留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负载茶多酚的壳聚糖-聚乙烯吡咯烷酮水凝胶膜的表征及其pH响应释放

崔琢玉 李洋 冯鑫 胡泽茜

崔琢玉, 李洋, 冯鑫, 等. 负载茶多酚的壳聚糖-聚乙烯吡咯烷酮水凝胶膜的表征及其pH响应释放[J]. 复合材料学报, 2024, 41(1): 240-249. doi: 10.13801/j.cnki.fhclxb.20230417.002
引用本文: 崔琢玉, 李洋, 冯鑫, 等. 负载茶多酚的壳聚糖-聚乙烯吡咯烷酮水凝胶膜的表征及其pH响应释放[J]. 复合材料学报, 2024, 41(1): 240-249. doi: 10.13801/j.cnki.fhclxb.20230417.002
CUI Zhuoyu, LI Yang, FENG Xin, et al. Characterization and pH-response release of chitosan-polyvinylpyrrolidone hydrogel films loaded with tea polyphenols[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 240-249. doi: 10.13801/j.cnki.fhclxb.20230417.002
Citation: CUI Zhuoyu, LI Yang, FENG Xin, et al. Characterization and pH-response release of chitosan-polyvinylpyrrolidone hydrogel films loaded with tea polyphenols[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 240-249. doi: 10.13801/j.cnki.fhclxb.20230417.002

负载茶多酚的壳聚糖-聚乙烯吡咯烷酮水凝胶膜的表征及其pH响应释放

doi: 10.13801/j.cnki.fhclxb.20230417.002
基金项目: 黑龙江省自然科学基金 (LH2021C016)
详细信息
    通讯作者:

    李洋,博士,副教授,硕士生导师,研究方向为冷链物流及包装材料 E-mail: 378918917@qq.com

  • 中图分类号: TB332

Characterization and pH-response release of chitosan-polyvinylpyrrolidone hydrogel films loaded with tea polyphenols

Funds: National Natural Science Foundation of Heilongjiang Province (LH2021C016)
  • 摘要: 为提高活性物质的利用率,选取壳聚糖、聚乙烯吡咯烷酮作为基材,以甘油为增塑剂、戊二醛为交联剂、茶多酚为抗氧化剂制备了具有pH响应的负载茶多酚的壳聚糖-聚乙烯吡咯烷酮水凝胶膜。通过SEM、FTIR表征薄膜的微观结构,测试了薄膜的水蒸气透过率、力学性能、溶胀度、凝胶含量及抗氧化能力,进而通过测定不同pH值环境下水凝胶膜中茶多酚的释放速率,探究其pH响应性,构建动力学模型确定茶多酚的释放规律。结果表明:交联剂与壳聚糖之间的相互作用形成了稳定的水凝胶结构,而茶多酚的加入使各组分之间的交联强度进一步提高,结构更加稳定;交联剂和茶多酚的加入在整体上改善了薄膜的理化性质,水凝胶膜水蒸气透过率为(0.159±0.010) g·mm/(m2·h·kPa)、抗拉强度为(40.58±2.11) MPa、断裂伸长率为62.32%±3.50%、溶胀平衡时的溶胀度为346.27%±3.16%、凝胶含量为87.94%±0.50%,抗氧化活性相对于传统薄膜提高了近5倍;负载茶多酚的水凝胶膜能够对pH变化有效响应,当pH值越小,茶多酚的累积释放率越大,相对于Higuchi、Ritger-Peppas模型,茶多酚的释放规律与一级动力学模型相吻合。负载茶多酚的壳聚糖-聚乙烯吡咯烷酮水凝胶膜能够有效实现茶多酚等活性物质的pH响应释放,有潜力应用于食品包装领域。

     

  • 图  1  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜的制备流程

    Figure  1.  Preparation process of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    CS—Chitosan; PVP—Polyvinylpyrrolidone; GL—Glutaraldehyde; TP—Tea polyphenol; GC—Glycerinum

    图  2  CS-PVP薄膜(a)、CS-PVP-GL薄膜(b)、CS-PVP-GL-TP薄膜(c)的SEM图像

    Figure  2.  SEM images of CS-PVP film (a), CS-PVP-GL film (b) and CS-PVP-GL-TP film (c)

    图  3  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜FTIR图谱

    Figure  3.  FTIR spectra of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    图  4  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜的水蒸气透过率

    Figure  4.  Water vapor permeability of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    a, b, c—Significant difference (p<0.05)

    图  5  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜的抗拉强度和断裂伸长率

    Figure  5.  Tensile strength and elongation at break of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    图  6  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜的溶胀度

    Figure  6.  Swelling ratio of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    图  7  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜的凝胶含量

