Interlaminar structure and properties of carbon fiber/epoxy composites toughened with copolymerized nylon fiber veil after cryogenic treatment
-
摘要: 本文通过自主搭建超低温/室温循环研究平台,探究了超低温浸泡时间和超低温/室温循环次数对碳纤维/环氧树脂(CF/EP)复合材料各项力学性能的影响。之后将不同面密度共聚尼龙纤维网纱(PAV)插入到复合材料层间,研究在液氮中超低温浸泡16 h后复合材料层间韧性的变化。结果表明,未增韧情况下超低温浸泡16 h后CF/EP复合材料的Ⅰ型层间断裂韧性(GⅠC)、Ⅱ型层间断裂韧性(GⅡC)、拉伸强度和弯曲强度分别下降了46.2%、22.9%、17.7%和3.2%。而当插入面密度为8 gsm的PAV时,与未增韧样相比CF/EP复合材料的GⅠC在室温下和超低温浸泡16 h后分别提升了49.1%和114.0%;当插入面密度为24 gsm的PAV时,增韧样的GⅡC相比于未增韧样在室温下和超低温浸泡16 h后分别提升了140.2%和178.0%。此外PAV的插入并未对CF/EP复合材料的弯曲性能和层间剪切强度造成明显影响。研究表明,PAV的增韧机制主要是尼龙树脂的拔出、基体塑性形变以及引发裂纹的偏转。本研究改善了超低温处理后的CF/EP复合材料层间韧性,对推动超低温贮箱复合材料化进程具有积极意义。Abstract: In this paper, a research platform for cryogenic/room temperature cycles was built to explore the effects of cryogenic immersion time and cryogenic/room temperature cycle times on the mechanical properties of carbon fiber/epoxy(CF/EP)composites. Then, copolymerized nylon fiber veil (PAV) with different areal densities was inserted into the interlaminar of the composites, and the interlaminar toughness of the composites was studied after 16 h of cryogenic immersion in liquid nitrogen. The results demonstrate that the interlaminar fracture toughness of mode I(GⅠC), mode Ⅱ(GⅡC), tensile strength and flexural strength of CF/EP composites decline by 46.2%, 22.9%, 17.7% and 3.2%, after 16 h of cryogenic immersion without toughening. The GⅠC of CF/EP composites is increased by 49.1% and 114.0% at room temperature and after 16 h of cryogenic immersion, respectively, when PAV with 8 gsm areal densities were inserted. The GⅡC is increased by 140.2% and 178.0% at room temperature and after 16 h of cryogenic immersion, when PAV with 24 gsm areal densities were inserted. In addition, the insertion of PAV didn't significantly affect the flexural properties and interlaminar shear strength of CF/EP composites. Our findings suggest that the toughening mechanism of PAV is mainly the pull-out of nylon resin, plastic deformation of matrix, and the deflection of initiating cracks. This study improves the interlayer toughness of CF/EP composites after cryogenic treatment, which is of positive significance for promoting the compositing process of cryogenic fuel tanks.
-
表 1 线性热膨胀系数对比表
Table 1. Comparison table of linear coefficients of thermal expansion
Sample YY23 CF/EP PA8-CF/EP CTE.m/(×10−6·℃−1) 31 17 45 Notes:CTE.m is mean coefficient of thermal expansion;YY23 is YY23 epoxy;CF/EP is carbon fiber/epoxy composite;PA8-CF/EP is carbon fiber/epoxy composite toughened by copolymerized nylon fiber veil with 8 gsm areal densities -
[1] 吴龙强, 欧云福, 茅东升, 等. 取向碳纳米管纤维纱插层碳纤维/环氧树脂复合材料的层间性能及增韧机制[J]. 复合材料学报, 2023, 40(10): 5611-5620.WU Longqiang, OU Yunfu, MAO Dongsheng, et al. Interlaminar properties and toughening mechanisms of aligned carbon nanotube fiber veil interleaved carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5611-5620(in Chinese). [2] 赵庆志, 阳泽濠, 薛怿, 等. 低面密度PA66纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 复合材料学报: 1-9.ZHAO Qingzhi, YANG Zehao , XUE Yi, et al. Performance of interlayer toughened carbon fiber/epoxy composites of low areal density PA66 fiber veil[J]. Acta Materiae Compositae Sinica, 2025, 42 (in Chinese). [3] CHANG, W, L R F ROSE, M S ISLAM, et al, Strengthening and toughening epoxy polymer at cryogenic temperature using cupric oxide nanorods[J]. Composites Science and Technology, 2021, 208: 108762. [4] QU, C B, T WU, G W HUANG, et al, Improving cryogenic mechanical properties of carbon fiber reinforced composites based on epoxy resin toughened by hydroxyl-terminated polyurethane[J]. Composites Part B: Engineering, 2021, 210: 108569. [5] YAN, M, Y LIU, W JIANG, et al, Mechanism of matrix influencing the cryogenic mechanical property of carbon fibre reinforced epoxy resin composite[J]. Composites Communications, 2022, 33: 101220. [6] KARA, M, M KıRıCı, A C TATAR, et al, Impact