留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介孔SiO2对环氧树脂超低温力学性能及树脂/碳纤维界面性能的影响

陈汕 孙杰 李家亮 谭添亮 李梓睿 顾海洋 彭聪 孙涛 李世超 武湛君

陈汕, 孙杰, 李家亮, 等. 介孔SiO2对环氧树脂超低温力学性能及树脂/碳纤维界面性能的影响[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 陈汕, 孙杰, 李家亮, 等. 介孔SiO2对环氧树脂超低温力学性能及树脂/碳纤维界面性能的影响[J]. 复合材料学报, 2024, 42(0): 1-11.
CHEN Shan, SUN Jie, LI Jialiang, et al. Effect of mesoporous SiO2 on the mechanical properties of epoxy resin at ultra-low temperature and the interface properties of resin/carbon fiber[J]. Acta Materiae Compositae Sinica.
Citation: CHEN Shan, SUN Jie, LI Jialiang, et al. Effect of mesoporous SiO2 on the mechanical properties of epoxy resin at ultra-low temperature and the interface properties of resin/carbon fiber[J]. Acta Materiae Compositae Sinica.

介孔SiO2对环氧树脂超低温力学性能及树脂/碳纤维界面性能的影响

基金项目: 中国科协青年人才托举工程(YESS20200084);高校基本科研业务费专项资金资助(JUSRP123002);国家自然科学基金重点支持项目“叶企孙”科学基金(U2341235);国家自然科学基金面上项目(12372134);山东省自然科学基金(ZR2022ME202)
详细信息
    通讯作者:

    李世超,博士,副研究员,硕士生导师,研究方向为耐极端环境树脂基复合材料 E-mail:Lsc1212@jiangnan.edu.cn

  • 中图分类号: TB332

Effect of mesoporous SiO2 on the mechanical properties of epoxy resin at ultra-low temperature and the interface properties of resin/carbon fiber

Funds: China Association for Science and Technology Young Talent Lifting Project (YESS20200084); Special Fund for Fundamental Scientific Research Funds of Colleges and Universities (JUSRP 123002); National Natural Science Foundat Foundation of China (12372134); Natural Science Foundation of Shandong Province (ZR2022ME202) ion of China Key Support Project "Ye Qi sun" Science Foundation (U2341235)
  • 摘要: 碳纤维增强环氧树脂基复合材料在超低温环境下的应用日益广泛。然而,由于环氧树脂基体与碳纤维之间的热膨胀系数不匹配,导致碳纤维复合材料在超低温环境下产生显著的温度应力,从而影响其服役性能。本文采用溶胶-凝胶法成功制备了粒径为100至160 nm、平均孔径为4.24 nm的介孔SiO2,并通过三辊研磨法将其加入到环氧树脂中制备出介孔SiO2/环氧树脂复合材料。测试结果表明:介孔SiO2的添加有效降低了环氧树脂的热膨胀系数,并提高了其力学性能。具体来说,在室温和90 K下,添加10wt.%含量介孔SiO2的环氧树脂抗拉强度分别达到约98 MPa和160 MPa,相比纯环氧树脂分别提高27.07%和26.02%。此外,随着介孔SiO2含量的增加,环氧树脂的热膨胀系数逐渐降低,当添加20wt.%介孔SiO2时,介孔SiO2/环氧树脂复合材料的热膨胀系数相比于纯环氧树脂的热膨胀系数下降26.31%。TFBT测试结果表明:添加5wt.% 含量介孔SiO2的环氧树脂的TFBT强度比纯环氧树脂提高了41.07%,这说明介孔SiO2可以有效改善树脂/碳纤维的界面结合性能。

     

  • 图  1  (a) 介孔SiO2 (M-SiO2)合成机制实验流程图,(b)实验流程图;(c)环氧树脂分子链嵌段固化示意图

    Figure  1.  (a) Mesoporous SiO2 (M-SiO2) synthesis mechanism, (b) Experimental flowchart; (c) schematic representation of epoxy resin molecular chain segmental curing

