {{\upsilon _{31}} + {d_{\rm {m}}}{\upsilon _{21}}{\upsilon _{32}}} \right) \\ c_{23}^{\rm {d}} = {d_{\rm {m}}}{E_{22}}\left( {{\upsilon _{32}} + {d_{\rm {f}}}{\upsilon _{12}}{\upsilon _{31}}} \right) \\ c_{22}^{\rm {d}} = {d_{\rm {m}}}{E_{22}}\left( {1 - {d_{\rm {f}}}{\upsilon _{13}}{\upsilon _{31}}} \right) \\ c_{33}^{\rm {d}} = \Delta \cdot {d_{\rm {f}}}{d_{\rm {m}}}{G_{23}} \\ c_{44}^{\rm {d}} = {E_{33}}\left( {1 - {d_{\rm {f}}}{d_{\rm {m}}}{\upsilon _{12}}{\upsilon _{21}}} \right) \\ c_{55}^{\rm {d}} = \Delta \cdot {d_{\rm {f}}}{d_{\rm {m}}}{G_{23}} \\ c_{66}^{\rm {d}} = \Delta \cdot {d_{\rm {f}}}{d_{\rm {m}}}{G_{13}} \\ {d_{\rm {f}}} = \left( {1 - {d_{ft}}} \right) \cdot \left( {1 - {d_{fc}}} \right) \\ {d_{\rm {m}}} = \left( {1 - {S_{mt}}{d_{mt}}} \right) \cdot \left( {1 - {S_{mc}}{d_{mc}}} \right) \\ \Delta = 1 - {d_{\rm {f}}}{d_{\rm {m}}}{\upsilon _{12}}{\upsilon _{21}} - {d_{\rm {m}}}{\upsilon _{23}}{\upsilon _{32}} - \\ \qquad {d_{\rm {f}}}{\upsilon _{13}}{\upsilon _{31}} - 2{d_{\rm {f}}}{d_{\rm {m}}}{\upsilon _{21}}{\upsilon _{32}}{\upsilon _{13}} \\ \end{gathered} \right. (22)

    式中,SmtSmc是用来控制基体拉、压损伤引起的剪切刚度损失的相关参数,可避免层合板结构在演化过程中过度软化[26]。本文取值Smt = Smc = 0.965[13]。此外,全局基体损伤变量dm能够减小由于忽略基体塑性变形而导致的偏差。

    层合板结构层间分层是指相邻层间的界面剥离。本文采用内聚力单元建模方法,在模型中插入具有一定厚度的界面单元。因层间界面总是受到混合载荷模式的作用,其本构关系如图3所示,故而采用二次应力失效准则预测分层损伤起始。采用基于能量的Bengeggagh-Kenane线性演化方法描述分层扩展规律。式中, \delta _{\mathrm{m}}^{{\mathrm{initial}}} \delta _{\mathrm{m}}^{{\mathrm{final}}} 是指混合模式响应下损伤起始和完全失效位移。

    图  3  层间单元混合型双线性牵引-分离本构关系
    Figure  3.  Constitutive relation of the mixed-model bilinear traction-separation for cohesive element
    {\delta }_{\mathrm{m}}^{\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}} and {\delta }_{\mathrm{m}}^{\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l}} are initiation and failure equivalent displacement. Model Ⅰ, Ⅱ/Ⅲ are the failure model in out-of-plane direction and in-plane transverse direction. N, S and T are the strength in three directions

    复合材料层合板低速冲击损伤的数值模拟包括建立有限元模型和设计模拟流程。

    几何参数、边界条件和接触定义。根据ASTM D7136M-15标准[27]给出的指南,采用网格偏置方法,对材料体系为T700 GC/M21、堆叠顺序为[02, 452, 902, −452]S及几何尺寸为150 × 100 × 4.015 mm3 的层合板进行建模。层内厚度为0.25 mm,胶层厚度为0.001 mm。冲头为刚性材料,直径为16 mm,集总参考质量为2 kg。冲头外表面与层合板上表面设置0 mm距离接触。冲头初速度预设为5 m/s。为模拟实验中的夹紧条件,建立一个全方位约束的刚性支撑板,内部区域为125 × 75 mm2。将层合板放置在支撑板上,并且在四周约束了xyz三方向的自由度,如图4所示。面和面之间的接触设置关乎力学响应的准确性和冲头对层合板的穿透性。本文采用面-面接触算法描述冲头外表面和层合板上表面之间的接触行为。其余的面和面之间均采用通用接触算法来模拟。接触属性在切向采用罚法(摩擦系数为0.3),在法向采用硬接触法。

    图  4  低速冲击损伤有限元模型
    Figure  4.  Low-velocity impact finite element model

    网格策略、单元类型和材料特性。为平衡计算精度和效率之间的矛盾,本文将层合板模型离散分为细网格的中心区域和粗网格的外围区域。其中,中心区域网格单元大小为0.5 × 0.5 mm2。对于单元类型,层内采用降积分八节点实体单元(C3D8R)进行网格划分。本文采用松弛刚度法避免单元发生伪变形,即沙漏现象。层间单元采用八节点三维Cohesive element(COH3D8)的网格属性进行划分。模型中的层内和层间单元均被设置为不允许删除。冲头和支撑板的网格类型为四节点三维双线性刚体四边形(R3D4)。单向板和层间胶层材料参数,汇总至表2[13,28]

    表  2  T700 GC/M21单向板和界面材料参数
    Table  2.  Material parameters of unidirectional laminate and interlayer for T700 GC/M21 composite
    Laminate properties
    Density/(kg·m−3) 1600
    Young’s modulus/GPa E11 = 130; E22 = E33 = 7.7; G12 = G13 = 4.8; G23 = 3.8
    Poisson’s ratio ν12 = ν13 = 0.33; ν23 = 0.35
    Strength/MPa XT = 2080; XC =1250; YT = 60; YC =140; S12 = S13 = S23 = 110
    Fracture energy/(N·mm−1) Gft = 133; Gfc = 40; Gmt = 0.6 N; Gmc = 2.1
    Interlayer properties
    Elastic modulus/GPa E = 5
    Strength/MPa N = S = T = 30
    Fracture energy/(N·mm−1) GIC = 0.6; GIIC = 2.1
    Power exponent η 1.45
    下载: 导出CSV 
    | 显示表格

    将1.1至1.3节的渐进损伤理论公式编码在VUMAT子程序中,然后利用ABAQUS/Explicit平台进行调用和计算,流程设计如图5所示。在计算期间,增量步的控制和迭代是在ABAQUS/Explicit动态求解器中进行。而对于在每个增量步的具体求解,ABAQUS/Explicit则是将当前应变增量传递给子程序并在其中进行。以应力准则为例,通过健康材料本构关系经计算获得单元积分点处的应力值,并分析该值是否满足损伤起始准则。一旦满足,损伤分析则进入演化阶段,紧接着求解损伤变量和更新刚度矩阵。然后基于更新后的刚度矩阵,进一步计算获得损伤单元的应力。最后,将更新后的状态变量返还给ABAQUS/Explicit以推动下一个增量步的进行,直到冲击过程全部结束。对于层间单元损伤,基于2.2节损伤模型理论,在ABAQUS/Explicit中采用相应的内置算法进行模拟求解。本文以冲击力响应降为零作为计算终止的判定条件,经过多次预调,分析步时长为3.7 ms,每一步的物理时长为软件默认设置。

