留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预应力及超低温循环作用下碳纤维复合材料微裂纹行为研究

陈春宇 王剑锋 张木子 柳敏静 杨雷 武湛君

陈春宇, 王剑锋, 张木子, 等. 预应力及超低温循环作用下碳纤维复合材料微裂纹行为研究[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 陈春宇, 王剑锋, 张木子, 等. 预应力及超低温循环作用下碳纤维复合材料微裂纹行为研究[J]. 复合材料学报, 2024, 42(0): 1-9.
CHEN Chunyu, WANG Jianfeng, ZHANG Muzi, et al. Research on the microcrack behavior of carbon fiber composites under prestress and ultra-low temperature cycling[J]. Acta Materiae Compositae Sinica.
Citation: CHEN Chunyu, WANG Jianfeng, ZHANG Muzi, et al. Research on the microcrack behavior of carbon fiber composites under prestress and ultra-low temperature cycling[J]. Acta Materiae Compositae Sinica.

预应力及超低温循环作用下碳纤维复合材料微裂纹行为研究

基金项目: 国家自然科学基金 (12372129)
详细信息
    通讯作者:

    杨雷,博士,副教授,博士生导师,研究方向为复合材料力学与健康监测 E-mail: yangl@dlut.edu.cn

  • 中图分类号: TB332

Research on the microcrack behavior of carbon fiber composites under prestress and ultra-low temperature cycling

Funds: National Natural Science Foundation of China (12372129)
  • 摘要: 低温燃料贮箱复合材料化是实现运载火箭结构减重、提升运载能力的有效途径,但贮箱在服役过程中要承受超低温循环和机械载荷的共同作用,容易导致复合材料内部产生微裂纹,从而威胁结构安全。本文利用简易的预应力加载装置对碳纤维/环氧复合材料正交层合板进行超低温循环试验,研究预应力和超低温循环共同作用下复合材料层合板的微裂纹萌生和演化规律。结果表明:层合板边缘层的微裂纹密度总体大于内层,但中心两个90°叠加层表现出最大的微裂纹密度;与只有低温循环条件相比,引入预应力后层合板在同样的低温循环次数下微裂纹密度更大,增长速率更快;随着循环次数的增加,微裂纹密度的增长速率先快后慢,最终趋于饱和;随着预应力水平的提升,层合板中微裂纹的萌生和扩展速率也进一步加剧。本研究初步揭示了复合材料在载荷及超低温循环耦合作用下的微裂纹萌生和演化机制,可为低温复合材料贮箱的研制和应用提供有意义的参考。

     

  • 图  1  (a) 试验件尺寸; (b) 碳/环氧复合材料试验件; (c) 预应力加载装置

    Figure  1.  (a) Specimen sizes; (b) Carbon/epoxy composite specimen;(c) Prestress loading device

    图  2  超低温循环试验系统:(a) 系统示意图; (b) 系统实物图; (c) 长周期循环温度曲线; (d) 短周期循环温度曲线

    Figure  2.  Ultra-low temperature cycling system: (a) Schematic diagram of the system; (b) Photo of the system; (c) Long-cycle temperature curve;(d) Short-cycle temperature curve

    图  3  试验件铺层编号

    Figure  3.  Ply number of the specimen

    图  4  无预应力时碳/环氧复合材料中间层微裂纹随着超低温循环的演化情况:(a) 3次; (b) 6次; (c) 9次; (d) 12次

    Figure  4.  Microcrack evolution in the middle ply of the carbon/epoxy composite laminate under different ultra-low temperature cycles in the absence of pre-stress: (a) 3 cycles; (b) 6 cycles; (c) 9 cycles; (d) 12 cycles

    图  5  施加0.3%预应变时碳/环氧复合材料中间层微裂纹随着超低温循环的演化情况:(a) 3次; (b) 6次; (c) 9次; (d) 12次

    Figure  5.  Microcrack evolution in the middle ply of the carbon/epoxy composite laminate under different ultra-low temperature cycles with 0.3% pre-strain: (a) 3 cycles; (b) 6 cycles; (c) 9 cycles; (d) 12 cycles

    图  6  碳/环氧复合材料微裂纹的扫描电镜表征

    Figure  6.  Scanning electron microscope characterization of microcracks in the carbon/epoxy composite

    图  7  长周期循环不同预应变等级下碳/环氧复合材料的微裂纹密度:(a) 1,8层; (b) 2,7层; (c) 3,6层; (d) 4,5层

    Figure  7.  Microcrack density of carbon/epoxy composite at different pre-strain levels under long cycle: (a) Plies 1,8; (b) Plies 2,7; (c) Plies 3,6; (d) Plies 4,5