    图  2  介孔SiO2:(a)SEM图像;(b) TEM图像;(c) XRD衍射图谱

    Figure  2.  Mesoporous SiO2: (a) SEM image; (b) TEM image;(c) XRD diffraction pattern

    图  3  介孔SiO2(a)氮气吸附/脱附曲线;(b)孔径分布曲线

    Figure  3.  Mesoporous SiO2(a) nitrogen adsorption/desorption curve; (b) pore size distribution curve

    图  4  (a)不同介孔SiO2/环氧树脂复合材料的热膨胀率随温度的变化关系;(b)不同介孔SiO2/环氧树脂复合材料在不同温度区间的热膨胀系数

    Figure  4.  (a) The relationship between the thermal expansion rate of mesoporous SiO2/epoxy resin composites with different mass fractions and temperature;(b) the thermal expansion coefficient of mesoporous SiO2/epoxy resins with different mass fractions in different temperature ranges

    图  5  介孔SiO2/环氧树脂复合材料在(a) RT和(b) 90 K下的应力-应变曲线;(c)抗拉强度随介孔SiO2含量变化的趋势图;(d)断裂应变随介孔SiO2含量变化的趋势图

    Figure  5.  RT(a) and 90 K(b) stress-strain curves; (c) tensile strength; (d) strain at break are added to the mesoporous SiO2/epoxy resin composites with different contents

    图  6  添加(a)10 wt.%和(b)20 wt.%介孔SiO2的环氧树脂复合材料的TEM图;RT下,(c) 纯环氧树脂和(d)添加10 wt.%介孔 SiO2的环氧树脂复合材料断面SEM图;90 K下,(e) 纯环氧树脂和(f)添加10 wt.%介孔 SiO2的环氧树脂复合材料断面SEM图

    Figure  6.  Transmission electron microscopy images of (a) solidified epoxy composites with 10.0 wt.% and (b) 20.0 wt.% mesoporous SiO2;(c) Scanning electron microscopy of RT fracture sections of epoxy composites with 0 wt.% and (d) 10.0 wt.% mesoporous SiO2; (e) Scanning electron microscopy of 90 K fracture cross-section of epoxy composites with 0 wt.% and (f) 10.0 wt.% mesoporous SiO2

    图  7  (a) 横向纤维束(TFBT)试样拉伸测试过程实物图;(b) 图a中红色箭头区域处TFBT试样光学照片

    Figure  7.  (a) The mechanical tensile test process of the TFBT model; (b) the red arrow in Figure a points to the lateral optical microscope magnification of the transverse fiber bundle (TFBT) model

    图  8  (a)未处理和(b)50次热循环处理后TFBT试样拉伸应力-应变曲线图

    Figure  8.  TFBT tensile stress-strain curves (a) were tested in RT environment without treatment; and (b) were tested in RT environment after 50 thermal cycles

    图  9  纯环氧树脂TFBT试样经50次热循环处理后的表面光学照片:(a)试样侧向,(b)试样正向

    Figure  9.  Magnification of optical fiberscope on the surface of pure epoxy/carbon fiber TFBT sample after 50 thermal cycles: (a) the specimen is sideways, (b) the specimen is forward

    图  10  未经热循环处理的介孔 SiO2/环氧树脂复合材料TFBT样品断面SEM图:(a) 0 wt.%介孔SiO2 ;(b) 5 wt.%介孔SiO2; (c) 10 wt.%介孔SiO2 ;(d) 20 wt.%介孔SiO2

    Figure  10.  Cross-sections of mesoporous SiO2 modified epoxy/carbon fiber TFBT samples: (a) 0 wt.% mesoporous SiO2; (b) 5 wt.% mesoporous SiO2; (c) 10 wt.% mesoporous SiO2; (d) 20 wt.% mesoporous SiO2