    图  5  层合板低速冲击数值模拟流程
    Figure  5.  Numerical simulation flowchart of low-velocity impact for the laminate

    为了验证数值模型的预测能力,本节选用了Hashin-Strain损伤起始准则结合E1演化方法(Hashin-Strain-E1)为代表的数值结果,与Hongkarnjanakul等[29]的测试数据进行比较。图6(a)、6(b)为冲击过程动态力学响应,反映了层合板结构的抗冲击性能,图6(a)为冲击力-时程曲线。从冲头与层合板接触开始,冲击力在短时间内线性、迅速上升。直到当内部出现第一次损伤时,结构刚度发生衰减,冲击力曲线表现出轻微抖动。紧接着在0.75 ms时曲线出现强烈的抖动现象,是因为内部产生较大的损伤导致刚度衰减严重。在冲击力峰值附近,曲线抖动情况明显,可能是由于钢制冲头发生的激振频率和层合板弯曲的振动频率相近而发生共振现象促成的。此外,由于局部材料刚度退化导致历史输出频率与稳定时间增量之间不匹配也有可能是引起抖动的原因。在冲击力峰值之后,曲线缓慢下降但仍然伴随有较为明显抖动。当冲头和层合板分离后,冲击力变为零。图6(b)为冲击力-位移曲线。曲线与和实验吻合较好,尤其在回弹阶段。曲线封闭区间面积表示冲击过程的吸收能量,而回弹曲线与时间轴所围面积表示该过程恢复能量。在冲击过程中,冲头总动能传递给层合板。层合板中少部分能量以弹性势能形式返传递给冲头,其余部分被层合板吸收用于损伤形成、塑性变形以及摩擦耗散的过程中。图6(c)为验证数值模拟正确性的指标参数。对于峰值冲击力指标,预测载荷值为8.84 kN,相比实验结果要多0.19 kN。在最大挠度方面,预测值要比实验值少0.14 mm。此外,冲击时间比实验少0.1 ms,吸收能量多2.97 J。经上述分析,数值预测结果与实验吻合较好,验证了本文有限元模型的建立和模拟流程的设计均是正确的。

    图  6  层合板动态力学响应和数值模拟指标验证
    Figure  6.  Dynamic mechanical response and index verification of the numerical simulation for the laminate

    冲击载荷作用过程中动态力学响应曲线发生抖动,其本质是层合板内部有损伤产生致使其局部刚度衰减,从而外在反映出冲击力的突变现象。基于ABAQUS结果后处理平台,提出一种通过损伤变量实现损伤面积定量、动态表征的方法。

    \begin{array}{*{20}{c}} \begin{gathered} {S_i}(t) = \sum\limits_{n = 1}^{n = N} {{{\left[ {{d_i}(t) \cdot \Delta s} \right]}_n}} \\ {d_i}(t) \geqslant {d_0} \\ \end{gathered} &{} \end{array} (23)

    式中, {S_i}(t) 为任意t时刻对应损伤类型i的总损伤面积; {d_i}(t) 为单元网格质心处的损伤状态变量值,基体拉伸和压缩两个损伤变量需通过在VUMAT子程序中定义,分层损伤变量用内置算法“标量刚度退化”表示; \Delta s 为网格单元的面积; {d_0} 为损伤阈值,表示单元将发生严重损伤,极大降低了层合板的刚度甚至失去承载能力;n为单元数量。冲击载荷下层合板内部的分层、基体损伤面积动态表征结果如图7所示。通过分析这些图像,可以跟踪整个冲击过程中的损伤演变情况。

    图  7  层合板损伤面积动态表征
    Figure  7.  Dynamic characterization of damage area for the laminate

    图6(a)中所示的力学响应曲线中有三次明显抖动现象,这与层合板内部某种或者某几种模式的冲击损伤有关联,本节结合损伤面积动态表征结果对其间的关联性展开分析。对于第“1”次抖动,在大约0.2 ms的时间内分层、基体拉伸损伤和压缩损伤面积分别激增10 cm2 (主要是第6、10和12界面)、3 cm2 (主要是第11、13和15层)和1.5 cm2 (主要是第1、3和5层)。可见,中性层及以下部分界面的分层是导致本次抖动的一种损伤模式。此外,靠近冲击正面的第一层和中性层以下的层发生横向基体开裂是另外一种损伤模式。第一层损伤是由于局部高剪应力而引发,而远侧层则是因为高拉应力而引起的。故而,这次抖动是层合板内部的分层和基体损伤共同作用而导致的,但是分层损伤占据主导地位。层合板产生损伤后其内部结构重新叠加继续抵抗冲击载荷作用,所以冲击力曲线会接连抖动向上,直到在峰值力附近出现第“2”次抖动。这次抖动除了上述解释的共振等原因之外,分层和基体损伤的产生也贡献了作用。然而相对基体损伤而言,分层损伤仍然起主要作用。第“3”次明显抖动是出现在层合板达到最大挠度后的回弹阶段,这说明在此过程中结构内部仍然有新损伤在产生。值得一提的是,本次抖动对应的内在损伤模式不同于前两次,结合图7(b)可发现是由于回弹时局部区域的高压应力造成的。

    需要注意的是,本文预测的损伤发生顺序和每种损伤模式在力学响应中起到的作用仅对当前25 J能量有效。改变冲击能量可能会影响各种损伤模式对力学响应的贡献。随着冲击能量的增加,靠近受冲击正面的近侧层由于局部高剪应力以及远侧层由于弯曲拉应力而发生纤维断裂。

    损伤起始准则和损伤演化方法是层合板冲击渐进损伤行为分析的必要组成部分,其严重影响层合板结构外部力学响应和内部损伤状态。本节对Hashin-Stress、Hashin-Strain及Puck起始准则分别结合E1、E2及E3演化方法的数值预测能力进行探讨。力学响应如图8所示,其评价结果被列至表3中。

    图  8  冲击过程中层合板动态力学响应
    Figure  8.  Dynamic mechanical response during impact progress for the laminate
    表  3  预测模型能力指标评价
    Table  3.  Index evaluation for the capability of prediction model
    Peak force/kN Max. displacement/mm Impact time/ms Absorbed energy/J
    Experiment 8.65 5.11 3.60 13.00
    Hashin-Stress E1 10.50(+21.4%) 4.72(−7.6%) 3.24(−10% 8.66(−33.4%)
    Hashin-Strain 8.84(+2.2%) 4.97(−2.7%) 3.70(+2.8%>) 10.03(−22.8%)
    Puck 11.44(+32.3%) 4.64(−9.2%) 3.11(−13.6%) 8.08(−37.8%)
    Hashin-Stress E2 8.74(+1.0%) 4.91(−3.9%) 3.70(2.8%) 11.00(−15.4%)
    Hashin-Strain
    Puck 8.62(−0.3%) 4.93(−3.5%) 3.50(−2.8%) 9.44(−27.4%)
    Hashin-Stress E3 9.40(+8.7%) 4.96(−2.9%) 3.70(+2.8%) 10.60(−18.5%)
    Hashin-Strain
    Puck 7.85(−9.2%) 5.09(−0.4%) 3.70(+2.8%) 9.44(−27.4%)
    下载: 导出CSV 
    | 显示表格