behavior of carbon fiber/epoxy composite tubes reinforced with multi-walled carbon nanotubes at cryogenic environment[J]. Composites Part B: Engineering, 2018, 145: 145-154. [7] HE, Y, Q CHEN, S YANG, et al, Micro-crack behavior of carbon fiber reinforced Fe3O4/graphene oxide modified epoxy composites for cryogenic application[J]. Composites Part A: Applied Science and Manufacturing, 2018, 108: 12-22. [8] ISLAM, M S, W CHANG, Z SHA, et al, Mitigating cryogenic microcracking in carbon-fibre reinforced polymer composites using negative thermal-expansion nanoparticles functionalized by a polydopamine coating[J]. Composites Part B: Engineering, 2023, 257: 110676. [9] WANG, W T, H YU, K POTTER, et al, Effect of the characteristics of nylon microparticles on Mode-I interlaminar fracture toughness of carbon-fibre/epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 138: 106073. [10] LIU, D, G LI, B LI, et al, In-situ toughened CFRP composites by shear-calender orientation and fiber-bundle filtration of PA microparticles at prepreg interlayer[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 165-174. [11] ALJARRAH, M T and N R ABDELAL, Improvement of the mode I interlaminar fracture toughness of carbon fiber composite reinforced with electrospun nylon nanofiber[J]. Composites Part B: Engineering, 2019, 165: 379-385. [12] ZHENG, N, H-Y LIU, J GAO, et al, Synergetic improvement of interlaminar fracture energy in carbon fiber/epoxy composites with nylon nanofiber/polycaprolactone blend interleaves[J]. Composites Part B: Engineering, 2019, 171: 320-328. [13] ASTM. Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis: E831-19[S]. West Conshohocken: ASTM International, 2019. [14] ASTM. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites: D5528/D5528M-21[S]. West Conshohocken: ASTM International, 2021. [15] ASTM. Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites: D7905/D7905M-19[S]. West Conshohocken: ASTM International, 2019. [16] ASTM. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials: D3039/D3039M-17[S]. West Conshohocken: ASTM International, 2017. [17] ASTM. Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials: D7264/D7264M-21[S]. West Conshohocken: ASTM International, 2021. [18] ASTM. Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates: D2344/D2344M−16[S]. West Conshohocken: ASTM International, 2016. [19] ISLAM, M S, L F BENNINGER, G PEARCE, et al, Toughening carbon fibre composites at cryogenic temperatures using low-thermal expansion nanoparticles[J]. Composites Part A: Applied Science and Manufacturing, 2021, 150: 106613. [20] AL-SHAWABKEH, A F, Thermodynamic characteristics of the aliphatic polyamide crystal structures: Enhancement of nylon 66α, 610α and 77γ polymers[J]. Heliyon, 2023, 9(10): e21042. [21] BECHEL, V T, M B FREDIN, S L DONALDSON, et al, Effect of stacking sequence on micro-cracking in a cryogenically cycled carbon/bismaleimide composite[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(7): 663-672. [22] XUE, Y, Z LI, J LUO, et al, Simultaneous toughening and strengthening of CF/EP composites through bi-component thermoplastics with hybrid phases between composite layers[J]. Composites Part B: Engineering, 2024, 274: 111286. [23] BECKERMANN, G W and K L PICKERING, Mode I and Mode II interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils[J]. Composites Part A: Applied Science and Manufacturing, 2015, 72: 11-21. [24] HOHE, J, M SCHOBER, S FLIEGENER, et al, Effect of cryogenic environments on failure of carbon fiber reinforced composites[J]. Composites Science and Technology, 2021, 212: 108850. [25] JIA, L, P QI, K SHI, et al, High performance epoxy-based composites for cryogenic use: A approach based on synergetic strengthening effects of epoxy grafted polyurethane and MWCNTs-NH2[J]. Composites Science and Technology, 2019, 184: 107865.
计量
- 文章访问数: 42
- HTML全文浏览量: 34
- 被引次数: 0