留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载茶多酚的壳聚糖-聚乙烯吡咯烷酮水凝胶膜的表征及其pH响应释放

崔琢玉 李洋 冯鑫 胡泽茜

崔琢玉, 李洋, 冯鑫, 等. 负载茶多酚的壳聚糖-聚乙烯吡咯烷酮水凝胶膜的表征及其pH响应释放[J]. 复合材料学报, 2023, 41(0): 1-10
引用本文: 崔琢玉, 李洋, 冯鑫, 等. 负载茶多酚的壳聚糖-聚乙烯吡咯烷酮水凝胶膜的表征及其pH响应释放[J]. 复合材料学报, 2023, 41(0): 1-10
Zhuoyu CUI, Yang LI, Xin FENG, Zexi HU. Characterization and pH-response release of chitosan-polyvinylpyrrolidone hydrogel films loaded with tea polyphenols[J]. Acta Materiae Compositae Sinica.
Citation: Zhuoyu CUI, Yang LI, Xin FENG, Zexi HU. Characterization and pH-response release of chitosan-polyvinylpyrrolidone hydrogel films loaded with tea polyphenols[J]. Acta Materiae Compositae Sinica.

负载茶多酚的壳聚糖-聚乙烯吡咯烷酮水凝胶膜的表征及其pH响应释放

基金项目: 黑龙江省自然科学基金 (LH2021C016)
详细信息
    通讯作者:

    李 洋,博士研究生,副教授,硕士生导师,研究方向为冷链物流及包装材料 E-mail:378918917@qq.com

  • 中图分类号: TB332

Characterization and pH-response release of chitosan-polyvinylpyrrolidone hydrogel films loaded with tea polyphenols

Funds: National Natural Science Foundation of Heilongjiang Province(No. LH2021C016)
  • 摘要: 茶多酚具备优异的抗氧化和抗菌活性,但是茶多酚的稳定性较差,在一定程度上限制了其应用,开发具有控释功能的复合材料对茶多酚等活性物质的利用具有重要意义。智能水凝胶具有独特的三维网络结构,具有良好的力学性能和阻隔性能,能够因外部环境改变而发生响应,被广泛应用于医药和农业领域,用于特定药物的装载和释放以及土壤肥料的控释等方面。本文选取壳聚糖、聚乙烯吡咯烷酮作为基材,以甘油为增塑剂,戊二醛为交联剂,茶多酚为抗氧化剂制备了具有pH响应的负载茶多酚的壳聚糖/聚乙烯吡咯烷酮水凝胶膜。通过SEM、FTIR表征薄膜的微观结构,测试了薄膜的水蒸气透过率、力学性能、溶胀度、凝胶含量以及抗氧化能力,进而通过测定不同pH值的水凝胶膜中茶多酚的释放速率探究其pH响应性,并且通过动力学模型拟合来确定茶多酚的释放规律。结果表明,交联剂与壳聚糖之间的相互作用形成了稳定的水凝胶结构,而茶多酚的加入使各组分之间的交联强度进一步提高,结构更加稳定;交联剂和茶多酚的加入在整体上改善薄膜的理化性质,茶多酚水凝胶膜的水蒸气透过率为(0.159±0.010) g·mm/(m2·h·kPa),抗拉强度为(40.58±2.11) MPa,断裂伸长率为(62.32±3.50)%,溶胀平衡时的溶胀度为(346.27±3.16)%,凝胶含量为(87.94±0.50)%,而抗氧化活性相对于传统薄膜提高了近5倍;当pH值越小,茶多酚的累积释放率越大,相对于Higuchi,Ritger-Peppas模型,茶多酚的释放规律与一级动力学模型相吻合。负载茶多酚的壳聚糖-聚乙烯吡咯烷酮水凝胶膜能够对pH变化做出响应,有效实现茶多酚等活性物质的控制释放,有潜力应用于食品包装领域。负载茶多酚的壳聚糖-聚乙烯吡咯烷酮水凝胶膜的微观结构及不同pH值下茶多酚的释放速率

     

  • 图  1  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜的制备流程

    Figure  1.  Preparation process of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    CS—Chitosan; PVP—Polyvinylpyrrolidone; GL—Glutaraldehyde; TP—Tea Polyphenol; GC—Glycerinum

    图  2  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜的SEM图像

    Figure  2.  SEM images of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    图  3  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜的傅里叶红外光谱图

    Figure  3.  Fourier infrared spectra of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    图  4  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜的水蒸气透过率

    Figure  4.  Water vapor permeability of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    图  5  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜的抗拉强度和断裂伸长率

    Figure  5.  Tensile strength and elongation at break of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    图  6  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜的溶胀度