    对于E1演化方法(图8(a)、8(b)),Hashin-Strain准则预测结果和实验吻合最好,其余准则结果与实验误差较大。对于E2和E3演化方法(图8(c)~8(f)))呈现出与E1方法不同的现象,即Puck和Hashin-Stress准则表现出较强的预测能力。而对于Hashin-Strain准则,由于内部刚度严重衰减致使层合板“过软”而出现穿透性损伤(图8(c)、8(e))。在冲击损伤数值模拟过程中,通常会因失效单元变形影响结果收敛性而出现了计算误差,甚至还会遇到过度变形导致计算终止的情况。为防止失效单元的过度变形,应该通过控制失效后最大刚度退化来保持残余刚度。在不同的研究工作中,渐进损伤单元的最大刚度退化值被设定为0.9[30]、0.99[31]、0.999[32],以免遭受过度扭曲。而在本文工作中为了公平比较各个准则的预测能力,将它们设定相同的演化条件,不考虑最大刚度退化情况,故而出现上述现象。此外,E2和E3方法预测的结果有相同的变化趋势,其原因是E3方法是基于等效位移进行演化的,且最终失效位移与E2方法相等。

    综上所述,Hashin-Stress准则结合E2方法(Hashin-Stress-E2)、Hashin-Strain准则结合E1方法(Hashin-Strain-E1)和Puck准则结合E3方法(Puck-E3)会表现出更优越的预测能力。

    为定量研究不同损伤起始准则和演化方法对损伤累积过程的影响,图9给出了损伤面积动态表征结果。经观察发现不同演化方法预测的分层损伤面积虽有不同,但最终集中分布在22~27 cm2 之间;基体拉伸损伤具有相似的现象,损伤面积集中在3.8~5.2 cm2之间(图9(a))。这说明演化方法对分层和基体拉伸损伤的影响较小。然而,基体压缩损伤对演化方法较为敏感(图9(b))。无论对于Hashin-Stress还是Puck准则,E2和E3方法有相同的变化趋势。然而E2方法预测的损伤扩展速度和最终损伤面积均要大于E3方法,因为E2相比E3方法在后期的演化过程中(0.8~1.5 ms)刚度降低速度更快,产生更多的损伤。下面从起始准则方面展开分析。对于Hashin-Stress准则,因为E1方法中忽略了剪切应变分量,导致冲击点处基体的压缩损伤产生会慢于E2和E3方法。而在整个演化阶段(0.5~1.5 ms),损伤变量从0~1的增加速度要明显大于E2和E3方法导致最终产生更大的损伤面积。对于Puck准则,却有完全不同的现象,即E1方法相对E2和E3方法表现出最慢的演化速度并得到最小的损伤面积,可能是Puck准则存在横向压缩载荷抑制断裂面上非线性剪切的原因导致的。需要注意的是,E2和E3方法在早期演化阶段(0.5~0.8 ms)演化速度近似相等,因为Puck准则中没有贯穿厚度方向的应力作用,导致两个演化方法差异性不明显。

    图  9  层合板损伤面积动态表征
    Figure  9.  Dynamic characterization of damage area for the laminate

    为研究冲击损伤扩展行为,图10给出了不同起始准则结合E1演化方法的损伤形貌。图10(a)分层形貌。对于中性层上面的界面,分层传播行为相似。这可从层合板的变形破坏机制来解释,因为分层从层合板的底部开始向上扩展,冲击侧的压应力在一定程度上会抑制分层的发展,导致中性层上面损伤区域差异不大。然而,对于中性层下面的界面,分层形貌有明显差异,尤其对于Puck准则的C10界面。原因可能与基体损伤有关联,渐进式分层和基体损伤之间存在复杂的相互作用方式。基体损伤很有可能导致界面处出现较大的横向剪切应力,从而产生较大分层。图10(b)为基体拉伸损伤形貌。各起始准则预测的损伤形貌大致相同,尤其对于受拉程度较小的中性层上面铺层。在中性层下面铺层的损伤面积大于上面铺层,且距离底层越近,损伤面积越大。因为弯曲拉应力导致在冲击背面先产生拉伸损伤并向上逐层传播。Hashin-Stress和Hashin-Strain准则预测的损伤形貌,在其前两层中间出现较小的空心现象。其原因可能是这三个准则使用横向和面外法向应力或应变之和( {\sigma _{22}} + {\sigma _{33}} {\varepsilon _{22}} + {\varepsilon _{33}} )来判定基体损伤的起始。图10(c)为基体压缩损伤形貌。基体压缩损伤主要出现在层合板中性层上面铺层,其原因是压缩损伤由冲击正面产生并逐渐扩展到下层。使用Hashin-Stress和Hashin-Strain两个准则预测的每层损伤形貌相似。而Puck准则预测的损伤形貌偏差较大,预测的损伤程度较轻且损伤仅在层合板前三层出现。因为Puck准则中不存在贯穿厚度方向的面外法向应力( {\sigma _{33}} ),故而导致其预测的损伤主要集中在冲击点附近而不能向下层方向扩展。

    图  10  不同损伤起始准则结合E1演化方法预测的层合板内部损伤形貌
    Figure  10.  Damage morphology within the laminate predicted by different initiation criteria combined with E1 evolution method

    上述模型验证是针对正冲击工况而言,在其他工况如重复和倾斜冲击条件下,其预测结果可能会有所不同。前者不同的冲击能量会导致当前冲击下纤维和基体损伤程度不同,进而影响后续冲击,后者可看作面内、外两方向上分冲击的共同作用。因此模型预测结果会和正冲击表现出相同的趋势。因此,本文数值模型经适当改进后能够用于重复冲击和倾斜冲击等工况下的损伤渐进行为研究,有助于深入理解低速冲击下复合材料层合板的损伤演变机制,为工程中开展冲击损伤及性能评估提供参考和借鉴。

    (1)通过提取损伤状态变量对损伤面积进行定量和动态表征。这为解释冲击损伤的渐进行为和形成机制提供一种新的视角。

    (2)在本文研究条件下,Hashin-Strain准则结合线性等效应变方法(Hashin-Strain-E1)和Puck准则结合指数型等效位移方法(Puck-E3)最优。然而,当Hashin-Strain准则结合线性或指数型等效位移方法时(Hashin-Strain-E2/E3),会由于严重刚度退化而出现穿透性损伤。