    表  1  介孔SiO2/环氧复合材料制备配比

    Table  1.   Preparation ratio of mesoporous SiO2/epoxy composites

    Sample name M-SiO2/
    g
    830
    epoxy/g
    DETDA/
    g
    Pure epoxy resin 0 80 20
    5 wt.%M-SiO2/Epoxy composite 4 80 20
    10 wt.%M-SiO2/Epoxy composite 8 80 20
    15 wt.%M-SiO2/Epoxy composite 12 80 20
    20 wt.%M-SiO2/Epoxy composite 16 80 20
    下载: 导出CSV

    表  2  制备的介孔SiO2比表面积、孔容孔径分布参数

    Table  2.   The specific surface area and pore size distribution parameters of mesoporous SiO2

    M-SiO2 Specific surface
    area/(m2·g)
    Pore
    volume/(cm3·g)
    The most pore
    size distribution/nm
    Average pore
    size distribution/nm
    MCM-41 758.54 0.64 2.61 4.24
    下载: 导出CSV

    表  3  添加不同含量介孔SiO2/环氧树脂复合材料RT和90 K抗拉强度以及断裂应变。

    Table  3.   Tensile strength and breaking strain of mesoporous SiO2/epoxy composites with different amounts of RT(a) and 90 K(b) are added.

    Temperature RT 90 K
    Mesoporous SiO2 content/wt.% Tensile strength/MPa Strain at break/% Tensile strength/MPa Strain at break/%
    0 77.56±1.92 3.57±0.39 127.09±2.89 2.01±0.30
    5 88.86±1.16 4.46±0.22 138.05±3.62 2.15±0.18
    10 98.56±2.26 5.80±0.55 160.97±2.24 2.26±0.31
    15 90.64±2.02 4.89±0.34 140.01±3.72 1.74±0.10
    20 89.05±1.27 3.63±0.39 132.04±4.61 1.58±0.04
    下载: 导出CSV

    表  4  添加不同含量介孔SiO2的TFBT试样热循环处理前后的强度

    Table  4.   Strength of mesoporous SiO2TFBT with different contents before and after thermal cycling

    Before thermal cycling treatment 50 thermal cycles
    Mesoporous SiO2 content/wt.% TFBT
    Strength/MPa
    TFBT
    Strength/MPa
    0 9.30±0.23 7.63±0.41
    5 12.72±0.51 11.1±0.47
    10 11.72±0.17 11.3±0.15
    15 11.21±0.13 10.78±0.17
    20 10.31±0.39 10.24±0.12
    下载: 导出CSV
  • [1] 湛利华, 关成龙, 黄诚, 等. 航天低温复合材料贮箱国内外研究现状分析[J]. 航空制造技术, 2019, 62(16): 79-87.

    ZHAN L, GUAN C, HUANG C, et al. Analysis of the research status of aerospace cryogenic composite tanks at home and abroad[J]. Aeronautical Manufacturing Technology, 2019, 62(16): 79-87 (in Chinese).
    [2] 张辰威, 张博明. 复合材料贮箱在航天飞行器低温推进系统上的应用与关键技术[J]. 航空学报, 2014, 35(10): 2747-2755.

    ZHANG C, ZHANG B. Application and key technology of composite tank in cryogenic propulsion system of space vehicle[J]. Journal of Aeronautics and Astronautic, 2014, 35(10): 2747-2755 (in Chinese).
    [3] TIWARI S, MICHAEL J, JOHN J, et al. A review of liquid hydrogen aircraft and propulsion technologies[J]. International Journal of Hydrogen Energy, 2024, 57: 1174-1196. doi: 10.1016/j.ijhydene.2023.12.263
    [4] MORKAVUK S, KOKLU U, GEMI L, et al. Cryogenic machining of carbonfiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: a comparative study[J]. Composites Part B, 2018, 147: 1-11. doi: 10.1016/j.compositesb.2018.04.024
    [5] KARA M, KIRICI M, TATAR A, et al. Impact behavior of carbon fiber/epoxy composite tubes reinforced with multi-walled carbon nanotubes at cryogenic environment[J]. Composites Part B, 2018, 145: 145-154. doi: 10.1016/j.compositesb.2018.03.027
    [6] 李泽. 环氧树脂及其复合材料低温热膨胀性能研究 [D]. 哈尔滨工业大学, 2022.002020.