    图  8  预应变0.3%时碳/环氧复合材料各层微裂纹密度与超低温循环次数的关系

    Figure  8.  Microcrack density at various plies of carbon/epoxy composite with 0.3% pre-strain as a function of ultra-low temperature cycle numbers

    图  9  短周期循环有无预应变时碳/环氧复合材料的微裂纹密度:(a) 1-3, 6-8层; (b) 4,5层

    Figure  9.  Microcrack density of carbon/epoxy composite at short cycle with and without pre-strain: (a) Plies 1-3, 6-8; (b) Plies 4,5

    图  10  超低温与预应力共同作用下碳/环氧复合材料微观应力场仿真结果

    Figure  10.  Simulation results of microscopic stress fields in carbon/epoxy composite under ultra-low temperature and pre-stress

  • [1] 黄诚, 刘德博, 吴会强, 等. 我国航天运载器复合材料贮箱应用展望[J]. 沈阳航空航天大学学报, 2016, 33(2): 27-35.

    HUANG Cheng, LIU Debo, WU Huiqiang, et al. Application prospects of composite propellant tanks in domestic launch vehicles[J]. Journal of Shenyang Aerospace ace University, 2016, 33(2): 27-35 (in Chinese).
    [2] WATANABE S, SHINDO Y, NARIT F, et al. Thermal-mechanical analysis of satin weave CFRP composites with cracks at cryogenic temperatures[J]. Journal of reinforced plastics and composites, 2009, 28(11): 1319-1337. doi: 10.1177/0731684408089133
    [3] GROGAN D M, LEEN S B, BRADAIGH C M Ó. An XFEM-based methodology for fatigue delamination and permeability of composites[J]. Composite Structures, 2014, 107: 205-218. doi: 10.1016/j.compstruct.2013.07.050
    [4] KIM M G, KANG S G, KIM C G, et al. Thermally induced stress analysis of composite/aluminum ring specimens at cryogenic temperature[J]. Composites science and technology, 2008, 68(3-4): 1080-1087. doi: 10.1016/j.compscitech.2007.03.015
    [5] MENG J, ZHENG H, WEI Y, et al. Leakage performance of CFRP laminate under cryogenic temperature: Experimental and simulation study[J]. Composites Science and Technology, 2022, 226: 109550. doi: 10.1016/j.compscitech.2022.109550
    [6] FLANAGAN M, GROGAN D M, GOGGINS J, et al. Permeability of carbon fibre PEEK composites for cryogenic storage tanks of future space launchers[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 173-184. doi: 10.1016/j.compositesa.2017.06.013
    [7] HOHE J, SCHOBER M, FLIEGIAN S, et al. Effect of cryogenic environments on failure of carbon fiber reinforced composites[J]. Composites Science and Technology, 2021, 212: 108850. doi: 10.1016/j.compscitech.2021.108850
    [8] YAN M, LIU Y, JIANG W, et al. Mechanism of matrix influencing the cryogenic mechanical property of carbon fibre reinforced epoxy resin composite[J]. Composites Communications, 2022, 33: 101220. doi: 10.1016/j.coco.2022.101220
    [9] LI Y, WEI Y, MENG J, et al. Damage evolution characterization of glass fabric composites at cryogenic temperatures via in-situ tensile X-ray computed tomography tests[J]. Composites Communications, 2022, 35: 101326. doi: 10.1016/j.coco.2022.101326
    [10] GUO F L, ZHOU Z L, WU T, et al. Experimental and multiscale modeling investigations of cryo-thermal cycling effects on the mechanical behaviors of carbon fiber reinforced epoxy composites[J]. Composites Part B: Engineering, 2022, 230: 109534. doi: 10.1016/j.compositesb.2021.109534
    [11] JEAN-ST-LAURENT M, DANO M L, POTVIN M J. Study of damage induced by extreme thermal cycling in cyanate ester laminates and sandwich panels[J]. Journal of Composite Materials, 2017, 51(14): 2023-2034. doi: 10.1177/0021998316666937
    [12] MENG J, WANG Y, YANG H, et al. Mechanical properties and internal microdefects evolution of carbon fiber reinforced polymer composites: Cryogenic temperature and thermocycling effects[J]. Composites Science and Technology, 2020, 191: 108083. doi: 10.1016/j.compscitech.2020.108083
    [13] 刘娇文, 高战蛟, 周欣欣, 等. 冷热循环对 M40 碳纤维/氰酸酯复合材料影响的试验研究[J]. 航天器环境工程, 2014, 31(6): 631-634. doi: 10.3969/j.issn.1673-1379.2014.06.012