    (3)起始准则对分层和基体拉伸损伤影响较小,但损伤之间的耦合作用会导致局部区域出现不同现象。起始准则对基体压缩损伤形貌影响较大,尤其是Puck准则。因为该准则不考虑法向应力,限制了损伤的深层扩展。演化方法对基体压缩损伤影响显著,表现为损伤面积分布更为分散,而对分层和基体拉伸损伤影响较小。

    (4)本文研究结果有助于减少与起始准则和演化方法间不同组合设计相关的试验工作量,为在工程应用中获得更好的冲击损伤预测性能提供参考和借鉴。

  • 图  1   固态电解质性能的雷达图:氧化物固态电解质(a)、硫化物固态电解质(b)、NASICON型固态电解质(c)、固态聚合物电解质(d)、凝胶聚合物电解质(e)[13-15]

    Figure  1.   Radar chart of solid electrolyte performance: Oxide solid electrolyte (a), sulfide solid electrolyte (b), NASICON solid electrolyte (c), solid polymer electrolyte (d), gel polymer electrolyte (e)[13-15]

    图  2   固态聚合物电解质的结构示意图[16]

    Figure  2.   Structure diagram of solid polymer electrolyte[16]

    图  3   聚合物基质的发展史

    Figure  3.   Development history of polymer matrix

    图  4   (a)无机填料Li7La3Zr2O12 (LLZO)与聚环氧乙烷(PEO)形成复合固态聚合物电解质(CPE)示意图[52];(b) Li+分布在PEO基体中、PEO基体和PEO/陶瓷界面处、PEO基体和陶瓷相及PEO/陶瓷界面处的传导途径示意图[51];(c) Li+在LLZO-PEO-LiTFSI不同比例的复合电解质中的路径示意图[52]

    LiTFSI—LLZO+PEO; TEGDME—Tetraethylene glycol dimethyl ether

    Figure  4.   (a) Inorganic filler Li7La3Zr2O12 (LLZO) and polyethylene oxide (PEO) form composite solid polymer electrolyte (CPE) diagram[52]; (b) Conduction pathway diagram of Li+ distributed in the PEO matrix, PEO matrix and PEO/ceramic interface, PEO matrix and ceramic phase and PEO/ceramic interface[51]; (c) Path diagram of Li+ in LLZO-PEO-LiTFSI composite electrolyte with different proportions[52]

    图  5   采用溶液浇铸法制备PEO-LiClO4-Li6.4La3Zr1.4Ta0.6O12 (LLZTO)复合固态电解质流程示意图(a)[46]及制备三维多孔导Li1.3Al0.3Ti1.7(PO4)3 (LATP)骨架和抑制锂枝晶生长示意图(b)[50]

    SN—Succinonitrile; LCPE—PEO+SN; PTFE—Polytetrafluoroethylene; CPE-R—Random LATP particles and PEO; CPE-3D—3D LATP particles and PEO

    Figure  5.   Schematic diagram of preparation of PEO-LiClO4-Li6.4La3Zr1.4Ta0.6O12 (LLZTO) composite solid electrolyte by solution casting process (a)[46] and preparation of three-dimensional porous Li1.3Al0.3Ti1.7(PO4)3 (LATP) skeleton and inhibition of lithium dendrite growth (b)[50]

    图  6   (a)聚偏氟乙烯(PVDF)和PVBL电解质中Li+的状态及耦合的BaTiO3-Li0.33La0.56TiO3-x (BTO-LLTO)在PVDF+BaTO3+Li0.33La0.56TiO3 (PVBL)电解质中Li盐的解离示意图;(b) LiNi0.8Co0.1Mn0.1O2 (NCM811)/PVBL/Li固态电池循环测试示意图[57]

    E—Electrolyte; LLTO—Li0.33La0.56TiO3-x; BTO—BaTiO3; PVBL—PVDF+BaTiO3+Li0.33La0.56TiO3-x; DMF—N, N-dimethylformamide; PVL—PVDF+Li0.33La0.56TiO3; PVB—PVDF+BaTiO3

    Figure  6.   (a) State of Li+ in polyvinylidene fluoride (PVDF) and PVDF+BaTO3+Li0.33La0.56TiO3 (PVBL) electrolytes and the dissociation diagram of Li salt in PVBL electrolyte; (b) Cycle test diagram of LiNi0.8Co0.1Mn0.1O2 (NCM811)/PVBL/Li solid-state battery[57]

    图  7   (a) ZIF-8+PVDF+LiTFSI (CEPZ)制备过程示意图;(b) Li+在CPEZ中可能的传输路径示意图[59]

    NMP—N-methylpyrrolidone

    Figure  7.   (a) Schematic diagram of the preparation process of ZIF-8+PVDF+LiTFSI (CEPZ); (b) Schematic diagram of the possible transmission path of Li+ in CPEZ[59]

    图  8   PEO/聚丙烯腈(PAN)-Li1.3Al0.3Ti1.7(PO4)3 (LATP)的双层复合电解质制备流程和C≡N基团与O原子通过氢键作用的钝化机制示意图[61]

    PL—PAN+LATP; PPL—Polyphenyllactone

    Figure  8.   Preparation process of PEO/polyacrylonitrile (PAN)-Li1.3Al0.3Ti1.7(PO4)3 (LATP) double-layer composite electrolyte and the passivation mechanism of C≡N group and O atom through hydrogen bonding are illustrated[61]

    图  9   阳极氧化铝(AAO)-聚合物复合电解质(APCE)的结构设计和电化学性能测试:内部锂离子传输通道示意图(a)、复合电解质的制备工艺示意图(b)、APCE的在0.25 mA/cm2电流密度下测得的锂对称电池中锂沉积/剥离示意图(c)[62]

    V—Voltage; t—Time; SPE—Solid state polymer electrolyte; AF—AlF3

    Figure  9.   Structure design and electrochemical performance test of anodized aluminum oxide (AAO)-polymer composite electrolyte (APCE): Schematic diagram of internal lithium ion transport channel (a), preparation process of composite electrolyte (b), lithium deposition/stripping in lithium symmetric battery measured by APCE at a current density of 0.25 mA/cm2 (c)[62]

    图  10   (a) Li/纤维素基全固态聚合物电解质(CSSPE)/Li电池在不同电流密度下的沉积/剥离测试[67];(b)添加不同粒径TiO2后的离子电导率[64]

    σ—Conductivity; T—Temperature

    Figure  10.   (a) Deposition/stripping test of Li/cellulose based solid polymer electrolyte (CSSPE)/Li battery at different current densities[67];(b) Ionic conductivity after adding TiO2 with different particle sizes[64]

    图  11   PAMAM-CNT作电池中间层的机制示意图[65]

    PE—Polyethylene; LiPSs—Lithium polysulfides; PAMAN-CNT—Hyperbranched poly(amidoamine)-modified multiwalled carbon nanotube

    Figure  11.   Mechanism diagram of PAMAM-CNT as the intermediate layer of the battery[65]