    Figure  7.  Gel content of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    图  8  CS-PVP薄膜、CS-PVP-GL薄膜、CS-PVP-GL-TP薄膜的1, 1-二苯基-2-三硝基苯肼 (DPPH) 自由基清除率

    Figure  8.  1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging of CS-PVP film, CS-PVP-GL film and CS-PVP-GL-TP film

    图  9  TP的标准曲线

    Figure  9.  Standard curve of TP

    图  10  不同pH值条件下CS-PVP-GL-TP薄膜中TP的累积释放速率

    Figure  10.  Cumulative release rate of TP in CS-PVP-GL-TP film at different pH values

    图  11  不同pH值条件下CS-PVP-GL-TP薄膜中TP的释放动力学曲线

    Figure  11.  TP release kinetic curves of CS-PVP-GL-TP film at different pH values

    表  1  不同pH值条件下CS-PVP-GL-TP薄膜中TP的释放动力学拟合方程

    Table  1.   Release kinetic fitting equations of TP in CS-PVP-GL-TP film at different pH values

    The fitted equationpH valueThe expression of the fitR2
    First-order kinetic equation3$ {M}_{t}=82.78289\left(1-{\mathrm{e}}^{-0.17951 t}\right) $0.99338
    4$ {M}_{t}=75.18297\left(1-{\mathrm{e}}^{-0.16145 t}\right) $0.99619
    5$ {M}_{t}=58.97272\left(1-{\mathrm{e}}^{-0.12216 t}\right) $0.98828
    6$ {M}_{t}=51.00868\left(1-{\mathrm{e}}^{-0.09799 t}\right) $0.99636
    Higuchi equation3$ {M}_{t}=17.06298{t}^{1/2}+7.7254 $0.94187
    4$ {M}_{t}=15.65142{t}^{1/2}+4.82808 $0.95413
    5$ {M}_{t}=12.11531{t}^{1/2}+0.47913 $0.96950
    6$ {M}_{t}=10.18583{t}^{1/2}- $1.666370.98314
    Ritger-Peppas
    equation
    3$ {M}_{t}=27.76727{t}^{0.362} $0.96908
    4$ {M}_{t}=22.52151{t}^{0.39476} $0.96985
    5$ {M}_{t}=13.24582{t}^{0.47103} $0.97085
    6$ {M}_{t}=8.74408{t}^{0.53971} $0.98314
    Notes: Mt—Cumulative release rate of t; t—Release time; R2—Coefficient of determination.
    下载: 导出CSV
  • [1] ZHAO Y, ZHOU S, XIA X, et al. High-performance carboxymethyl cellulose-based hydrogel film for food packaging and preservation system[J]. International Journal of Biological Macromolecules,2022,223:1126-1137. doi: 10.1016/j.ijbiomac.2022.11.102
    [2] 陈旭, 王硕, 汤相宇, 等. 纤维素甲基丙烯酸酯水凝胶的制备及重金属离子吸附性能研究[J]. 森林工程, 2023, 39(1):82-91. doi: 10.3969/j.issn.1006-8023.2023.01.010

    CHEN Xu, WANG Shuo, TANG Xiangyu, et al. Study on preparation of cellulose methacrylate hydrogel and their adsorption performance of heavy metal ions[J]. Forest Engineering,2023,39(1):82-91(in Chinese). doi: 10.3969/j.issn.1006-8023.2023.01.010
    [3] NEZAMDOOST-SANI N, KHALEDABAD M A, AMIRI S, et al. Alginate and derivatives hydrogels in encapsulation of probiotic bacteria: An updated review[J]. Food Bioscience,2023,52:102433. doi: 10.1016/j.fbio.2023.102433
    [4] BATISTA R A, ESPITIA P J P, QUINTANS J D S S, et al. Hydrogel as an alternative structure for food packaging systems[J]. Carbohydrate Polymers,2019,205:106-116. doi: 10.1016/j.carbpol.2018.10.006
    [5] MOJALLY M, SHARMIN E, OBAID N A, et al. Polyvinyl alcohol/corn starch/castor oil hydrogel films, loaded with silver nanoparticles biosynthesized in Mentha piperita leaves' extract[J]. Journal of King Saud University—Science,2022,34(4):101879. doi: 10.1016/j.jksus.2022.101879
    [6] 刘玉鹏, 况培培, 陈莹, 等. 生物质基刺激响应型水凝胶研究进展[J]. 林产化学与工业, 2022, 42(3):126-134. doi: 10.3969/j.issn.0253-2417.2022.03.017

