Research on the microcrack behavior of carbon fiber composites under prestress and ultra-low temperature cycling
-
摘要: 低温燃料贮箱复合材料化是实现运载火箭结构减重、提升运载能力的有效途径,但贮箱在服役过程中要承受超低温循环和机械载荷的共同作用,容易导致复合材料内部产生微裂纹,从而威胁结构安全。本文利用简易的预应力加载装置对碳纤维/环氧复合材料正交层合板进行超低温循环试验,研究预应力和超低温循环共同作用下复合材料层合板的微裂纹萌生和演化规律。结果表明:层合板边缘层的微裂纹密度总体大于内层,但中心两个90°叠加层表现出最大的微裂纹密度;与只有低温循环条件相比,引入预应力后层合板在同样的低温循环次数下微裂纹密度更大,增长速率更快;随着循环次数的增加,微裂纹密度的增长速率先快后慢,最终趋于饱和;随着预应力水平的提升,层合板中微裂纹的萌生和扩展速率也进一步加剧。本研究初步揭示了复合材料在载荷及超低温循环耦合作用下的微裂纹萌生和演化机制,可为低温复合材料贮箱的研制和应用提供有意义的参考。
-
关键词:
- 碳纤维/环氧复合材料 /
- 层合板 /
- 超低温循环 /
- 预应力 /
- 微裂纹
Abstract: The use of composite materials in low-temperature fuel tanks is an effective approach to achieve weight reduction and enhance carrying capacity for launch vehicle structures. However, as the tank is subjected to both ultra-low temperature cycling and mechanical loads during service, it is prone to internal microcrack formation in composite materials, posing a threat to structural safety. In this study, a simple pre-stressing device was used to conduct ultra-low temperature cycling tests on carbon fiber/epoxy orthotropic laminates. The research focused on the initiation and evolution of microcracks in composite laminates under the combined action of pre-stress and ultra-low temperature cycling. The results indicate that the microcrack density at the edge layers of the laminate is generally higher than that in the inner layers, but the central two 90° stacked layers exhibits the maximum microcrack density. Compared to conditions of only low-temperature cycling, the pre-stress results in a higher microcrack density in the laminate under the same number of low-temperature cycles, with a faster growth rate. With an increase in the number of cycles, the growth rate of microcrack density initially accelerates and then slows down, eventually reaching saturation. As the pre-stress level increases, the initiation and propagation rates of microcracks in the laminate are further intensified. This study provides a preliminary insight into the mechanism of microcrack initiation and evolution in composite materials under the coupled action of load and ultra-low temperature cycling, offering meaningful references for the development and application of low-temperature composite material tanks.-
Key words:
- carbon fiber/epoxy composites /
- laminates /
- ultra-low temperature cycling /
- pre-stress /
- microcrack
-
-
[1] 黄诚, 刘德博, 吴会强, 等. 我国航天运载器复合材料贮箱应用展望[J]. 沈阳航空航天大学学报, 2016, 33(2): 27-35.HUANG Cheng, LIU Debo, WU Huiqiang, et al. Application prospects of composite propellant tanks in domestic launch vehicles[J]. Journal of Shenyang Aerospace ace University, 2016, 33(2): 27-35 (in Chinese). [2] WATANABE S, SHINDO Y, NARIT F, et al. Thermal-mechanical analysis of satin weave CFRP composites with cracks at cryogenic temperatures[J]. Journal of reinforced plastics and composites, 2009, 28(11): 1319-1337. doi: 10.1177/0731684408089133 [3] GROGAN D M, LEEN S B, BRADAIGH C M Ó. An XFEM-based methodology for fatigue delamination and permeability of composites[J]. Composite Structures, 2014, 107: 205-218. doi: 10.1016/j.compstruct.2013.07.050 [4] KIM M G, KANG S G, KIM C G, et al. Thermally induced stress analysis of composite/aluminum ring specimens at cryogenic temperature[J]. Composites science and technology, 2008, 68(3-4): 1080-1087. doi: 10.1016/j.compscitech.2007.03.015 [5] MENG J, ZHENG H, WEI Y, et al. Leakage performance of CFRP laminate under cryogenic temperature: Experimental and simulation study[J]. Composites Science and Technology, 2022, 226: 109550. doi: 10.1016/j.compscitech.2022.109550 [6] FLANAGAN M, GROGAN D M, GOGGINS J, et al. Permeability of carbon fibre PEEK composites for cryogenic storage tanks of future space launchers[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 173-184. doi: 10.1016/j.compositesa.2017.06.013 [7] HOHE J, SCHOBER M, FLIEGIAN S, et al. Effect of cryogenic environments on failure of carbon fiber reinforced composites[J]. Composites Science and Technology, 2021, 212: 108850. doi: 10.1016/j.compscitech.2021.108850 [8] YAN M, LIU Y, JIANG W, et al. Mechanism of matrix influencing the cryogenic mechanical property of carbon fibre reinforced epoxy resin composite[J]. Composites Communications, 2022, 33: 101220. doi: 10.1016/j.coco.2022.101220 [9] LI Y, WEI Y, MENG J, et al. Damage evolution characterization of glass fabric composites at cryogenic temperatures via in-situ tensile X-ray computed tomography tests[J]. Composites Communications, 2022, 35: 101326. doi: 10.1016/j.coco.2022.101326 [10] GUO F L, ZHOU Z L, WU T, et al. Experimental and multiscale modeling investigations of cryo-thermal cycling effects on the mechanical behaviors of carbon fiber reinforced epoxy composites[J]. Composites Part B: Engineering, 2022, 230: 109534. doi: 10.1016/j.compositesb.2021.109534 [11] JEAN-ST-LAURENT M, DANO M L, POTVIN M J. Study of damage induced by extreme thermal cycling in cyanate ester laminates and sandwich panels[J]. Journal of Composite Materials, 2017, 51(14): 2023-2034. doi: 10.1177/0021998316666937 [12] MENG J, WANG Y, YANG H, et al. Mechanical properties and internal microdefects evolution of carbon fiber reinforced polymer composites: Cryogenic temperature and thermocycling effects[J]. Composites Science and Technology, 2020, 191: 108083. doi: 10.1016/j.compscitech.2020.108083 [13] 刘娇文, 高战蛟, 周欣欣, 等. 冷热循环对 M40 碳纤维/氰酸酯复合材料影响的试验研究[J]. 航天器环境工程, 2014, 31(6): 631-634. doi: 10.3969/j.issn.1673-1379.2014.06.012LIU Jiaowen, GAO Zhanjiao, ZHOU Xinxin, et al. Experimental study on the effect of cold and hot cycling on M40 carbon fiber/cyanate composites[J]. Spacecraft Environmental Engineering, 2014, 31(6): 631-634(in Chinese). doi: 10.3969/j.issn.1673-1379.2014.06.012 [14] BECHEL V T, CAMPING J D, KIM R Y. Cryogenic/elevated temperature cycling induced leakage paths in PMCs[J]. Composites Part B: Engineering, 2005, 36(2): 171-182. doi: 10.1016/j.compositesb.2004.03.001 [15] CHOI S, SANKAR B V. Gas permeability of various graphite/epoxy composite laminates for cryogenic storage systems[J]. Composites Part B: Engineering, 2008, 39(5): 782-791. doi: 10.1016/j.compositesb.2007.10.010 [16] 石建军, 任银银, 贾彬, 等. 高低温循环-湿度-荷载耦合作用对碳纤维/环氧树脂复合材料拉伸性能的影响[J]. 航空材料学报, 2022, 42(6): 97-106. doi: 10.11868/j.issn.1005-5053.2021.000193SHI Jianjun, REN Yinyin, JIA Bin, et al. Effect of high and low temperature cycle-humidity-load coupling on tensile properties of carbon fiber/epoxy resin composites[J]. Journal of Aeronautical Materials, 2022, 42(6): 97-106(in Chinese). doi: 10.11868/j.issn.1005-5053.2021.000193 [17] YOKOZEKI T, OGASAWARA T, ISHIKAWA T. Evaluation of gas leakage through composite laminates with multilayer matrix cracks: Cracking angle effects[J]. Composites science and technology, 2006, 66(15): 2815-2824. doi: 10.1016/j.compscitech.2006.02.024 [18] HAMORI H, KUMAZAWA H, HIGUCHI R, et al. Gas permeability of CFRP cross-ply laminates with thin-ply barrier layers under cryogenic and biaxial loading conditions[J]. Composite Structures, 2020, 245: 112326. doi: 10.1016/j.compstruct.2020.112326 [19] 黄诚. 航天运载器低温复合材料贮箱结构设计方法研究[D]. 国防科技大学, 2017.HUANG Cheng. Structural design of cryogenic composite tank for space vehicle[D]. National University of Defense Technology, 2017. (in Chinese) [20] 李存静, 陶洋, 逄增媛, 等. 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料高温力学行为及损伤机制[J]. 复合材料学报, 2024, 41(1): 144-153.LI Cunjing, TAO Yang, PANG Zengyuan, et al. High temperature mechanical behavior and damage mechanism of 2.5D woven carbon fiber-glass fiber/bismaleimide resin composite[J]. Acta Material Compositae Sinica, 2024, 41(1): 144-153(in Chinese). [21] CHENG B Q, HONG M X, GUI W H, et al. Effects of cryo-thermal cycling on interlaminar shear strength and thermal expansion coefficient of carbon fiber/graphene oxide-modified epoxy composites[J]. Composites Communications, 2022, 32: 101180. doi: 10.1016/j.coco.2022.101180 [22] GUPTA S K, HOJJATI M. Thermal cycle effects on laminated composite plates containing voids[J]. Journal of Composite Materials, 2019, 53(4): 489-501. doi: 10.1177/0021998318786785 [23] GROGAN D M, LEEN S B, SEMPRIMOSCC O A, et al. Damage characterisation of cryogenically cycled carbon fibre/PEEK laminates[J]. Composites Part A: Applied Science and Manufacturing, 2014, 66: 237-250. doi: 10.1016/j.compositesa.2014.08.007 [24] YANG L, LI Z, XU H, et al. Prediction on residual stresses of carbon/epoxy composite at cryogenic temperature[J]. Polymer composites, 2019, 40(9): 3412-3420. doi: 10.1002/pc.25202 [25] PATNAIK S, GANGINENI P K, PRUSTY R K. Influence of cryogenic temperature on mechanical behavior of graphene carboxyl grafted carbon fiber reinforced polymer composites: An emphasis on concentration of nanofillers[J]. Composites Communications, 2020, 20: 100369. doi: 10.1016/j.coco.2020.100369 [26] YAN M, LIU Y, JIANG W, et al. Mechanism of matrix influencing the cryogenic mechanical property of carbon fibre reinforced epoxy resin composite[J]. Composites Communications, 2022, 33: 101220. doi: 10.1016/j.coco.2022.101220
点击查看大图
计量
- 文章访问数: 107
- HTML全文浏览量: 35
- 被引次数: 0