Research progress in reinforcement design and analysis of composite bolted joints
-
摘要:
目的 对现有的复合材料螺栓连接增强设计方法进行归类及详细总结,并对增强效果的评估方法进行分析,提出存在的问题以及未来的发展方向。: 结论 现有复合材料螺栓连接的增强设计可不同程度地提高螺栓连接的破坏强度,但部分增强设计改变了螺栓连接的失效模式,即将失效模式由挤压失效变为工程应用中希望避免的拉伸或剪切失效。大部分增强设计会导致螺栓连接的设计构型改变、重量增加。在评价增强设计对螺栓连接强度的提升效果时,应以比强度为指标。通过添加纳米材料进行局部增强设计可避免增强设计对螺栓连接的设计构型的改变。现有增强设计仅考虑了对螺栓连接静强度的提升,而对螺栓连接疲劳强度的影响也值得重点关注。 Abstract: Bolted joint is the weak link of composite structures, and determines the load-carrying capacity of the entire structures. The reinforcement design of composite bolted joints can significantly improve the application efficiency of composites. For this reason, researchers at home and abroad have developed design methods for the overall or local improvement of composite bolted joints, and evaluated the strengthening effects of these methods by using experimental and numerical simulation methods. Some of the reinforcement design methods have been applied in the design of advanced aerospace vehicles abroad. In this paper, the existing reinforcement design methods of composite bolted joints are classified and summarized in detail, and the evaluation methods for the strengthening effect are analyzed. Finally, the existing problems are summarized, and the future development direction is proposed.-
Key words:
- composite /
- bolted joint /
- load-carrying efficiency /
- strength /
- improvement design /
- evaluation method
-
图 11 外部添加玻璃纤维增强聚合物(GFRP)薄层对GF/聚对苯二甲酸乙二醇酯(PET)复合材料螺栓连接的增强效果
Figure 11. Strengthening effects of outer glass fiber reinforced polymer (GFRP) foils on GF/polyethylene terephthalate (PET) composite bolted joints
CSM—Chopped strand mat, in which the short fibers are oriented in various undefined directions
图 19 防御孔位置和直径对不同宽径比w/D、端径比e/D的复合材料螺栓连接强度的影响 [45]
Figure 19. Influence of location and diameter of defense hole on the strength of composite bolted joints with different w/D and e/D values [45]
A—SDH=1.5D, dDH=0.625D; B—SDH=1.5D, dDH=0.75D; C—SDH=2.0D, dDH=0.625D; D—SDH=2.0D, dDH=0.75D; E—SDH=2.5D, dDH=0.625D; F—SDH=2.5D, dDH=0.75D; SDH—Distance from center of defense hole to center of bolt hole; dDH—Diameter of defense hole; D—Diameter of bolt hole; w/D—Ratio of width to hole diameter of laminate; e/D—Ratio of end distance to hole diameter of laminate
-
[1] MCCARTHY M. BOJCAS: Bolted joints in composite aircraft structures[J]. Air & Space Europe,2001,3(3-4):139-142. doi: 10.1016/S1290-0958(01)90077-2 [2] ATAS A, SOUTIS C. Damage and failure analysis of bolted joints in composite laminates[M]. Heidelberg: Springer, 2017: 591-644. [3] SHISHESAZ M, HOSSEINI M. A review on stress distribution, strength and failure of bolted composite joints[J]. Journal of Computational Applied Mechanics,2018,49(2):415-429. [4] BELARDI V G, FANELLI P, VIVIO F. Analysis of multi-bolt composite joints with a user-defined finite element for the evaluation of load distribution and secondary bending[J]. Composites Part B: Engineering,2021,227:109378. doi: 10.1016/j.compositesb.2021.109378 [5] WANG J, QIN T, MEKALA N R, et al. Three-dimensional progressive damage and failure analysis of double-lap composite bolted joints under quasi-static tensile loading[J]. Composite Structures,2022,285:115227. doi: 10.1016/j.compstruct.2022.115227 [6] FINK A. Local metal hybridization of composite bolted joints[M]. Heidelberg: Springer, 2013: 251-262. [7] MANGALGIRI P D. Design allowable considerations for use of laminated composites in aircraft structures[J]. Journal of the Indian Institute of Science,2013,93(4):571-592. [8] XIAO