    LIU Yupeng, KUANG Peipei, CHEN Ying, et al. Research progress on biomass-based stimulus-responsive hydrogels[J]. Chemistry and Industry of Forest Products,2022,42(3):126-134(in Chinese). doi: 10.3969/j.issn.0253-2417.2022.03.017
    [7] CONSTANTIN M, BUCATARIU S M, DOROFTEI F, et al. Smart composite materials based on chitosan microspheres embedded in thermosensitive hydrogel for controlled delivery of drugs[J]. Carbohydrate Polymers,2017,157:493-502. doi: 10.1016/j.carbpol.2016.10.022
    [8] SHAGHALEH H, ALHAJ HAMOUD Y, XU X, et al. A pH-responsive/sustained release nitrogen fertilizer hydrogel based on aminated cellulose nanofiber/cationic copolymer for application in irrigated neutral soils[J]. Journal of Cleaner Production,2022,368:133098. doi: 10.1016/j.jclepro.2022.133098
    [9] LEYVA-JIMÉNEZ F J, OLIVER-SIMANCAS R, CASTANGIA I, et al. Comprehensive review of natural based hydrogels as an upcoming trend for food packing[J]. Food Hydrocolloids,2023,135:108124. doi: 10.1016/j.foodhyd.2022.108124
    [10] MAROUFI L Y, TABIBIAZAR M, GHORBANI M, et al. Fabrication and characterization of novel antibacterial chitosan/dialdehyde guar gum hydrogels containing pomegranate peel extract for active food packaging application[J]. International Journal of Biological Macromolecules,2021,187:179-188. doi: 10.1016/j.ijbiomac.2021.07.126
    [11] XIONG S, LI R, YE S, et al. Vanillin enhances the antibacterial and antioxidant properties of polyvinyl alcohol-chitosan hydrogel dressings[J]. International Journal of Biological Macromolecules,2022,220:109-116. doi: 10.1016/j.ijbiomac.2022.08.052
    [12] JIANG K, ZHOU X, HE T. The synthesis of bacterial cellulose-chitosan zwitterionic hydrogels with pH responsiveness for drug release mechanism of the naproxen[J]. International Journal of Biological Macromolecules,2022,209:814-824. doi: 10.1016/j.ijbiomac.2022.03.216
    [13] 都津铭, 张萍, 高德. 丁香精油与茶多酚复合抗菌液的抑菌活性协同作用及抗氧化活性[J]. 现代食品科技, 2021, 37(10):87-95. doi: 10.13982/j.mfst.1673-9078.2021.10.0098

    DU Jinming, ZHANG Ping, GAO De. Synergistic antibacterial effect and antioxidant activity of the compound liquid with clove essential oil and tea polyphenol[J]. Modern Food Science and Technology,2021,37(10):87-95(in Chinese). doi: 10.13982/j.mfst.1673-9078.2021.10.0098
    [14] WU Y, LI C. A smart film incorporating anthocyanins and tea polyphenols into sodium carboxymethyl cellulose/polyvinyl alcohol for application in mirror carp[J]. International Journal of Biological Macromolecules,2022,223:404-417. doi: 10.1016/j.ijbiomac.2022.10.282
    [15] HAMEED T A, MOHAMED F, TURKY G, et al. Carboxymethylcellulose/polyvinylpyrrolidone filled with Al-doped ZnO nanoparticles as a promising film for optoelectronic applications[J]. Optical Materials,2022,134:113097. doi: 10.1016/j.optmat.2022.113097
    [16] ZHOU X, LIU X, LIAO W, et al. Chitosan/bacterial cellulose films incorporated with tea polyphenol nanoliposomes for silver carp preservation[J]. Carbohydrate Polymers,2022,297:120048. doi: 10.1016/j.carbpol.2022.120048
    [17] BANDYOPADHYAY S, SAHA N, BRODNJAK U V, et al. Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: Characterized for packaging fresh berries[J]. Food Packaging and Shelf Life,2019,22:100402. doi: 10.1016/j.fpsl.2019.100402
    [18] MIRSHARIFI S M, SAMI M, JAZAERI M, et al. Production, characterization, and antimicrobial activity of almond gum/polyvinyl alcohol/chitosan composite films containing thyme essential oil nanoemulsion for extending the shelf-life of chicken breast fillets[J]. International Journal of Biological Macromolecules,2023,227:405-415. doi: 10.1016/j.ijbiomac.2022.12.183
    [19] ASTM. Standard test method for water vapor permeability of organic coated films: ASTM D1653—2003[S]. West Conshohocken: ASTM, 2003.
    [20] 中华人民共和国国家质量监督检验检疫总局. 塑料 拉伸性能的测定: GB/T 1040.3—2006[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Determination of tensile properties of plastics: GB/T 1040.3—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
    [21] TIAN B, WANG J, LIU Q, et al. Formation chitosan-based hydrogel film containing silicon for hops β-acids release as potential food packaging material[J]. International Jour-nal of Biological Macromolecules,2021,191:288-298. doi: 10.1016/j.ijbiomac.2021.09.086
    [22] SONG J, LI D, LIU C, et al. Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity[J]. Innovative Food Science & Emerging Technologies,2011,12(3):282-287.
    [23] 蓝鸿雁. 茶多酚缓释抗氧化膜的制备及其缓释性能研究[D]. 南宁: 广西大学, 2017.