    LI Z. Study on low-temperature thermal expansion properties of epoxy resin and its composites [D]. Harbin Institute of Technology, 2022.002020 (in Chinese).
    [7] YU B, JIANG Z, TANG X, et al. Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating[J]. Composites Science and Technology, 2014, 99(4): 131-140.
    [8] SONG B, WANG T, SUN H, etal. Graphitic carbon nitride (g-C3N4) Interfacially Strengthened carbon fiber epoxy composites[J]. Composites Science and Technology, 2018, 167: 515-521. doi: 10.1016/j.compscitech.2018.08.031
    [9] CHEN W, YU Y, LI P, et al. Effect of new epoxy matrix for T800 carbon fiber/epoxy filament wound composites[J]. Composites Science and Technology, 2007, 67(11-12): 2261-2270. doi: 10.1016/j.compscitech.2007.01.026
    [10] ZHANG Q, WU J, GAO L, et al. Dispersion stability of functionalized MWCNT in the epoxy–amine system and itseffects on mechanical and interfacial properties of carbon fiber composites[J]. Mater. Des, 2016, 94: 392-402. doi: 10.1016/j.matdes.2016.01.062
    [11] GAO B, ZHANG R, HE M, et al. Effect of amultiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites[J]. Composites Part A, 2016, 90: 433-440. doi: 10.1016/j.compositesa.2016.08.012
    [12] LEE G, KO K, YU Y, et al. A facile method for preparing CNT-grafted carbon fibers and improved tensile strength of their composites[J]. CompositesPart A, 2015, 69: 132-138. doi: 10.1016/j.compositesa.2014.11.015
    [13] GAO B, ZHANG R, WANG C, et al. Enhanced mechanical properties of carbon fibercomposites by grafting different structural poly(amido amine) onto fiber surface[J]. Polym. Test, 2016, 56: 192-199 doi: 10.1016/j.polymertesting.2016.10.019
    [14] K A, PATHAK, BORAH M, et al. Improved mechanicalproperties of carbon fiber/graphene oxide-epoxy hybrid composites[J]. Composites Science and Technology, 2016, 135: 28-38. doi: 10.1016/j.compscitech.2016.09.007
    [15] THITSARTARN W, FAN X, YANG S, et al. Simultaneous enhancement of strength and toughness of epoxy using POSS-Rubber core-shell nanoparticles[J]. Composites Science and Technology, 2015, 118: 63-71. doi: 10.1016/j.compscitech.2015.06.011
    [16] POUR Z, GHAEMY M. Polymer grafted graphene oxide: for improved dispersion in epoxy resin and enhancement of mechanical properties of nanocomposite[J]. Composites Science and Technology, 2016, 136: 145-157. doi: 10.1016/j.compscitech.2016.10.014
    [17] CAROLAN D, A J, Kinloch A, et al. Mechanical and fracture performance of carbon fiber reinforced composites with nanoparticle modified matrices[J]. Procedia Structural Integrity, 2016, 2: 096-103. doi: 10.1016/j.prostr.2016.06.013
    [18] KOTHMAN M, ZEILER R, ANDA A, et al. Fatigue crack propagation behaviour of epoxy resins modified with silica-nanoparticles[J]. Polymer 2015, 60: 157–163.
    [19] GUPTA M, S A, SYDLIK J, et al. The effect of mixing methods on the dispersion of carbon nanotubes duringthe solvent-free processing of multiwalled carbon nanotube/epoxy composites[J]. Polym. Sci. Pol, 2013, 51(6): 410-420. doi: 10.1002/polb.23225