    图  12   制备固态聚合物电解质超支化聚苯乙烯核和聚甲基丙烯酸三氟乙酯嵌段-聚(乙二醇)甲基醚甲基丙烯酸酯臂((HBPS-(PTFEMA-b-PPEGMA)27)/LiTFSI)及循环性能示意图[66]

    TFEMA—Trifluoroethyl methacrylate; bpy—Block-poly; PEGMA—Polytrifluoroethyl methacrylate; HBPS—Hyperbranched polystyrene

    Figure  12.   Preparation of solid polymer electrolyte hyperbranched polystyrene-(polytrifluoroethyl methacrylate-b-polytrifluoroethyl methacrylate)27/lithium bis(trifluoromethylsulphonyl)imide ((HBPS-(PTFEMA-b-PPEGMA)27)/LiTFSI) and cycle performance diagram[66]

    图  13   3D复合纤维网增强复合固态聚合物电解质(CPE)的制备示意图[74]

    LATP/PVDF—Li1.3Al0.3Ti1.7(PO4)3/poly(vinylidene fluoride); PVC—Poly(vinylene carbonate); LFP—LiFePO4; RT—Room temperature

    Figure  13.   Preparation diagram of 3D composite fiber network reinforced composite solid polymer electrolyte (CPE)[74]

    图  14   PVDF-PMMA接枝共聚过程示意图(a) [77]、PVDF-PMMA复合膜的离子电导率示意图(b) [77]、PMMA/PVDF共混膜横截面的SEM图像(c) [76]

    EB irradiation—Electron-beam irradiation; MMA—Methyl methacrylate; Z—Impedance; Tc—Crystallization temperature; Tcloud—Cloud point; PMMA—Poly (methyl methacrylate)

    Figure  14.   Diagram of PVDF-PMMA graft copolymerization process (a) [77], ion conductivity diagram of PVDF-PMMA composite membrane (b)[77], SEM images of PMMA/PVDF blend membrane cross section (c)[76]

    表  1   聚环氧乙烷(PEO)与其他聚合物共混后离子电导率[13]

    Table  1   Ionic conductivity of polyethylene oxide (PEO) after blending with other polymers [13]

    Polymer matrix Lithium salt Temperature/
    Ionic conductivity/
    (S·cm−1)
    PEO/MEEP LiBF4 25 4.0 × 10−6
    PEO/PES LiClO4 25 1.0 × 10−5
    PEO/PET LiClO4 25 2.0 × 10−5
    PEO/PVDF LiClO4 30 2.6 × 10−5
    PEO/PVDF LiTFSI 30 4.9 × 10−3
    Notes: MEEP—Polydiethylene glycol monomethyl ether phosphonitrile; PES—Polyether sulfone; PET—Polyethylene terephthalate; PVDF—Polyvinylidene fluoride; LiTFSI—Li7La3Zr2O12 (LLZO)+Polyethylene oxide (PEO).
    下载: 导出CSV
  • [1] 王蔼廉, 计文希, 陈婧, 等. 锂电池用固态电解质研究进展[J]. 高分子通报, 2019(9): 1-14.

    WANG Gelian, JI Wenxi, CHEN Jing, et al. Research progress of solid electrolyte for lithium battery[J]. Polymer Bulletin, 2019(9): 1-14(in Chinese).

    [2]

    CHENG H, SHAPTER J G, LI Y, et al. Recent progress of advanced anode materials of lithium-ion batteries[J]. Journal of Energy Chemistry, 2021, 57: 451-468. DOI: 10.1016/j.jechem.2020.08.056

    [3] 邢宝林, 鲍倜傲, 李旭升, 等. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068. DOI: 10.11896/cldb.19080114

    XING Baolin, BAO Chou'ao, LI Xusheng, et al. Research progress on structure regulation and surface modification of graphite anode materials for lithium ion batteries[J]. Materials Review, 2020, 34(15): 15063-15068(in Chinese). DOI: 10.11896/cldb.19080114

    [4]

    MA S, JIANG M, TAO P, et al. Temperature effect and thermal impact in lithium-ion batteries: A review[J]. Progress in Natural Science-Materials International, 2018, 28(6): 653-666. DOI: 10.1016/j.pnsc.2018.11.002

    [5] 詹元杰, 武怿达, 晓威, 等. 基于碳酸酯基电解液的4.5 V电池[J]. 储能科学与技术, 2020, 9(2): 319-330.

    ZHAN Yuanjie, WU Yida, XIAO Wei, et al. 4.5 V Li-ion battery with a carbonate ester-based electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 319-330(in Chinese).

    [6] 吴晨, 周颖, 朱晓龙, 等. 锂金属电池用高浓度电解液体系研究进展[J]. 物理化学学报, 2021, 37(2): 36-52.

    WU Chen, ZHOU Ying, ZHU Xiaolong, et al. Research progress on high concentration electrolytes for Li metal batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(2): 36-52(in Chinese).

    [7]

    DU G, ZHENG L, ZHANG Z, et al. Overview of research on thermal safety of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(3): 500-505.

    [8]

    ZHANG J, DONG T, YANG J, et al. Research progress, challenge and perspective of all-solid-state polymer lithium batteries[J]. Energy Storage Science and Technology, 2018, 7(5): 861-868.

    [9]

    MINDEMARK J, LACEY M J, BOWDEN T, et al. Beyond PEO—Alternative host materials for Li+ conducting solid polymer electrolytes[J]. Progress in Polymer Science, 2018, 81: 114-143.

    [10]

    LIU J, YUAN H, LIU H, et al. Unlocking the failure mechanism of solid state lithium metal batteries[J]. Advanced Energy Materials, 2022, 12(4): 2100748. DOI: 10.1002/aenm.202100748

    [11]

    CHEN X, GUAN Z, CHU F, et al. Air-stable inorganic solid-state electrolytes for high energy density lithium batteries: Challenges, strategies, and prospects[J]. Information Material‌‌, 2022, 4(1): 12248. DOI: 10.1002/inf2.12248

    [12]

    MA J, CHEN B, WANG L, et al. Progress and prospect on failure mechanisms of solid-state lithium batteries[J]. Journal of Power Sources, 2018, 392: 94-115. DOI: 10.1016/j.jpowsour.2018.04.055

    [13]

    XUE Z, HE D, XIE X. Poly (ethylene oxide)-based electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(38): 19218-19253. DOI: 10.1039/C5TA03471J

    [14]

    ZHAO N, KHOKHAR W, BI Z, et al. Solid garnet batteries[J]. Joule, 2019, 3(5): 1190-1199. DOI: 10.1016/j.joule.2019.03.019

    [15]

    DUAN H, ZHENG H, ZHOU Y, et al. Stability of garnet-type Li ion conductors: An overview[J]. Solid State Ionics, 2018, 318: 45-53. DOI: 10.1016/j.ssi.2017.09.018

    [16]

    FAN X, ZHONG C, LIU J, et al. Opportunities of flexible and portable electrochemical devices for energy storage: Expanding the spotlight onto semi-solid/solid electrolytes[J]. Chemical Reviews, 2022, 122(23): 17155-17239. DOI: 10.1021/acs.chemrev.2c00196

    [17] 谷琪, 刘夏夏, 周鑫宇, 等. 用于锂金属电池的聚合物固态电解质的研究进展[J]. 化学学报, 2024, 82(4): 449-457.