Y, ISHIKAWA T. Bearing strength and failure behavior of bolted composite joints (Part I: Experimental investigation)[J]. Composites Science and Technology,2005,65(7-8):1022-1031. doi: 10.1016/j.compscitech.2005.02.011 [9] GALIŃSKA A. Mechanical joining of fibre reinforced polymer composites to metals—A review. Part I: Bolted joining[J]. Polymers,2020,12(10):2252. doi: 10.3390/polym12102252 [10] WU P S, SUN C T. Modeling bearing failure initiation in pin-contact of composite laminates[J]. Mechanics of Materials,1998,29(3-4):325-335. doi: 10.1016/S0167-6636(98)00019-2 [11] LIU F, YAO W, SHI X, et al. Bearing failure optimization of composite double-lap bolted joints based on a three-step strategy marked by feasible region reduction and model decoupling[J]. Computers, Materials & Continua,2020,62(2):977-999. [12] CAO Y, ZUO D, ZHAO Y, et al. Experimental investigation on bearing behavior and failure mechanism of double-lap thin-ply composite bolted joints[J]. Composite Structures,2021,261:113565. doi: 10.1016/j.compstruct.2021.113565 [13] NILSSON S. Increasing strength of graphite/epoxy bolted joints by introducing an adhesively bonded metallic insert[J]. Journal of Composite Materials,1989,23(7):642-650. doi: 10.1177/002199838902300701 [14] CAMANHO P P, TAVARES C M L, DE OLIVEIRA R, et al. Increasing the efficiency of composite single-shear lap joints using bonded inserts[J]. Composites Part B: Engineering,2005,36(5):372-383. doi: 10.1016/j.compositesb.2005.01.007 [15] 邢立峰, 曹安港, 毕凤阳, 等. 纤维增强复合材料螺栓连接性能试验研究[J]. 舰船科学技术, 2018, 40(3):102-105. doi: 10.3404/j.issn.1672-7649.2018.03.018XING Lifeng, CAO Angang, BI Fengyang, et al. An experimental study on bolt joint performance of fiber reinforced composite materials[J]. Ship Science and Technology,2018,40(3):102-105(in Chinese). doi: 10.3404/j.issn.1672-7649.2018.03.018 [16] AKBARPOUR S, HALLSTRÖM S. Reinforcement around holes in composite materials by use of patched metal inserts[J]. Composite Structures,2019,225:111084. doi: 10.1016/j.compstruct.2019.111084 [17] AKBARPOUR S, HALLSTRÖM S. Strength improvement of bolted joints in composite materials by use of patched metal inserts[J]. Composite Structures,2020,252:112628. doi: 10.1016/j.compstruct.2020.112628 [18] AKBARPOUR S, HALLSTRÖM S. Enhancing the performance of bolted joints in composites by use of patched steel or titanium inserts[J]. Composite Structures,2021,275:114464. doi: 10.1016/j.compstruct.2021.114464 [19] AKBARPOUR S. Enhanced composite joint performance through interlacement of metal inserts[D]. Stockholm: KTH Royal Institute of Technology, 2021. [20] XU G, ZHANG K, CHENG H, et al. An experimental study on mechanical behavior and failure mechanism of sleeved fasteners and conventional bolt for composite interference-fit joints[J]. Thin-Walled Structures,2022,170:108537. doi: 10.1016/j.tws.2021.108537 [21] MARA V, HAGHANI R, AL-EMRANI M. Improving the performance of bolted joints in composite structures using metal inserts[J]. Journal of Composite Materials,2016,50(21):3001-3018. doi: 10.1177/0021998315615204 [22] 王国杰. 长玻纤增强聚氨酯反应注射成型复合材料螺栓连接性能研究[D]. 南京: 南京理工大学, 2013.WANG Guojie. Performance investigations on long fiber reinforced polyurethane reaction injection molding composite bolted joints[D]. Nanjing: Nanjing University of Science and Technology, 2013(in Chinese). [23] RISPLER A R, STEVEN G P, TONG L. Photoelastic evaluation of metallic inserts of optimised shape[J]. Composites Science and Technology,2000,60(1):95-106. doi: 10.1016/S0266-3538(99)00107-4 [24] 章继峰, 谢永刚, 张璐. 