    [20] WANG N, SHAO Y, SHI W, et al. Preparation and characterization of epoxy composites filled with functionalized nano-sized MCM-41 particles[J]. Mater Sci, 2008, 43: 3683-3688 doi: 10.1007/s10853-008-2591-4
    [21] American Society of Testing Materials. Standard Test Method For Tensile properties of Plasticsv: ASTM-D638[S]. Philadelphia: ASTM, 2022.
    [22] ZHAO D, HUO Q, FENG J, etal. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures[J]. American Chemical Society, 1998, 120: 5024-6036 doi: 10.1021/ja972017w
    [23] ZhAO D, FENG J, HUO Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores.[J]. Science, 1998, 279(5350): 548-552 doi: 10.1126/science.279.5350.548
    [24] CAI Q, LUO Z, PANG W, et al. Dilute solution routes to various controllable morphologies of MCM-4l silica with a basic medium[J]. Chemistry of Materials, 2001, 13(2): 258-263 doi: 10.1021/cm990661z
    [25] WU T, LIU Y, LI N, et al. Cryogenic mechanica properties of epoxy resin toughened by hydroxyl-terminated polyurethane[J]. Polym. Test, 2019, 74: 45-56. doi: 10.1016/j.polymertesting.2018.11.048
    [26] YAO D, PENG N, ZHENG Y. Enhanced mechanical and thermal performances epoxy resin by oriented solvent-free graphene/carbon nanotube/Fe3O4 composite nanofluid[J]. Composites Science and Technology, 2018, 67: 234-242.
    [27] DITTANET P, A R, PEARSON. Effect of silica nanoparticle size on tougheningmechanisms of filled epoxy[J]. Polymer, 2012, 3(9): 1890-1905.
    [28] ZHANG J, Deng S, WANG Y, et al. Effect of nanoparticles on interfacial properties of carbon fiber epoxy composites[J]. Compos. Part A Appl. Sci. Manuf, 2013, 55: 35-44. doi: 10.1016/j.compositesa.2013.08.005
    [29] FENG Q, DENG Y, XIAO H, et al. Enhanced cryogenic interfacial normal bond property between carbon fibers and epoxy matrix by carbon nanotubes[J]. Compos. Sci. Technol, 2014, 104: 59-65. doi: 10.1016/j.compscitech.2014.09.006
    [30] DRESCHER P, THOMAS J, BORRIS J, et al. Strengthening fiber/matrix interphase by fiber surface modification and nanoparticle incorporation into the matrix[J]. Compos. Sci. Technol, 2013, 74: 60-66. doi: 10.1016/j.compscitech.2012.10.004
    [31] 李稳, 陈蔚, 汤立群, 等, 基于纤维束增强树脂基复合材料测试的单向层合板层间剪切性能的预估方法[J]. 复合材料学报, 2018, 5(10): 2793-2803.

    LI W, CHEN W, TANG L, et al. A prediction method of interlaminar shear strength of unidirectional laminates based on fiber bundle reinforced polymer composites[J]. Acta Materiae Compositae Sinica, 2018, 35(10): 2793-2803(in Chinese).
    [32] MOHAMMAD S, PEARCE G, WANG C, et al. Toughening carbon fibre composites at cryogenic temperatures using low-thermal expansion nanoparticles[J]. Composites Part A: Applied Science and Manufacturing, 2021, 150: 106613. doi: 10.1016/j.compositesa.2021.106613
  • 加载中
计量
  • 文章访问数:  41
  • HTML全文浏览量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-25
  • 修回日期:  2024-08-26
  • 录用日期:  2024-09-15
  • 网络出版日期:  2024-10-12

目录

    /

    返回文章
    返回