    LIU Jiaowen, GAO Zhanjiao, ZHOU Xinxin, et al. Experimental study on the effect of cold and hot cycling on M40 carbon fiber/cyanate composites[J]. Spacecraft Environmental Engineering, 2014, 31(6): 631-634(in Chinese). doi: 10.3969/j.issn.1673-1379.2014.06.012
    [14] BECHEL V T, CAMPING J D, KIM R Y. Cryogenic/elevated temperature cycling induced leakage paths in PMCs[J]. Composites Part B: Engineering, 2005, 36(2): 171-182. doi: 10.1016/j.compositesb.2004.03.001
    [15] CHOI S, SANKAR B V. Gas permeability of various graphite/epoxy composite laminates for cryogenic storage systems[J]. Composites Part B: Engineering, 2008, 39(5): 782-791. doi: 10.1016/j.compositesb.2007.10.010
    [16] 石建军, 任银银, 贾彬, 等. 高低温循环-湿度-荷载耦合作用对碳纤维/环氧树脂复合材料拉伸性能的影响[J]. 航空材料学报, 2022, 42(6): 97-106. doi: 10.11868/j.issn.1005-5053.2021.000193

    SHI Jianjun, REN Yinyin, JIA Bin, et al. Effect of high and low temperature cycle-humidity-load coupling on tensile properties of carbon fiber/epoxy resin composites[J]. Journal of Aeronautical Materials, 2022, 42(6): 97-106(in Chinese). doi: 10.11868/j.issn.1005-5053.2021.000193
    [17] YOKOZEKI T, OGASAWARA T, ISHIKAWA T. Evaluation of gas leakage through composite laminates with multilayer matrix cracks: Cracking angle effects[J]. Composites science and technology, 2006, 66(15): 2815-2824. doi: 10.1016/j.compscitech.2006.02.024
    [18] HAMORI H, KUMAZAWA H, HIGUCHI R, et al. Gas permeability of CFRP cross-ply laminates with thin-ply barrier layers under cryogenic and biaxial loading conditions[J]. Composite Structures, 2020, 245: 112326. doi: 10.1016/j.compstruct.2020.112326
    [19] 黄诚. 航天运载器低温复合材料贮箱结构设计方法研究[D]. 国防科技大学, 2017.

    HUANG Cheng. Structural design of cryogenic composite tank for space vehicle[D]. National University of Defense Technology, 2017. (in Chinese)
    [20] 李存静, 陶洋, 逄增媛, 等. 2.5D机织碳纤维-玻璃纤维/双马来酰亚胺树脂复合材料高温力学行为及损伤机制[J]. 复合材料学报, 2024, 41(1): 144-153.

    LI Cunjing, TAO Yang, PANG Zengyuan, et al. High temperature mechanical behavior and damage mechanism of 2.5D woven carbon fiber-glass fiber/bismaleimide resin composite[J]. Acta Material Compositae Sinica, 2024, 41(1): 144-153(in Chinese).
    [21] CHENG B Q, HONG M X, GUI W H, et al. Effects of cryo-thermal cycling on interlaminar shear strength and thermal expansion coefficient of carbon fiber/graphene oxide-modified epoxy composites[J]. Composites Communications, 2022, 32: 101180. doi: 10.1016/j.coco.2022.101180
    [22] GUPTA S K, HOJJATI M. Thermal cycle effects on laminated composite plates containing voids[J]. Journal of Composite Materials, 2019, 53(4): 489-501. doi: 10.1177/0021998318786785
    [23] GROGAN D M, LEEN S B, SEMPRIMOSCC O A, et al. Damage characterisation of cryogenically cycled carbon fibre/PEEK laminates[J]. Composites Part A: Applied Science and Manufacturing, 2014, 66: 237-250. doi: 10.1016/j.compositesa.2014.08.007
    [24] YANG L, LI Z, XU H, et al. Prediction on residual stresses of carbon/epoxy composite at cryogenic temperature[J]. Polymer composites, 2019, 40(9): 3412-3420. doi: 10.1002/pc.25202
    [25] PATNAIK S, GANGINENI P K, PRUSTY R K. Influence of cryogenic temperature on mechanical behavior of graphene carboxyl grafted carbon fiber reinforced polymer composites: An emphasis on concentration of nanofillers[J]. Composites Communications, 2020, 20: 100369. doi: 10.1016/j.coco.2020.100369
    [26] YAN M, LIU Y, JIANG W, et al. Mechanism of matrix influencing the cryogenic mechanical property of carbon fibre reinforced epoxy resin composite[J]. Composites Communications, 2022, 33: 101220. doi: 10.1016/j.coco.2022.101220
  • 加载中
计量
  • 文章访问数:  107
  • HTML全文浏览量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-18
  • 修回日期:  2024-06-17
  • 录用日期:  2024-07-08
  • 网络出版日期:  2024-07-20

目录

    /

    返回文章
    返回