接头局部增强的复合材料层合板螺栓连接试验与数值模拟[J]. 复合材料学报, 2013, 30(6):191-196. doi: 10.3969/j.issn.1000-3851.2013.06.028ZHANG Jifeng, XIE Yonggang, ZHANG Lu. Experimental and numerical simulation of composite laminates bolted joints with local reinforcement[J]. Acta Materiae Compositae Sinica,2013,30(6):191-196(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.06.028 [25] VIET N P, YORESTA F S, KITANE Y, et al. Improving the shear strength of bolted connections in pultruded GFRP using glass fiber sheets[J]. Composite Structures,2021,255:112896. doi: 10.1016/j.compstruct.2020.112896 [26] MUC A, ULATOWSKA A. Local fibre reinforcement of holes in composite multilayered plates[J]. Composite Structures,2012,94(4):1413-1419. doi: 10.1016/j.compstruct.2011.11.017 [27] KOLESNIKOV B, HERBECK L, FINK A. CFRP/titanium hybrid material for improving composite bolted joints[J]. Composite Structures,2008,83(4):368-380. doi: 10.1016/j.compstruct.2007.05.010 [28] FINK A, CAMANHO P P. Reinforcement of composite bolted joints by means of local metal hybridization[M]. Cambridge: Woodhead, 2011: 3-34. [29] CAMANHO P P, FINK A, OBST A, et al. Hybrid titanium-CFRP laminates for high-performance bolted joints[J]. Composites Part A: Applied Science and Manufacturing,2009,40(12):1826-1837. doi: 10.1016/j.compositesa.2009.02.010 [30] FINK A, CAMANHO P P, ANDRÉS J M, et al. Hybrid CFRP/titanium bolted joints: Performance assessment and application to a spacecraft payload adaptor[J]. Composites Science and Technology,2010,70(2):305-317. doi: 10.1016/j.compscitech.2009.11.002 [31] KOLKS G, TSERPES K I. Efficient progressive damage modeling of hybrid composite/titanium bolted joints[J]. Composites Part A: Applied Science and Manufacturing,2014,56:51-63. doi: 10.1016/j.compositesa.2013.09.011 [32] FINK A, SOPHABMIXAY S, DUMARS W. Development of an improved surface preparation for titanium bonding and titanium graphite laminates for aircraft and space vehicle applications[C]. AIRTEC 5th International Conference. Frankfurt, 2010: 1-8. [33] BREWER J S, PALAZOTTO A N, FEIE J, et al. Bearing response characterization in bolted hybrid composite joints[C]. AIAA Scitech 2020 Forum. Orlando, 2020: 1928. [34] ALI A, PAN L, DUAN L, et al. Characterization of seawater hygrothermal conditioning effects on the properties of titanium-based fiber-metal laminates for marine applications[J]. Composite Structures,2016,158:199-207. doi: 10.1016/j.compstruct.2016.09.037 [35] LI R, KELLY D, CROSKY A. Strength improvement by fibre steering around a pin loaded hole[J]. Composite Structures,2002,57(1-4):377-383. doi: 10.1016/S0263-8223(02)00105-8 [36] LI R, KELLY D, CROSKY A, et al. Improving the efficiency of fiber steered composite joints using load path trajectories[J]. Journal of Composite Materials,2006,40(18):1645-1658. doi: 10.1177/0021998306060168 [37] LEGRAND X, CROSKY A, KELLY D, et al. Optimisation of fibre steering in composite laminates using a genetic algorithm[J]. Composite Structures,2006,75:524-531. doi: 10.1016/j.compstruct.2006.04.067 [38] BARDY J, LEGRAND X, CROSKY A. Configuration of a genetic algorithm used to optimise fibre steering in composite laminates[J]. Composite Structures,2012,94(6):2048-2056. doi: 10.1016/j.compstruct.2011.12.019 [39] CROSKY A, KELLY D, LI R, et al. Improvement of bearing strength of laminated composites[J]. Composite Structures,2006,76(3):260-271. doi: 10.1016/j.compstruct.2006.06.036 [40] HUONG T P N. Improvement of bearing strength of laminated composites by nanoclay