留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击荷载作用下仿生双正弦波纹点阵结构动态响应数值模拟研究

孔祥清 常雅慧 张宁 张明亮 张瑞祥 丁小轩

孔祥清, 常雅慧, 张宁, 等. 冲击荷载作用下仿生双正弦波纹点阵结构动态响应数值模拟研究[J]. 复合材料学报, 2024, 42(0): 1-20.
引用本文: 孔祥清, 常雅慧, 张宁, 等. 冲击荷载作用下仿生双正弦波纹点阵结构动态响应数值模拟研究[J]. 复合材料学报, 2024, 42(0): 1-20.
KONG Xiangqing, CHANG Yahui, ZHANG Ning, et al. Numerical investigation on dynamic response of bio-inspired bi-directional corrugated lattice structure under impact loading[J]. Acta Materiae Compositae Sinica.
Citation: KONG Xiangqing, CHANG Yahui, ZHANG Ning, et al. Numerical investigation on dynamic response of bio-inspired bi-directional corrugated lattice structure under impact loading[J]. Acta Materiae Compositae Sinica.

冲击荷载作用下仿生双正弦波纹点阵结构动态响应数值模拟研究

基金项目: 国家重点研发计划项目(2022YFA1403504);广东省基础与应用基础研究基金区域联合基金项目(2022A1515140003)
详细信息
    通讯作者:

    孔祥清,博士,教授,博士生导师,研究方向为仿生力学;复合结构力学性能及仿真 E-mail: xqkong@upc.edu.cn

  • 中图分类号: TU398.9

Numerical investigation on dynamic response of bio-inspired bi-directional corrugated lattice structure under impact loading

Funds: National Key Research and Development Project (2022YFA1403504); Regional Joint Fund Project of Basic and Applied Basic Research Foundation of Guangdong Province (2022A1515140003)
  • 摘要: 为了探究仿生双正弦波纹点阵结构(Bio-inspired bi-directional corrugated lattice structure,BBCLS)的抗冲击性能,采用ANSYS/LSDYNA有限元分析软件建立了其在冲击荷载作用下的有限元数值模型,并基于已有的试验结果与数值模拟结果进行了对比,验证了该模型的有效性。在此基础上,研究了不同冲击速度对BBCLS的应力分布、变形模式、承载能力以及能量吸收特性的影响,并与传统体心立方点阵结构(BCC)进行了对比。同时利用该数值模型进一步分析了振幅、波纹数和胞壁厚度等微结构几何参数对BBCLS抗冲击性能的影响。研究结果表明:BBCLS在冲击荷载作用下的承载能力、吸能总量及比能量均明显优于传统的BCC点阵结构。BBCLS的冲击动力学响应主要与冲击速度和微结构几何参数有关。在低速冲击时,BBCLS呈现整体变形模式;中高速冲击时,结构向局部变形模式转换。随着冲击速度的提高,增大振幅、波纹数、胞壁厚度均使结构在受到冲击载荷时应力分布均匀,有效增加了冲击端的平台应力。此外,微结构几何参数的改变对结构比吸能以及综合比吸能有显著影响。由于波纹数的增大,BBCLS的承载能力、刚度和吸能性均大幅度提高,当波纹数为8,冲击速度达到100 m/s,相比于波纹数为5,冲击速度为10 m/s比能量吸收提高201.36%。研究结果为研究仿生点阵结构的冲击变形失效和吸能效果提供了力学依据。

     

  • 图  1  仿生双正弦波纹点阵结构(BBCLS)示意图:(a)雀尾螳螂虾[25];(b)虾鳌[27];(c)抗冲击区域[27];(d)虾螯抗冲击区域微观结构[27];(e)BBCLS[32]

    Figure  1.  Schematic diagram of bio-inspired bi-directional corrugated lattice structure (BBCLS): (a) Odontodactylus scyllarus[25]; (b) Shrimp chela[27];(c) Impact zone[27]; (d) Macro-microstructure of shrimp chela[27]; (e) BBCLS[32]

    图  2  BBCLS有限元模型:(a)准静态压缩荷载下BBCLS计算模型;(b)BBCLS单层模型;(c)BBCLS胞元模型

    Figure  2.  BBCLS finite element model: (a) Computational model of BBCLS under quasi-static compression loading; (b) BBCLS single-layer model; (c) BBCLS single cell model