    LAN Hongyan. Study on preparation and sustained release performance of tea polyphenol antioxidant film[D]. Nanning: Guangxi University, 2017(in Chinese).
    [24] BIAO Y, CAO Y X, QI T, et al. Enhanced performance and functionality of active edible films by incorporating tea polyphenols into thin calcium alginate hydrogels[J]. Food Hydrocolloids,2019,97:105197. doi: 10.1016/j.foodhyd.2019.105197
    [25] 蔡月, 王梦军, 年琳玉, 等. 茶多酚@沸石咪唑酯骨架材料/壳聚糖/海藻酸钠活性包装膜的制备及表征[J]. 食品科学, 2022, 43(17):272-281. doi: 10.7506/spkx1002-6630-20220217-123

    CAI Yue, WANG Mengjun, NIAN Linyu, et al. Preparation and characterization of tea polyphenol@zeolite imidazolate ester framework-8/chitosan/sodium alginate active packaging film[J]. Food Science,2022,43(17):272-281(in Chinese). doi: 10.7506/spkx1002-6630-20220217-123
    [26] DOUSTDAR F, OLAD A, GHORBANI M. Effect of glutaraldehyde and calcium chloride as different crosslinking agents on the characteristics of chitosan/cellulose nanocrystals scaffold[J]. International Journal of Biological Macromolecules,2022,208:912-924. doi: 10.1016/j.ijbiomac.2022.03.193
    [27] 梁杰, 赵晓旭, 刘涛, 等. 茶多酚-壳聚糖复合膜的制备及保鲜效果研究[J]. 热带作物学报, 2022, 43(6):1267-1279. doi: 10.3969/j.issn.1000-2561.2022.06.020

    LIANG Jie, ZHAO Xiaoxu, LIU Tao, et al. Preparation and fresh-keeping effect of tea polyphenol-chitosan composite film[J]. Chinese Journal of Tropical Crops,2022,43(6):1267-1279(in Chinese). doi: 10.3969/j.issn.1000-2561.2022.06.020
    [28] 缪志锟. 基于多孔淀粉的活性包装膜的制备与性能研究[D]. 泰安: 山东农业大学, 2022.

    MIAO Zhikun. Study on preparation and properties of active packaging films based on porous starch[D]. Tai'an: Shandong Agricultural University, 2022(in Chinese).
    [29] 霍若冰, 李洋, 徐曈晖, 等. 鱼腥草提取液-壳聚糖抗菌复合膜对低温贮藏蓝莓的保鲜作用[J]. 现代食品科技, 2022, 38(8):153-162. doi: 10.13982/j.mfst.1673-9078.2022.8.1057

    HUO Ruobing, LI Yang, XU Tonghui, et al. The fresh-keeping effect of antibacterial houttuynia cordata extract-chitosan antibacterial composite film on blueberries stored at a low-temperature[J]. Modern Food Science and Technology,2022,38(8):153-162(in Chinese). doi: 10.13982/j.mfst.1673-9078.2022.8.1057
    [30] LEI Y, WU H, JIAO C, et al. Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol[J]. Food Hydrocolloids,2019,94:128-135. doi: 10.1016/j.foodhyd.2019.03.011
    [31] 郑燕, 王笑, 代楚涓, 等. 壳聚糖/羧甲基纤维素/茶多酚抗氧化复合膜的制备及性能研究[J]. 塑料工业, 2021, 49(S1):59-65. doi: 10.3969/j.issn.1005-5770.2021.Z1.011

    ZHENG Yan, WANG Xiao, DAI Chujuan, et al. Preparation and properties of chitosan/carboxymethylcellulose/tea polyphenol antioxidant composite membrane[J]. China Plastics Industry,2021,49(S1):59-65(in Chinese). doi: 10.3969/j.issn.1005-5770.2021.Z1.011
    [32] RAZA M A, GULL N, LEE S W, et al. Development of stimuli-responsive chitosan based hydrogels with anticancer efficacy, enhanced antibacterial characteristics, and applications for controlled release of benzocaine[J]. Journal of Industrial and Engineering Chemistry,2022,109:210-220. doi: 10.1016/j.jiec.2022.02.004
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  596
  • HTML全文浏览量:  266
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-04-07
  • 录用日期:  2023-04-08
  • 网络出版日期:  2023-04-17
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回