    Figure  6.  Swelling ratio of films of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    图  7  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜的凝胶含量

    Figure  7.  Gel content of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    图  8  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜的DPPH自由基清除率

    Figure  8.  DPPH radical scavenging of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    图  9  TP的标准曲线

    Figure  9.  Standard curve of TP

    图  10  不同pH值条件下CS-PVP-GL-TP薄膜中TP的累积释放速率

    Figure  10.  Cumulative release rate of TP in CS-PVP-GL-TP film at different pH values

    图  11  不同pH值条件下CS-PVP-GL-TP薄膜中TP的释放动力学曲线

    Figure  11.  TP in CS-PVP-GL-TP film release kinetic curves at different pH values

    表  1  不同pH值条件下CS-PVP-GL-TP薄膜中TP的释放动力学拟合方程

    Table  1.   Release kinetic fitting equations of tea polyphenols in CS-PVP-GL-TP film at different pH values

    The fitted equationpH valueThe expression of the fitR2
    first-order kinetic equation3$ {M}_{t}=82.78289\times \left(1-{\mathrm{e}}^{-0.17951 t}\right) $0.99338
    4$ {M}_{t}=75.18297\times \left(1-{\mathrm{e}}^{-0.16145 t}\right) $0.99619
    5$ {M}_{t}=58.97272\times \left(1-{\mathrm{e}}^{-0.12216 t}\right) $0.98828
    6$ {M}_{t}=51.00868\times \left(1-{\mathrm{e}}^{-0.09799 t}\right) $0.99636
    Higuchi equation3$ {M}_{t}=17.06298{t}^{1/2}+7.7254 $0.94187
    4$ {M}_{t}=15.65142{t}^{1/2}+4.82808 $0.95413
    5$ {M}_{t}=12.11531{t}^{1/2}+0.47913 $0.9695
    6$ {M}_{t}=10.18583{t}^{1/2}- $1.666370.98314
    Ritger-peppas equation3$ {M}_{t}=27.76727{t}^{0.362} $0.96908
    4$ {M}_{t}=22.52151{t}^{0.39476} $0.96985
    5$ {M}_{t}=13.24582{t}^{0.47103} $0.97085
    6$ {M}_{t}=8.74408{t}^{0.53971} $0.98314
    下载: 导出CSV
  • [1] ZHAO Y, ZHOU S, XIA X, et al. High-performance carboxymethyl cellulose-based hydrogel film for food packaging and preservation system[J]. International Journal of Biological Macromolecules,2022,223:1126-1137. doi: 10.1016/j.ijbiomac.2022.11.102
    [2] 陈旭, 王硕, 汤相宇, 等. 纤维素甲基丙烯酸酯水凝胶的制备及重金属离子吸附性能研究[J]. 森林工程, 2023, 39(1):82-91. doi: 10.3969/j.issn.1006-8023.2023.01.010

    CHEN X, WANG S, TANG X Y, et al. Study on preparation of cellulose methacrylate hydrogel and their adsorption performance of heavy metal ions[J]. Forest Engineering,2023,39(1):82-91(in Chinese). doi: 10.3969/j.issn.1006-8023.2023.01.010
    [3] NEZAMDOOST-SANI N, KHALEDABAD M A, AMIRI S, et al. Alginate and derivatives hydrogels in encapsulation of probiotic bacteria: An updated review[J]. Food Bioscience,2023,52:102433. doi: 10.1016/j.fbio.2023.102433
    [4] BATISTA R A, ESPITIA P J P, QUINTANS J D S S, et al. Hydrogel as an alternative structure for food packaging systems[J]. Carbohydrate Polymers,2019,205:106-116. doi: 10.1016/j.carbpol.2018.10.006
    [5] MOJALLY M, SHARMIN E, OBAID N A, et al. Polyvinyl alcohol/corn starch/castor oil hydrogel films, loaded with silver nanoparticles biosynthesized in Mentha piperita leaves’ extract[J]. Journal of King Saud University - Science,2022,34(4):101879. doi: 10.1016/j.jksus.2022.101879
    [6] 刘玉鹏, 况培培, 陈莹, 等. 生物质基刺激响应型水凝胶研究进展[J]. 林产化学与工业, 2022, 42(3):126-134. doi: 10.3969/j.issn.0253-2417.2022.03.017