    GU Qi, LIU Xiaxia, ZHOU Xinyu, et al. Recent progress on polymer solid electrolytes for lithium metal batteries[J]. Atca Chimica Sinica, 2024, 82(4): 449-457(in Chinese).

    [18] 王青磊, 王涵, 马静, 等. 聚环氧乙烷聚合物固态电解质的现状及改性策略[J]. 高分子材料科学与工程, 2022, 38(4): 165-173.

    WANG Qinglei, WANG Han, MA Jing, et al. Current situation and modification strategy of poly(ethylene oxide) polymer solid state electrolyte[J]. Polymer Materials Science and Engineering, 2022, 38(4): 165-173(in Chinese).

    [19] 宋彦, 马静, 秦恩博, 等. 聚合物固态电解质的研究进展[J]. 盐湖研究, 2023, 52(10): 1-12.

    SONG Yan, MA Jing, QIN Enbo, et al. Research progress of polymer solid electrolyte[J]. Journal of Salt Lake Research, 2023, 52(10): 1-12(in Chinese).

    [20]

    MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(10): 16103.

    [21] 王永勤, 薛旭金, 郭贤慧, 等. PEO基聚合物电解质的研究进展[J]. 塑料工业, 2017, 45(9): 1-8.

    WANG Yongqin, XUE Xujin, GUO Xianhui, et al. Research progress on PEO-based polymer electrolyte[J]. China Plastics Industry, 2017, 45(9): 1-8(in Chinese).

    [22]

    WANG R, MEI H, REN W, et al. New progress of the research on the modification of PEO polymer matrix and its high-performance solid polymer electrolyte materials[J]. Materials Review, 2016, 30(6A): 63-67.

    [23]

    ZHAO X D, ZHU W, LI J R, et al. Research progress in PEO based polymer electrolytes of all solid state lithium ion battery[J]. Materials Review, 2014, 28(7): 13-17, 44.

    [24]

    YU X Y, LI M, WEI L, et al. Application of polyacrylonitrile in the electrolytes of lithium metal battery[J]. Progress in Chemistry, 2023, 35(3): 390-406.

    [25] 刘汉奎, 刘芹, 贾维尚, 等. PEO-PAN-PEO三明治结构新型固态聚合物电解质的研究[J]. 四川大学学报(自然科学版), 2018, 55(4): 833-837.

    LIU Hankui, LIU Qin, JIA Weishang, et al. A novel all-solid-state polymer electrolyte basedon PEO-PAN-PEO sandwich structure[J]. Journal of Sichuan University (Natural Science Edition), 2018, 55(4): 833-837(in Chinese).

    [26] 唐致远, 王占良. 聚丙烯腈基聚合物电解质[J]. 化学通报, 2002, 65(6): 379-384.

    TANG Zhiyuan, WANG Zhanliang. Polyacrylonitrile-based polymer electrolyte[J]. Chemistry, 2002, 65(6): 379-384(in Chinese).

    [27]

    LIU F, HASHIM N A, LIU Y, et al. Progress in the production and modification of PVDF membranes[J]. Journal of Membrane Science, 2011, 375(1-2): 1-27. DOI: 10.1016/j.memsci.2011.03.014

    [28]

    KANG G, CAO Y. Application and modification of poly(vinylidene fluoride) (PVDF) membranes–A review[J]. Journal of Membrane Science, 2014, 463: 145-165.

    [29]

    CHOI W, KANG Y, KIM I J, et al. Stable cycling of a 4 V class lithium polymer battery enabled by in situ cross-linked ethylene oxide/propylene oxide copolymer electrolytes with controlled molecular structures[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 35664-35676.

    [30] 臧玉莉, 石琨, 邹雷, 等. 3D交联复合结构凝胶聚合物电解质制备研究[J]. 电源技术, 2022, 46(1): 30-33.

    ZANG Yuli, SHI Kun, ZOU Lei, et al. Preparation of 3D cross-linked gel composite polymer electrolytes[J]. Journal of Power Sources, 2022, 46(1): 30-33(in Chinese).

    [31] 张政, 贾弼超, 贺艳兵. PVDF基聚合物固态电解质的组成与改性研究[J]. 电池工业, 2024, 28(3): 1-13.

    ZHANG Zheng, JIA Bichao, HE Yanbing. Composition and modification designs of PVDF-based polymer solid-state electrolytes[J]. Chinese Battery Industry, 2024, 28(3): 1-13(in Chinese).

    [32] 薄扩, 李志义, 魏炜, 等. 超临界法制备PVDF-HFP-PEO共混聚合物电解质及其性能研究[J]. 现代化工, 2022, 42(12): 229-234.

    BAO Kuo, LI Zhiyi, WEI Wei, et al. Preparation of PVDF-HFP-PEO blending polymer electrolyte by supercritical method and study on its properties[J]. Modern Chemical Industry, 2022, 42(12): 229-234(in Chinese).

    [33]

    HE C, LIU J, LI J, et al. Blending based polyacrylonitrile/poly(vinyl alcohol) membrane for rechargeable lithium ion batteriers[J]. Journal of Membrane Science, 2018, 560: 30-37. DOI: 10.1016/j.memsci.2018.05.013

    [34]

    REDDEPPA N, SHARMA A K, RAO V V R N, et al. Preparation and characterization of pure and KBr doped polymer blend (PVC/PEO) electrolyte thin films[J]. Microelectronic Engineering, 2013, 112: 57-62. DOI: 10.1016/j.mee.2013.05.015

    [35]

    ZOU L, SHI K, LIU H, et al. Polybenzimidazole-reinforced polyethylene oxide-based polymer-in-salt electrolytes enabling excellent structural stability and superior electrochemical performance for lithium metal batteries[J]. Chemical Engineering Journal, 2023, 465: 142794. DOI: 10.1016/j.cej.2023.142794

    [36] 宋鑫, 高志浩, 骆林, 等. 全固态锂电池有机-无机复合电解质研究进展[J]. 复合材料学报, 2023, 40(4): 1857-1878.

    SONG Xin, GAO Zhihao, LUO Lin, et al. Research progress of organic-inorganic composite electrolytes for all-solid-state lithium batteries[J]. Atca Materiae Compositae Sinica, 2023, 40(4): 1857-1878(in Chinese).

    [37] 刘聪, 钟霖峰, 宫萧琪, 等. 固态锂电池用有机-无机复合电解质的研究进展[J]. 复合材料学报, 2024, 41(1): 1-15.

    LIU Cong, ZHONG Linfeng, GONG Xiaoqi, et al. Research progress of organic-inorganic composite electrolytes for solid-state lithium batterie[J]. Atca Materiae Compositae Sinica, 2024, 41(1): 1-15(in Chinese).