and z-pin reinforcement[D]. Sydney: University of New South Wales, 2006. [41] LI R, HUONG N, CROSKY A, et al. Improving bearing performance of composite bolted joints using z-pins[J]. Composites Science and Technology,2009,69(7-8):883-889. doi: 10.1016/j.compscitech.2008.12.005 [42] MOURITZ A P. Review of z-pinned composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2007,38(12):2383-2397. doi: 10.1016/j.compositesa.2007.08.016 [43] SCHORNSTEIN B, STASCHKO R, FUCHS N, et al. Manufacturing principles for z-pin reinforced FRP composite laminates in the case of bolted joints[J]. Lightweight Design Worldwide,2017,10(3):28-33. doi: 10.1007/s41777-017-0025-1 [44] AKOUR S N, AL-HUSBAN M. Design and optimization of defense hole system for biaxial-loaded composite laminates[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2017, 231(3): 272-284. [45] OTHMAN A R, JADEE K J, ISMADI M Z. Mitigating stress concentration through defense hole system for improvement in bearing strength of composite bolted joint, Part I: Numerical analysis[J]. Journal of Composite Materials,2017,51(26):3685-3699. doi: 10.1177/0021998317692396 [46] WICKS S S, VILLORIA R G, WARDLE B L. Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes[J]. Composites Science and Technology,2010,70(1):20-28. doi: 10.1016/j.compscitech.2009.09.001 [47] TÜZEMEN M Ç, SALAMCI E, AVCI A. Enhancing mechanical properties of bolted carbon/epoxy nanocomposites with carbon nanotube, nanoclay, and hybrid loading[J]. Composites Part B: Engineering,2017,128:146-154. doi: 10.1016/j.compositesb.2017.07.001 [48] KUMAR M, SAINI J S, BHUNIA H. Investigations on the strength of mechanical joints prepared from carbon fiber laminates with addition of carbon nanotubes[J]. Journal of Mechanical Science and Technology,2020,34(3):1059-1070. doi: 10.1007/s12206-020-0208-2 [49] KUMAR M, SAINI J S, BHUNIA H, et al. Aging of bolted joints prepared from electron-beam-cured multiwalled carbon nanotube-based nanocomposites with variable torques[J]. Polymer Composites,2021,42:4082-4104. doi: 10.1002/pc.26119 [50] KUMAR M, SAINI J S, BHUNIA H. Investigations on MWCNT embedded carbon/epoxy composite joints subjected to hygrothermal aging under bolt preloads[J]. Fibers and Polymers,2021,22:1957-1975. doi: 10.1007/s12221-021-0834-z [51] KUMAR M, SAINI J S, BHUNIA H, et al. Behavior of mechanical joints prepared from EB cured CFRP nanocomposites subjected to hygrothermal aging under bolt preloads[J]. Applied Composite Materials,2021,28(2):271-296. doi: 10.1007/s10443-020-09864-w [52] GENEDY M, CHENNAREDDY R, SOLIMAN E M, et al. Improving shear strength of bolted joints in pultruded glass fiber reinforced polymer composites using carbon nanotubes[J]. Journal of Reinforced Plastics and Composites,2017,36(13):958-971. doi: 10.1177/0731684417697827 [53] ALUKO O. Effect of graphene on mechanical performance of pin-loaded circular hole in laminated composites[C]. ASME International Mechanical Engineering Congress and Exposition. Pittsburgh, 2018: 52149. [54] KAYBAL H B, ULUS H, ESKIZEYBEK V, et al. An experimental study on low velocity impact performance of bolted composite joints part 1: Influence of halloysite nanotubes on dynamic loading response[J]. Composite Structures,2021,258:113415. doi: 10.1016/j.compstruct.2020.113415 [55] KAYBAL H B, ULUS H, AVCI A. Seawater aged basalt/epoxy composites: Improved bearing performance with halloysite nanotube reinforcement[J]. Fibers and Polymers,2021,22(6):1643-1652. doi: 10.1007/s12221-021-0671-0 [56] HU