    图  3  BBCLS试验与模拟破坏形态对比图

    Figure  3.  Comparison between experimental and simulated failure state of BBCLS

    图  4  BBCLS的力-位移曲线试验与模拟结果对比

    Figure  4.  Comparison of experimental and simulated force-displacement curves of BBCLS

    图  5  不同冲击速度下的BBCLS在典型应变水平下的变形图

    Figure  5.  Deformation diagram of BBCLS under typical strain levels at different impact velocities

    图  6  不同冲击速度下的BBCLS在冲击端和固定端的名义应力-应变曲线

    Figure  6.  Nominal stress-strain curves on impact end and fixed of BBCLS under different impact velocities

    图  7  不同冲击速度下的BBCLS能量吸收效率

    Figure  7.  Energy absorption efficiency of BBCLS at different impact velocities

    图  8  不同冲击速度下的BBCLS平台应力及密实化应变

    Figure  8.  Plateau stress and densification strain curves of BBCLS at different impact velocities

    图  9  不同冲击速度下BBCLS的比吸能对比

    Figure  9.  Comparisons of ESEA of BBCLS at different impact velocities

    图  10  静态荷载与冲击荷载下BBCLS比吸能对比

    Figure  10.  Comparison of BBCLS ESEA under static load and dynamic load

    图  11  BCC有限元模型:(a) 冲击荷载作用下BCC计算模型;(b) BCC三维模型;(c) BCC胞元模型

    Figure  11.  BCC finite element model: (a) Computational model of BCC under impact load; (b) BCC three-dimensional model; (c) BCC single cell model

    图  12  两种点阵结构冲击过程

    Figure  12.  Impact process for two types of lattice structure

    图  13  两种点阵结构在冲击荷载下的力-位移曲线

    Figure  13.  Force-displacement curves of two lattice structure under impact loading

    图  14  两种点阵结构在冲击荷载下的能量吸收指标

    Figure  14.  Energy absorption indicators of two lattice structure under impact loading

    图  15  两种点阵结构的应力云图:(a) BCC;(b) BBCLS

    Figure  15.  Stress cloud of two lattice structure: (a) BCC; (b) BBCLS

    图  16  不同振幅下BBCLS固定端的名义应力-应变曲线

    Figure  16.  Nominal stress-strain curves on fixed end of BBCLS under different amplitudes

    图  19  不同振幅的BBCLS在0.6应变下的比吸能

    Figure  19.  ESEA at 0.6 strain of BBCLS under different amplitudes

    图  17  不同振幅下BBCLS冲击端的名义应力-应变曲线

    Figure  17.  Nominal stress-strain curves on impact end of BBCLS under different amplitudes

    图  18  不同振幅的BBCLS比吸能对比

    Figure  18.  Comparisons of ESEA of BBCLS under different amplitudes

    图  20  不同波纹数下BBCLS在固定端的名义应力-应变曲线

    Figure  20.  Nominal stress-strain curves on fixed end of BBCLS under different wave number

    图  23  不同波纹数的BBCLS在0.6应变下的比吸能

    Figure  23.  ESEA at 0.6 strain of BBCLS under different wave number

    图  21  不同波纹数下BBCLS在冲击端的名义应力-应变曲线

    Figure  21.  Nominal stress-strain curves on impact end of BBCLS under different wave number

    图  22  不同波纹数的BBCLS比吸能对比

    Figure  22.  Comparisons of ESEA of BBCLS under different wave number

    图  24  不同厚度下BBCLS在固定端的名义应力-应变曲线

    Figure  24.  Nominal stress-strain curves on fixed end of BBCLS under different thickness

    图  27  不同厚度的BBCLS在0.6应变下的比吸能

    Figure  27.  ESEA at 0.6 strain of BBCLS under different thickness

    图  25  不同厚度下BBCLS在冲击端的名义应力-应变曲线

    Figure  25.  Nominal stress-strain curves on impact end of BBCLS under different thickness

    图  26  不同厚度的BBCLS比吸能对比

    Figure  26.  Comparisons of ESEA of BBCLS under different thickness

    表  1  BBCLS初始峰值力仿真与试验误差对比

    Table  1.   Comparison between simulation and test error of BBCLS contact force peak value