    [38]

    TANG S, GUO W, FU Y. Advances in composite polymer electrolytes for lithium batteries and beyond[J]. Advanced Energy Materials, 2021, 11(2): 2000802. DOI: 10.1002/aenm.202000802

    [39]

    LIANG H, WANG L, WANG A, et al. Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: A review[J]. Nano-Micro Letters, 2023, 15(1): 42. DOI: 10.1007/s40820-022-00996-1

    [40] 李香莉, 肖凯军, 郭祀远. PVDF/Al2O3杂化膜的制备与性能表征[J]. 华南理工大学学报(自然科学版), 2010, 38(7): 112-116.

    LI Xiangli, XIAO Kaijun, GUO Siyuan. Preparation and characterization of hybrid PVDF/Al2O3 membrane[J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(7): 112-116(in Chinese).

    [41]

    GU D M, LI Y C, YANG L, et al. Research on the electrochemical properties of PEO8-LiClO4-SiO2-SCA[J]. Acta Chimica Sinica, 2010, 68(22): 2367-2372.

    [42]

    CROCE F, SETTIMI L, SCROSATI B. Superacid ZrO2-added, composite polymer electrolytes with improved transport properties[J]. Electrochemistry Communications, 2006, 8(2): 364-368. DOI: 10.1016/j.elecom.2005.12.002

    [43]

    WANG C, YANG T, ZHANG W, et al. Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2022, 10(7): 3400-3408. DOI: 10.1039/D1TA10607D

    [44]

    NGUYEN Q H, PARK M G, NGUYEN H L, et al. Cubic garnet solid polymer electrolyte for room temperature operable all-solid-state-battery[J]. Journal of Materials Research and Technology, 2021, 15: 5849-5863. DOI: 10.1016/j.jmrt.2021.11.055

    [45]

    HUANG J, HUANG Y, ZHANG Z, et al. Li6.7La3Zr1.7Ta0. 3O12 reinforced PEO/PVDF-HFP based composite solid electrolyte for all solid-state lithium metal battery[J]. Energy & Fuels, 2020, 34(11): 15011-15018.

    [46]

    ZHANG X, FU C, CHENG S, et al. Novel PEO-based composite electrolyte for low-temperature all-solid-state lithium metal batteries enabled by interfacial cation-assistance[J]. Energy Storage Materials, 2023, 56: 121-131. DOI: 10.1016/j.ensm.2022.12.048

    [47]

    LIU K, ZHANG R, SUN J, et al. Polyoxyethylene (PEO)| PEO–perovskite| PEO composite electrolyte for all-solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46930-46937.

    [48]

    ZHU P, YAN C, DIRICAN M, et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2018, 6(10): 4279-4285. DOI: 10.1039/C7TA10517G

    [49]

    ZHAI H, XU P, NING M, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J]. Nano Letters, 2017, 17(5): 3182-3187. DOI: 10.1021/acs.nanolett.7b00715

    [50]

    WANG G, LIU H, LIANG Y, et al. Composite polymer electrolyte with three-dimensional ion transport channels constructed by NaCl template for solid-state lithium metal batteries[J]. Energy Storage Materials, 2022, 45: 1212-1219. DOI: 10.1016/j.ensm.2021.11.021

    [51]

    SU Y, XU F, ZHANG X, et al. Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries[J]. Nano-Micro Letters, 2023, 15(1): 82. DOI: 10.1007/s40820-023-01055-z

    [52]

    ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer–ceramic composite electrolytes[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 4113-4120.

    [53]

    WANG X, ZHAO C, LIU B, et al. Creating edge sites within the 2D metal-organic framework boosts redox kinetics in lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(42): 2201960. DOI: 10.1002/aenm.202201960

    [54]

    SUN W, TANG X, YANG Q, et al. Coordination-induced interlinked covalent-and metal–organic-framework hybrids for enhanced lithium storage[J]. Advanced Materials, 2019, 31(37): 1903176. DOI: 10.1002/adma.201903176

    [55]

    SHEN L, WU H B, LIU F, et al. Creating lithium-ion electrolytes with biomimetic ionic channels in metal–organic frameworks[J]. Advanced Materials, 2018, 30(23): 1707476. DOI: 10.1002/adma.201707476

    [56]

    YUAN Y, CHEN L, LI Y, et al. Functional LiTaO3 filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte[J]. Energy Materials and Devices, 2023, 1(1): 9370004. DOI: 10.26599/EMD.2023.9370004

    [57]

    SHI P, MA J, LIU M, et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries[J]. Nature Nanotechnology, 2023, 18(6): 602-610. DOI: 10.1038/s41565-023-01341-2

    [58]

    HUANG W, WANG S, ZHANG X, et al. Universal F4-modified strategy on metal-organic framework to chemical stabilize PVDF-HFP as quasi-solid-state electrolyte[J]. Advanced Materials, 2023, 35(52): 2310147. DOI: 10.1002/adma.202310147

    [59]

    JIANG Y, XU C, XU K, et al. Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes[J]. Chemical Engineering Journal, 2022, 442: 136245. DOI: 10.1016/j.cej.2022.136245

    [60]

    FURUKAWA H, CORDOVA K E, KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444. DOI: 10.1126/science.1230444

    [61]

    WANG X, HAO X, XIA Y, et al. A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries[J]. Journal of Membrane Science, 2019, 582: 37-47. DOI: 10.1016/j.memsci.2019.03.048

    [62]

    ZHANG X, XIE J, SHI F, et al. Vertically aligned and continuous nanoscale ceramic–polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity[J]. Nano Letters, 2018, 18(6): 3829-3838. DOI: 10.1021/acs.nanolett.8b01111

    [63]

    LIU Y, ZENG Q, LI Z, et al. Recent development in topological polymer electrolytes for rechargeable lithium batteries[J]. Advanced Science, 2023, 10(15): 2206978. DOI: 10.1002/advs.202206978

    [64]

    REN S, ZHENG T, ZHOU Q, et al. Preparation and ionic conductivity of composite polymer electrolytes based on hyperbranched star polymer[J]. Ionics, 2014, 20: 1225-1234. DOI: 10.1007/s11581-013-1061-4

    [65]

    LI S, ZHANG H, CHEN W, et al. Toward commercially viable Li-S batteries: Overall performance improvements enabled by a multipurpose interlayer of hyperbranched polymer-grafted carbon nanotubes[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 25767-25774.

    [66]

    XU H, WANG A, LIU X, et al. A new fluorine-containing star-branched polymer as electrolyte for all-solid-state lithium-ion batteries[J]. Polymer, 2018, 146: 249-255. DOI: 10.1016/j.polymer.2018.05.045

    [67]

    WANG S, ZHANG L, ZENG Q, et al. Cellulose microcrystals with brush-like architectures as flexible all-solid-state polymer electrolyte for lithium-ion battery[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(8): 3200-3207.