    LIU Y P, KUANG P P, CHEN Y, et al. Research progress on biomass-based stimulus-responsive hydrogels[J]. Chemistry and Industry of Forest Products,2022,42(3):126-134(in Chinese). doi: 10.3969/j.issn.0253-2417.2022.03.017
    [7] CONSTANTIN M, BUCATARIU S-M, DOROFTEI F, et al. Smart composite materials based on chitosan microspheres embedded in thermosensitive hydrogel for controlled delivery of drugs[J]. Carbohydrate Polymers,2017,157:493-502. doi: 10.1016/j.carbpol.2016.10.022
    [8] SHAGHALEH H, ALHAJ HAMOUD Y, XU X, et al. A pH-responsive/sustained release nitrogen fertilizer hydrogel based on aminated cellulose nanofiber/cationic copolymer for application in irrigated neutral soils[J]. Journal of Cleaner Production,2022,368:133098. doi: 10.1016/j.jclepro.2022.133098
    [9] LEYVA-JIMéNEZ F J, OLIVER-SIMANCAS R, CASTANGIA I, et al. Comprehensive review of natural based hydrogels as an upcoming trend for food packing[J]. Food Hydrocolloids,2023,135:108124. doi: 10.1016/j.foodhyd.2022.108124
    [10] MAROUFI L Y, TABIBIAZAR M, GHORBANI M, et al. Fabrication and characterization of novel antibacterial chitosan/dialdehyde guar gum hydrogels containing pomegranate peel extract for active food packaging application[J]. International Journal of Biological Macromolecules,2021,187:179-188. doi: 10.1016/j.ijbiomac.2021.07.126
    [11] XIONG S, LI R, YE S, et al. Vanillin enhances the antibacterial and antioxidant properties of polyvinyl alcohol-chitosan hydrogel dressings[J]. International Journal of Biological Macromolecules,2022,220:109-116. doi: 10.1016/j.ijbiomac.2022.08.052
    [12] JIANG K, ZHOU X, HE T. The synthesis of bacterial cellulose-chitosan zwitterionic hydrogels with pH responsiveness for drug release mechanism of the naproxen[J]. International Journal of Biological Macromolecules,2022,209:814-824. doi: 10.1016/j.ijbiomac.2022.03.216
    [13] 都津铭, 张萍, 高德. 丁香精油与茶多酚复合抗菌液的抑菌活性协同作用及抗氧化活性[J]. 现代食品科技, 2021, 37(10):87-95. doi: 10.13982/j.mfst.1673-9078.2021.10.0098

    DU J M, ZHANG P, GAO D. Synergistic antibacterial effect and antioxidant activity of the compound liquid with clove essential oil and tea polyphenol[J]. Modern Food Science and Technology,2021,37(10):87-95(in Chinese). doi: 10.13982/j.mfst.1673-9078.2021.10.0098
    [14] WU Y, LI C. A smart film incorporating anthocyanins and tea polyphenols into sodium carboxymethyl cellulose/polyvinyl alcohol for application in mirror carp[J]. International Journal of Biological Macromolecules,2022,223:404-417. doi: 10.1016/j.ijbiomac.2022.10.282
    [15] HAMEED T A, MOHAMED F, TURKY G, et al. Carboxymethylcellulose/polyvinylpyrrolidone filled with Al-doped ZnO nanoparticles as a promising film for optoelectronic applications[J]. Optical Materials,2022,134:113097. doi: 10.1016/j.optmat.2022.113097
    [16] ZHOU X, LIU X, LIAO W, et al. Chitosan/bacterial cellulose films incorporated with tea polyphenol nanoliposomes for silver carp preservation[J]. Carbohydrate Polymers,2022,297:120048. doi: 10.1016/j.carbpol.2022.120048
    [17] BANDYOPADHYAY S, SAHA N, BRODNJAK U V, et al. Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: Characterized for packaging fresh berries[J]. Food Packaging and Shelf Life,2019,22:100402. doi: 10.1016/j.fpsl.2019.100402
    [18] MIRSHARIFI S M, SAMI M, JAZAERI M, et al. Production, characterization, and antimicrobial activity of almond gum/polyvinyl alcohol/chitosan composite films containing thyme essential oil nanoemulsion for extending the shelf-life of chicken breast fillets[J]. International Journal of Biological Macromolecules,2023,227:405-415. doi: 10.1016/j.ijbiomac.2022.12.183
    [19] D01.23. ASTM D1653-2003 (2008) Standard test method for water vapor permeability of organic coated films[S]. USA: American Society for Testing and Materials, 2003.
    [20] 中国国家标准化管理委员会(标准制定单位). 塑料 拉伸性能的测定: GB/T 1040.3—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of China (standard setting unit). Determination of tensile properties of plastics: GB/T 1040.3—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
    [21] TIAN B, WANG J, LIU Q, et al. Formation chitosan-based hydrogel film containing silicon for hops β-acids release as potential food packaging material[J]. International Journal of Biological Macromolecules,2021,191:288-298. doi: 10.1016/j.ijbiomac.2021.09.086
    [22] SONG J, LI D, LIU C, et al. Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity[J]. Innovative Food Science & Emerging Technologies,2011,12(3):282-287.
    [23] 蓝鸿雁. 茶多酚缓释抗氧化膜的制备及其缓释性能研究[D]. 南宁: 广西大学, 2017.