    Sample nameWave numberRelative
    density
    Test
    value [32]/kN
    Simulated
    value /kN
    Absolute
    error /kN
    Relative
    error /%
    150.133032.972.840.134.38
    260.146624.254.170.081.88
    370.162015.655.460.193.36
    下载: 导出CSV
  • [1] Baroutaji A, Sajjia M, Olabi A-G. On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments[J]. Thin-Walled Structures, 2017, 118: 137-163. doi: 10.1016/j.tws.2017.05.018
    [2] Qiu X M, Yu T X. Some Topics in Recent Advances and Applications of Structural Impact Dynamics[J]. Applied Mechanics Reviews, 2011, 64(3): 1-12.
    [3] 余同希, 朱凌, 许骏. 结构冲击动力学进展(2010-2020)[J]. 爆炸与冲击, 2021, 41(12): 4-64.

    Yu Tongxi, Zhu Ling, Xu Jun. Progress of structural impact dynamics (2010-2020)[J]. Explosion and Shock Waves, 2021, 41(12): 4-64(in Chinese).
    [4] Yang J, Chen X, Sun Y, et al. Compressive properties of bidirectionally graded lattice structures[J]. Materials & Design, 2022, 218: 110683.
    [5] Ye J, Sun Z, Ding Y, et al. The deformation mechanism, energy absorption behavior and optimal design of vertical-reinforced lattices[J]. Thin-Walled Structures, 2023, 190: 110988. doi: 10.1016/j.tws.2023.110988
    [6] 张武昆, 谭永华, 高玉闪, 等. 周期性轻质多孔结构在能量吸收和振动方面的研究进展[J]. 振动与冲击, 2023, 42(8): 1-19.

    Zhang Wukun, Tan Yonghua, Gao Yushan, et al. Research progress on energy absorption and vibration of periodic lightweight porous structures[J]. Journal of Vibration and Shock, 2023, 42(8): 1-19(in Chinese).
    [7] Xu P, Guo W, Yang L, et al. Crashworthiness analysis of the biomimetic lotus root lattice structure[J]. International Journal of Mechanical Sciences, 2024, 263: 108774. doi: 10.1016/j.ijmecsci.2023.108774
    [8] 韩剑, 孙士勇, 牛斌, 等. 树脂基复合材料点阵结构的制造技术研究进展[J]. 航空学报, 2023, 44(9): 47-67.

    Han Jian, Sun Shiyong, Niu Bin, et al. Research progress in manufacturing technology of resin matrix composites with lattice structure[J]. Aviation Journal, 2023, 44(9): 47-67(in Chinese).
    [9] Xu Z, Razavi S M J, Ayatollahi M R. Functionally Graded Lattice Structures: Fabrication Methods, Mechanical Properties, Failure Mechanisms and Applications [M]. Comprehensive Structural Integrity. 2022: 433-466.
    [10] Dong G, Wijaya G, Tang Y, et al. Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures[J]. Additive Manufacturing, 2018, 19: 62-72. doi: 10.1016/j.addma.2017.11.004
    [11] Cui Z, Zhao J, Xu R, et al. Mechanical design and energy absorption performances of novel plate-rod hybrid lattice structures[J]. Thin-Walled Structures, 2023, 194(10): 111349.
    [12] Yang J, Chen X, Sun Y, et al. Rational design and additive manufacturing of grain boundary-inspired, multi-architecture lattice structures[J]. Materials & Design, 2023, 235: 112448.
    [13] Xiao L, Feng G, Li S, et al. Mechanical characterization of additively-manufactured metallic lattice structures with hollow struts under static and dynamic loadings[J]. International Journal of Impact Engineering, 2022, 169: 104333. doi: 10.1016/j.ijimpeng.2022.104333
    [14] Ma X, Zhang N, Chang Y, et al. Analytical model of mechanical properties for a hierarchical lattice structure based on hierarchical body-centered cubic unit cell[J]. Thin-Walled Structures, 2023, 193: 111217. doi: 10.1016/j.tws.2023.111217
    [15] Lee J J, Mohammed A A, Pullen A, et al. Mechanical characterisation of 3D printed lightweight lattice structures with varying internal design alterations[J]. Materials Today Communications, 2023, 36: 106456. doi: 10.1016/j.mtcomm.2023.106456
    [16] Xiao L, Song W. Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading: Experiments[J]. International Journal of Impact Engineering, 2018, 111: 255-272. doi: 10.1016/j.ijimpeng.2017.09.018
    [17] Ha N S, Lu G. A review of recent research on bio-inspired structures and materials for energy absorption applications[J]. Composites Part B: Engineering, 2020, 181: 107496. doi: 10.1016/j.compositesb.2019.107496
    [18] Plessis A, Broeckhoven C, Yadroitsava I, et al. Beautiful and Functional: A Review of Biomimetic Design in Additive Manufacturing[J]. Additive Manufacturing, 2019, 27: 408-427. doi: 10.1016/j.addma.2019.03.033
    [19] Ahamed M K, Wang H, Hazell P J. From biology to biomimicry: Using nature to build better structures – A review[J]. Construction and Building Materials, 2022, 320: 126195. doi: 10.1016/j.conbuildmat.2021.126195
    [20] Siddique S H, Hazell P J, Wang H, et al. Lessons from nature: 3D printed bio-inspired porous structures for impact energy absorption – A review[J]. Additive Manufacturing, 2022, 58: 103051. doi: 10.1016/j.addma.2022.103051
    [21] Zhang W, Yin S, Yu T X, et al. Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb[J]. International Journal of Impact Engineering, 2019, 125: 163-172. doi: 10.1016/j.ijimpeng.2018.11.014
    [22] 冀旭晖. 仿生蜘蛛网点阵结构设计及其吸能效果研究 [D]. 哈尔滨: 哈尔滨理工大学, 2022.