    [68]

    OSMAN Z, MDISA K B, AHMAD A, et al. A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes[J]. Ionics, 2010, 16: 431-435. DOI: 10.1007/s11581-009-0410-9

    [69] 康树森, 杨程响, 杨泽林, 等. 旋涂法制备 PEO-PAN-PMMA 三组分共混凝胶聚合物电解质[J]. 化学学报, 2020, 78(12): 1441-1447. DOI: 10.6023/A20080356

    KANG Shusen, YANG Chengxiang, YANG Zelin, et al. Blending based PEO-PAN-PMMA gel polymer electrolyte prepared by spaying casting for solid-state lithium metal batteries[J]. Acta Chimica Sinica, 2020, 78(12): 1441-1447(in Chinese) DOI: 10.6023/A20080356

    [70] 徐疆兰. 锂离子电池用PAN/TPU/PPC三元凝胶聚合物电解质的制备与研究[D]. 湘潭: 湘潭大学, 2019.

    XU Jianglan. Preparation and study of ternary PAN/TPU/PPC gel polymer electrolytes for lithium ion battery[D]. Xiangtan: Xiangtan University, 2019(in Chinese).

    [71]

    VIJAYAKUMAR V, ANOTHUMAKKOOL B, KURUNGO S, et al. In situ polymerization process: An essential design tool for lithium polymer batteries[J]. Energy & Environmental Science, 2021, 14(5): 2708-2788.

    [72]

    HUANG S, CUI Z, QIAO L, et al. An in-situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries[J]. Electrochimica Acta, 2019, 299: 820-827. DOI: 10.1016/j.electacta.2019.01.039

    [73]

    LEI Z, QIU Q, SHEN J, et al. Room-temperature solid-state lithium metal batteries using metal organic framework composited comb-like methoxy poly (ethylene glycol) acrylate solid polymer electrolytes[J]. Macromolecular Materials and Engineering, 2021, 306(10): 2100336. DOI: 10.1002/mame.202100336

    [74]

    JIN Y, ZONG X, ZHANG X, et al. Constructing 3D Li+ percolated transport network in composite polymer electrolytes for re-chargeable quasi-solid-state lithium batteries[J]. Energy Storage Materials, 2022, 49: 433-444. DOI: 10.1016/j.ensm.2022.04.035

    [75] 何双莉, 苏子秋, 李德阳, 等. PAN基耐高压聚合物电解质的制备及性能研究[J]. 北京服装学院学报(自然科学版), 2022, 42(2): 27-32.

    HE Shuangli, SU Ziqiu, LI Deyang, et al. Preparation and performance of PAN-based high voltage polymer electrolyte[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2022, 42(2): 27-32(in Chinese).

    [76]

    MA T, CUI Z, WU Y, et al. Preparation of PVDF based blend microporous membranes for lithium ion batteries by thermally induced phase separation: I. Effect of PMMA on the membrane formation process and the properties[J]. Journal of Membrane Science, 2013, 444: 213-222. DOI: 10.1016/j.memsci.2013.05.028

    [77]

    LI Z, WEI J, SHAN F, et al. PVDF/PMMA brushes membrane for lithium-ion rechargeable batteries prepared via preirradiation grafting technique[J]. Journal of Polymer Science Part B: Polymer Physics, 2008, 46(7): 751-758. DOI: 10.1002/polb.21408

  • 目的 

    锂离子电池常用的是碳酸酯基类的有机电解液,易燃易挥发,且在循环过程中易造成电池容量衰减,缩短使用寿命,因此,寻找电化学性能优异,安全稳定的电解质材料是提高锂离子电池服役性能的关键。固态聚合物电解质(Solid polymer electrolyte, SPE)由于高安全性、良好的电极界面接触性而受到研究者的广泛关注,但离子电导率偏低以及机械性能差等问题限制了其在锂离子电池中的应用。本文通过综述对固态聚合物电解质基质的改性策略,来提升SPE的综合性能,使其应用在未来固态锂电池的商业化生产中。

    方法 

    目前常见的聚合物基质普遍存在离子电导率较低且机械性能不佳的困扰,采取的措施主要有交联、共混、添加无机纳米填料、优化几何结构、改善制备工艺等方面来解决困难。(1)交联改性是通过对聚合物分子结构的简单交联,而共混改性是通过将几种不同的聚合物进行共混,阻止聚合物分子链段的结晶重排,破坏基质的排列规整性,降低基质的结晶度提高了SPE的离子电导率和热稳定性。(2)在基质中添加无机纳米填料,为锂离子迁移提供额外的路径,可以有效提高SPE的离子电导率。此外,利用无机填料的高机械模量,还可为SPE提供了更好的拉伸性能,抵抗电池循环过程中枝晶生长带来的安全问题。无机填料主要分为惰性填料、活性填料以及功能性填料。其中活性填料和功能性填料是目前研究者重点关注的对象。活性填料主要为无机陶瓷类电解质,具有安全性高,离子电导率高的优点。功能性填料主要指某些金属框架填料(如MOF等),能为锂离子传输提供更多的传输通道,且抑制锂枝晶生长。(3)通过优化陶瓷相和聚合物基体的几何结构,改善界面接触性,提高离子电导率。其中非线性拓扑结构的聚合物电解质具有更多的锂离子传输通道和更好的柔韧性,能更好的改善SPE的综合性能。(4)制备工艺对SPE的性能也有影响。制备工艺常用的溶液浇铸法、旋涂法、静电纺丝法、原位聚合法以及热致相分离法。采用合适的制备工作可提高SPE的离子电导率和界面稳定性。其中采用原位聚合法可构建无枝晶的电解质结构,提供更多的锂离子传输通道,抑制锂枝晶生成,提高循环稳定性。

    结果 

    通过对聚合物基质的进行交联改性,调节基质几何结构、采用合适的制备工艺以及添加无机填料等方面来改善聚合物基质的结晶度,增加锂离子传输通道,达到提升 SPE的电化学性能,有望促进固态锂离子电池商业化的生产。

    结论 

    固态聚合物电解质替代液态电解质,提高锂离子电池使用的安全性,在未来有更广泛的应用前景。尽管目前研究人员采用不同方式改性聚合物基质来提升SPE的机械性能和电化学性能,但在以下方面仍存在一些挑战。(1)需深入研究锂离子的传输机制。采用先进的表征技术和计算模拟技术,全面地分析离子传输机制,为高性能SPE的开发提供理论指导。(2)改进SPE的结构设计,增强界面接触稳定性,进而提高全固态电池的电化学性能。(3)开发新型拓扑聚合物提高电池性能。(4)提高离子电导率。固态电解质的离子电导率仍然低于传统的液态电解质。采用更多的改性策略,提供更多的Li的运输通道,提高离子电导率。(5)减少SPE膜厚度。目前,SPE膜的厚度(100-200μm)仍远高于商业聚丙烯隔膜的厚度(30μm)。还需改善制备工艺获得超薄电解质膜,提高电池性能。

图(14)  /  表(1)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  150
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-02
  • 修回日期:  2024-07-28
  • 录用日期:  2024-08-05
  • 网络出版日期:  2024-08-29
  • 发布日期:  2024-08-25
  • 刊出日期:  2025-05-14

目录

/

返回文章
返回