J, ZHANG K, YANG Q, et al. An experimental study on mechanical response of single-lap bolted CFRP composite interference-fit joints[J]. Composite Structures,2018,196:76-88. doi: 10.1016/j.compstruct.2018.05.016 [57] LIU Y, LI M, LU X, et al. Pull-out performance and optimization of a novel Interference-fit rivet for composite joints[J]. Composite Structures,2021,269:114041. doi: 10.1016/j.compstruct.2021.114041 [58] HU J, ZHANG K, CHENG H, et al. An experimental investigation on interfacial behavior and preload response of composite bolted interference-fit joints under assembly and thermal conditions[J]. Aerospace Science and Technology,2020,103:105917. doi: 10.1016/j.ast.2020.105917 [59] UEDA M, UI N, OHTANI A. Lightweight and anti-corrosive fiber reinforced thermo-plastic rivet[J]. Composite Structures,2018,188:356-362. doi: 10.1016/j.compstruct.2018.01.040 [60] FORTIER V, BRUNEL J E, LEBEL L L. Fastening composite structures using braided thermoplastic composite rivets[J]. Journal of Composite Materials,2020,54(6):801-812. doi: 10.1177/0021998319867375 [61] ABSI C, ALSINANI N, LEBEL L L. Carbon fiber reinforced poly (ether ether ketone) rivets for fastening composite structures[J]. Composite Structures,2022,280:114877. doi: 10.1016/j.compstruct.2021.114877 [62] YAO C, QI Z, CHEN W, et al. Experimental study on CF/PEEK thermoplastic fastener: Effects of fastener matrix crystallinity and fibre content on the strength of single-lap joint[J]. Composites Part B: Engineering,2021,213:108737. doi: 10.1016/j.compositesb.2021.108737 [63] LI W, GUO S, GIANNOPOULOS I K, et al. 3D-printed thermoplastic composite fasteners for single lap joint reinforcement[J]. Composite Structures,2022,282:115085. doi: 10.1016/j.compstruct.2021.115085 [64] LI W, GUO S, LIU Y, et al. Structure health monitoring of composites joint reinforced by acoustic emission based smart composite fasteners[J]. Composites Communications,2022,33:101213. doi: 10.1016/j.coco.2022.101213 [65] SAJID Z, KARUPPANAN S, KEE K E, et al. Carbon/basalt hybrid composite bolted joint for improved bearing performance and cost efficiency[J]. Composite Structures,2021,275:114427. doi: 10.1016/j.compstruct.2021.114427 [66] SAJID Z, KARUPPANAN S, KEE K E, et al. Bearing performance improvement of single-lap, single-bolt basalt composite joints by locally strengthening the joint location using carbon fibre[J]. Thin-Walled Structures,2022,180:109873. doi: 10.1016/j.tws.2022.109873 [67] SHAMAEI-KASHANI A R, SHOKRIEH M M. An analytical approach to predict the mechanical behavior of single-lap single-bolt composite joints reinforced with carbon nanofibers[J]. Composite Structures,2019,215:116-126. doi: 10.1016/j.compstruct.2019.02.055 [68] 陈坤, 舒茂盛, 胡仁伟, 等. 带衬套沉头螺栓复合材料/金属接头拉伸性能[J]. 北京航空航天大学学报, 2019, 45(3):633-640. doi: 10.13700/j.bh.1001-5965.2018.0412CHEN Kun, SHU Maosheng, HU Renwei, et al. Tensile performance of countersunk bolted composite/metal joints with sleeve[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(3):633-640(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0412 [69] XU G, CHENG H, ZHANG K, et al. Modeling of damage behavior of carbon fiber reinforced plastic composites interference bolting with sleeve[J]. Materials & Design,2020,194:108904. [70] XU G, ZHANG K, CHENG H, et al. An efficient physically-based damage model for interface damage of composites sleeved interference joint and influence analysis of its interface friction[J]. Composite Structures,2021,275:114425. doi: 10.1016/j.compstruct.2021.114425 -