    Ji Xuhui. Study on bionic spider web lattice structure design and Energy absorption effect [D]. Harbin: Harbin University of Science and Technology, 2022(in Chinese).
    [23] Meng L, Shi J, Yang C, et al. An emerging class of hyperbolic lattice exhibiting tunable elastic properties and impact absorption through chiral twisting[J]. Extreme Mechanics Letters, 2020, 40: 100869. doi: 10.1016/j.eml.2020.100869
    [24] Patek S N, Korff W L, Caldwell R L. Deadly strike mechanism of a mantis shrimp[J]. Nature, 2004, 428(6985): 819-820. doi: 10.1038/428819a
    [25] Weaver J C M G W, Miserez A, Evans-Lutterodt K, Herrera S. The stomatopod dactyl club: a formidable damage-tolerant biological hammer[J]. Science, 2012, 336(6086): 1275-1280. doi: 10.1126/science.1218764
    [26] Patek S N, Caldwell R L. Extreme impact and cavitation forces of a biological hammer: Strike forces of the peacock mantis shrimp Odontodactylus scyllarus[J]. Journal of Experimental Biology, 2005, 208(19): 3655-3664. doi: 10.1242/jeb.01831
    [27] Yaraghi N A, Guarín-Zapata N, Grunenfelder L K, et al. A Sinusoidally Architected Helicoidal Biocomposite[J]. Advanced Materials, 2016, 28(32): 6835-6844. doi: 10.1002/adma.201600786
    [28] Yang X, Ma J, Shi Y, et al. Crashworthiness investigation of the bio-inspired bi-directionally corrugated core sandwich panel under quasi-static crushing load[J]. Materials & Design, 2017, 135: 275-290.
    [29] Han Q, Shi S, Liu Z, et al. Study on impact resistance behaviors of a novel composite laminate with basalt fiber for helical-sinusoidal bionic structure of dactyl club of mantis shrimp[J]. Composites Part B: Engineering, 2020, 191: 107976. doi: 10.1016/j.compositesb.2020.107976
    [30] Huang H, Yang X, Yan Q, et al. Crashworthiness analysis and multiobjective optimization of bio-inspired sandwich structure under impact load[J]. Thin-Walled Structures, 2022, 172(3): 108840.
    [31] Cui C Y, Chen L, Feng S, et al. Novel cuttlebone-inspired hierarchical bionic structure enabled high energy absorption[J]. Thin-Walled Structures, 2023, 186: 110693. doi: 10.1016/j.tws.2023.110693
    [32] Li B, Liu H, Zhang Q, et al. Crushing behavior and energy absorption of a bio-inspired bi-directional corrugated lattice under quasi-static compression load[J]. Composite Structures, 2022, 286: 115315. doi: 10.1016/j.compstruct.2022.115315
    [33] Hunt C J, Morabito F, Grace C, et al. A review of composite lattice structures[J]. Composite Structures, 2022, 284: 115120. doi: 10.1016/j.compstruct.2021.115120
    [34] Zhu J, Zhou H, Wang C, et al. A review of topology optimization for additive manufacturing: Status and challenges[J]. Chinese Journal of Aeronautics, 2021, 34(1): 91-110. doi: 10.1016/j.cja.2020.09.020
    [35] Claverie T, Chan E, Patek S N. Modularity and Scaling in Fast Movements: Power Amplification in Mantis Shrimp[J]. Evolution, 2011, 65(2): 443-461. doi: 10.1111/j.1558-5646.2010.01133.x
    [36] 黄晗, 许述财, 陈姮. 仿生波纹夹层结构耐撞性分析及优化[J]. 爆炸与冲击, 2021, 41(8): 36-46. doi: 10.11883/bzycj-2020-0275