    LAN H Y. Study on preparation and sustained release performance of tea polyphenol antioxidant film [D]. Nanning: Guangxi University, 2017(in Chinese).
    [24] BIAO Y, YUXUAN C, QI T, et al. Enhanced performance and functionality of active edible films by incorporating tea polyphenols into thin calcium alginate hydrogels[J]. Food Hydrocolloids,2019,97:105197. doi: 10.1016/j.foodhyd.2019.105197
    [25] 蔡月, 王梦军, 年琳玉, 等. 茶多酚@沸石咪唑酯骨架材料/壳聚糖/海藻酸钠活性包装膜的制备及表征[J]. 食品科学, 2022, 43(17):272-281. doi: 10.7506/spkx1002-6630-20220217-123

    CAI Y, WANG M J, NIAN L Y, et al. Preparation and characterization of tea polyphenol@zeolite imidazolate ester framework-8/chitosan/sodium alginate active packaging film[J]. FOOD SCIENCE,2022,43(17):272-281(in Chinese). doi: 10.7506/spkx1002-6630-20220217-123
    [26] DOUSTDAR F, OLAD A, GHORBANI M. Effect of glutaraldehyde and calcium chloride as different crosslinking agents on the characteristics of chitosan/cellulose nanocrystals scaffold[J]. International Journal of Biological Macromolecules,2022,208:912-924. doi: 10.1016/j.ijbiomac.2022.03.193
    [27] 梁杰, 赵晓旭, 刘涛, 等. 茶多酚-壳聚糖复合膜的制备及保鲜效果研究[J]. 热带作物学报, 2022, 43(6):1267-1279. doi: 10.3969/j.issn.1000-2561.2022.06.020

    LIANG J, ZHAO X X, LIU T, et al. Preparation and fresh-keeping effect of tea polyphenol-chitosan composite film[J]. Chinese Journal of Tropical Crops,2022,43(6):1267-1279(in Chinese). doi: 10.3969/j.issn.1000-2561.2022.06.020
    [28] 缪志锟. 基于多孔淀粉的活性包装膜的制备与性能研究[D]. 泰安: 山东农业大学, 2022.

    MIAO Z K. Study on preparation and properties of active packaging films based on porous starch [D]. Tai’an: Shandong Agricultural University, 2022(in Chinese).
    [29] 霍若冰, 李洋, 徐曈晖, 等. 鱼腥草提取液-壳聚糖抗菌复合膜对低温贮藏蓝莓的保鲜作用[J]. 现代食品科技, 2022, 38(8):153-162. doi: 10.13982/j.mfst.1673-9078.2022.8.1057

    HUO R B, LI Y, XU T H, et al. The fresh-keeping effect of antibacterial houttuynia cordata extract-chitosan antibacterial composite film on blueberries stored at a low-temperature[J]. Modern Food Science and Technology,2022,38(8):153-162(in Chinese). doi: 10.13982/j.mfst.1673-9078.2022.8.1057
    [30] LEI Y, WU H, JIAO C, et al. Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol[J]. Food Hydrocolloids,2019,94:128-135. doi: 10.1016/j.foodhyd.2019.03.011
    [31] 郑燕, 王笑, 代楚涓, 等. 壳聚糖/羧甲基纤维素/茶多酚抗氧化复合膜的制备及性能研究[J]. 塑料工业, 2021, 49(S1):59-65. doi: 10.3969/j.issn.1005-5770.2021.Z1.011

    ZHENG Y, WANG X, DAI C J, et al. Preparation and properties of chitosan/carboxymethylcellulose/tea polyphenol antioxidant composite Membrane[J]. China Plastics Industry,2021,49(S1):59-65(in Chinese). doi: 10.3969/j.issn.1005-5770.2021.Z1.011
    [32] RAZA M A, GULL N, LEE S-W, et al. Development of stimuli-responsive chitosan based hydrogels with anticancer efficacy, enhanced antibacterial characteristics, and applications for controlled release of benzocaine[J]. Journal of Industrial and Engineering Chemistry,2022,109:210-220. doi: 10.1016/j.jiec.2022.02.004
  • 加载中
计量
  • 文章访问数:  61
  • HTML全文浏览量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-04-07
  • 录用日期:  2023-04-08
  • 网络出版日期:  2023-04-19

目录

    /

    返回文章
    返回