    Huang Han, Xu Shucai, Chen Heng. Impact resistance analysis and optimization of biomimetic corrugated sandwich Structures[J]. Explosion and Shock Waves, 2021, 41(8): 36-46(in Chinese). doi: 10.11883/bzycj-2020-0275
    [37] 魏路路, 余强, 赵轩, 等. 内凹-反手性蜂窝结构的面内动态压溃性能研究[J]. 振动与冲击, 2021, 40(4): 261-269.

    WEI Lulu, Yu Qiang, Zhao Xuan, et al. Research on in-plane dynamic crushing behavior of concave and backhanded honeycomb Structures[J]. Journal of Vibration and Shock, 2021, 40(4): 261-269(in Chinese).
    [38] GIBSON L J, ASHBY M F. Cellular solids [M]. Cambridge University Press, 1997.
    [39] 刘伟洛. 增材制造三周期极小曲面结构的力学性能研究[D]. 广州市: 广州大学, 2021.

    Liu Weiluo. Research on Mechanical Properties of Additive Manufacturing three-period minimal curved surface Structures [D]. Guangzhou: Guangzhou University, 2021(in Chinese).
    [40] 徐向聪, 高佳丽, 郝云波. 304不锈钢多层梯度点阵结构压缩性能及梯度率影响研究[J]. 机械强度, 2023, 45(6): 1318-1325.

    Xu Xiangcong, GAO Jiali, HAO Yunbo. Research on compression properties and influence of gradient rate of 304 stainless steel multilayer gradient lattice Structure[J]. Mechanical Strength, 2023, 45(6): 1318-1325(in Chinese).
    [41] Maskery I, Aboulkhair N T, Aremu A O, et al. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting[J]. Materials Science and Engineering: A, 2016, 670: 264-274. doi: 10.1016/j.msea.2016.06.013
    [42] 李晓丹, 朱庆丰, 孔淑萍, 等. 3D打印AlSi10Mg合金组织性能研究[J]. 材料科学与工艺, 2019, 27(2): 16-21. doi: 10.11951/j.issn.1005-0299.20180138

    Li Xiaodan Zhu Qingfeng, Kong Shuping, et al. Study on microstructure and properties of 3D printed AlSi10Mg alloy[J]. Materials Science and Technology, 2019, 27(2): 16-21(in Chinese). doi: 10.11951/j.issn.1005-0299.20180138
    [43] 陈剑勇. 静动态载荷下三周期极小曲面多孔结构响应特性研究 [D]. 武汉: 华中科技大学, 2023.

    Chen Jianyong. Study on response characteristics of three-period minimal curved porous structures under static and dynamic loads [D]. Wuhan: Huazhong University of Science and Technology, 2023(in Chinese).
    [44] Maconachie T, Leary M, Tran P, et al. The effect of topology on the quasi-static and dynamic behaviour of SLM AlSi10Mg lattice structures[J]. The International Journal of Advanced Manufacturing Technology, 2021, 118(11-12): 4085-4104.
    [45] 厉雪, 肖李军, 宋卫东. 3D打印梯度Gyroid结构的动态冲击响应[J]. 高压物理学报, 2021, 35(3): 90-99. doi: 10.11858/gywlxb.20210701

    Li Xue, Xiao Lijun, Song Weidong. Dynamic Impact Response of 3D Printed gradient Gyroid Structure[J]. Journal of High Pressure Physics, 2021, 35(3): 90-99(in Chinese). doi: 10.11858/gywlxb.20210701
    [46] 卢子兴, 王欢, 杨振宇, 等. 星型-箭头蜂窝结构的面内动态压溃行为[J]. 复合材料学报, 2019, 36(8): 1893-1900.

    Lu Zixing, Wang Huan, Yang Zhenyu, et al. In-plane dynamic crushing behavior of star-arrow honeycomb structures[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1893-1900(in Chinese).
    [47] 张晓楠, 晏石林, 欧元勋, 等. 负泊松比内凹蜂窝结构梯度设计与动态冲击响应[J]. 振动与冲击, 2023, 42(3): 193-198.

    Zhang Xiaonan, Yan Shilin, Ou Yuanxun, et al. Gradient design and Dynamic Shock Response of concave honeycomb structures with negative Poisson's Ratio[J]. Journal of Vibration and Shock, 2023, 42(3): 193-198(in Chinese).
    [48] 李成兵, 李锐, 张吉涛, 等. 多阶式层级梯度蜂窝结构的共面冲击响应[J]. 高压物理学报, 2023, 37(3): 121-132.

    Li Chengbing, Li Rui, Zhang Jitao, et al. Coplanar shock response of multistage hierarchical gradient honeycomb structures[J]. Journal of High Pressure Physics, 2023, 37(3): 121-132(in Chinese).
    [49] 纪小刚, 张建安, 栾宇豪, 等. 仿皮肤三维多孔点阵结构压缩吸能性能研究[J]. 机械工程学报, 2021, 57(15): 222-230. doi: 10.3901/JME.2021.15.222

    Ji Xiaogang, Zhang Jian 'an, Luan Yuhao, et al. Study on compressive Energy absorption Performance of three-dimensional porous lattice Structure modeled on skin[J]. Chinese Journal of Mechanical Engineering, 2021, 57(15): 222-230(in Chinese). doi: 10.3901/JME.2021.15.222
    [50] 李心远, 宋卫东, 陈键. 3D打印TPMS多孔材料力学性能数值仿真[J]. 太原理工大学学报, 2019, 50(3): 386-393.

    Li Xinyuan, Song Weidong, Chen Jian. Numerical Simulation of Mechanical Properties of 3D printed TPMS porous materials[J]. Journal of Taiyuan University of Technology, 2019, 50(3): 386-393(in Chinese).
    [51] 肖江海, 侯俊玲, 李群. 基于MJF的极小曲面结构力学行为及吸能特性研究[J]. 固体力学学报, 2024, 45(2): 201-212.

    Xiao Jianghai, Hou Junling, Li Qun. Study on mechanical behavior and energy absorption characteristics of minimal surface structures based on MJF[J]. Journal of Solid Mechanics, 2024, 45(2): 201-212(in Chinese).
    [52] 赵众豪, 池瑜莉, 冯峻良, 等. 新型CFCB点阵夹芯结构面外压缩载荷下能量吸收特性研究[J]. 振动与冲击, 2023, 42(17): 166-174.

    Zhao Zhonghao, Chi Yuli, Feng Junliang, et al. Study on Energy absorption Characteristics of novel CFCB lattice sandwich structures under out-of-plane compression loads[J]. Journal of Vibration and Shock, 2019, 42(17): 166-174(in Chinese).
    [53] 虞科炯, 徐峰祥, 华林. 正弦曲边负泊松比蜂窝结构面内冲击性能研究[J]. 振动与冲击, 2021, 40(13): 51-59.

    Yu Kejiong, Xu Fengxiang, Hua Lin. Research on in-plane impact performance of sinusoidal curved curved negative Poisson ratio honeycomb[J]. Journal of Vibration and Shock, 2021, 40(13): 51-59(in Chinese).
  • 加载中
计量
  • 文章访问数:  30
  • HTML全文浏览量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-26
  • 修回日期:  2024-06-04
  • 录用日期:  2024-06-15
  • 网络出版日期:  2024-06-29

目录

    /

    返回文章
    返回