留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共聚尼龙纤维网纱增韧碳纤维/环氧树脂复合材料超低温作用后的层间结构与性能

曹楠 张辉 刘千立 薛怿 阳泽濠 杨晨曦 刘杰 韩克清 马禹

曹楠, 张辉, 刘千立, 等. 共聚尼龙纤维网纱增韧碳纤维/环氧树脂复合材料超低温作用后的层间结构与性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 曹楠, 张辉, 刘千立, 等. 共聚尼龙纤维网纱增韧碳纤维/环氧树脂复合材料超低温作用后的层间结构与性能[J]. 复合材料学报, 2024, 42(0): 1-11.
CAO Nan, ZHANG Hui, LIU Qianli, et al. Interlaminar structure and properties of carbon fiber/epoxy composites toughened with copolymerized nylon fiber veil after cryogenic treatment[J]. Acta Materiae Compositae Sinica.
Citation: CAO Nan, ZHANG Hui, LIU Qianli, et al. Interlaminar structure and properties of carbon fiber/epoxy composites toughened with copolymerized nylon fiber veil after cryogenic treatment[J]. Acta Materiae Compositae Sinica.

共聚尼龙纤维网纱增韧碳纤维/环氧树脂复合材料超低温作用后的层间结构与性能

基金项目: 上海市科委(22511102702);国家重点研发计划(2022YFB3709202);江苏省重点研发计划(BE2021014-3)
详细信息
    通讯作者:

    韩克清,博士,教授,博士生导师,研究方向为高性能纤维及其复合材料 E-mail:hankeqing@dhu.edu.cn

    马禹,博士,副教授,硕士生导师,研究方向为高分子材料的制备与应用 E-mail:yma@dhu.edu.cn

  • 中图分类号: TB332

Interlaminar structure and properties of carbon fiber/epoxy composites toughened with copolymerized nylon fiber veil after cryogenic treatment

Funds: Shanghai Science and Technology Committee (22511102702); National Key Research and Development Program of China (2022YFB3709202); Province Key Research and Development Program of Jiangsu
  • 摘要: 本文通过自主搭建超低温/室温循环研究平台,探究了超低温浸泡时间和超低温/室温循环次数对碳纤维/环氧树脂(CF/EP)复合材料各项力学性能的影响。之后将不同面密度共聚尼龙纤维网纱(PAV)插入到复合材料层间,研究在液氮中超低温浸泡16 h后复合材料层间韧性的变化。结果表明,未增韧情况下超低温浸泡16 h后CF/EP复合材料的Ⅰ型层间断裂韧性(GⅠC)、Ⅱ型层间断裂韧性(GⅡC)、拉伸强度和弯曲强度分别下降了46.2%、22.9%、17.7%和3.2%。而当插入面密度为8 gsm的PAV时,与未增韧样相比CF/EP复合材料的GⅠC在室温下和超低温浸泡16 h后分别提升了49.1%和114.0%;当插入面密度为24 gsm的PAV时,增韧样的GⅡC相比于未增韧样在室温下和超低温浸泡16 h后分别提升了140.2%和178.0%。此外PAV的插入并未对CF/EP复合材料的弯曲性能和层间剪切强度造成明显影响。研究表明,PAV的增韧机制主要是尼龙树脂的拔出、基体塑性形变以及引发裂纹的偏转。本研究改善了超低温处理后的CF/EP复合材料层间韧性,对推动超低温贮箱复合材料化进程具有积极意义。

     

  • 图  1  碳纤维/环氧树脂(CF/EP)复合材料制备工艺流程图

    Figure  1.  Schematic diagram of the preparation process of carbon fiber/epoxy(CF/EP)composites

    图  2  CF/EP复合材料超低温/室温循环过程温度随时间的变化

    Figure  2.  Temperature variation with time during cryogenic/room temperature cycling of CF/EP composites

    图  3  不同面密度共聚尼龙纤维网纱形貌图:(a)共聚尼龙纤维网纱宏观图;(b) 8 gsm;(c) 16 gsm;(d) 24 gsm

    Figure  3.  The morphology of copolymerized nylon fiber veil with different areal densities: (a)d iagram of copolymerized nylon fiber veil; (b) 8 gsm; (c) 16 gsm; (d) 24 gsm

    图  4  (a)尼龙纤维网纱的DSC曲线 (b) YY23环氧树脂、CF/EP复合材料线性热膨胀系数随温度的变化

    Figure  4.  (a) DSC of nylon copolymer fiber veil (b) Variation of linear coefficient of thermal expansion with temperature for YY23 epoxy and CF/EP composites

    图  5  不同超低温处理后CF/EP复合材料力学性能测试结果

    Figure  5.  Mechanical properties of CF/EP composites after different cryogenic treatment

    图  6  不同面密度PAV层间增韧CF/EP复合材料的GⅠC测试结果

    Figure  6.  GIC test results of PAV interlayer toughened CF/EP composites with different areal densities

    图  7  不同面密度PAV层间增韧CF/EP复合材料的Ⅰ型断裂面SEM图

    Figure  7.  SEM images of mode I fracture surfaces of PAV interlayer toughened CF/EP composites with different areal densities

    图  8  不同面密度PAV层间增韧CF/EP复合材料的GⅡC测试结果

    Figure  8.  GⅡC test results of PAV interlayer toughened CF/EP composites with different areal densities

    图  9  不同面密度PAV层间增韧CF/EP复合材料的Ⅱ型断裂面SEM图

    Figure  9.  SEM images of mode Ⅱ fracture surfaces of PAV interlayer toughened CF/EP composites with different areal densities

    图  10  不同面密度PAV层间增韧CF/EP复合材料的弯曲性能

    Figure  10.  Flexural properties of PAV interlayer toughened CF/EP composites with different areal densities

    图  11  不同面密度PAV层间增韧CF/EP复合材料的层间厚度:(a) Ref;(b) PA8;(c) PA16;(d) PA24

    Figure  11.  Interlayer thickness of PAV interlayer toughened CF/EP composites with different areal densities: (a) Ref; (b) PA8;(c) PA16; (d) PA24

    图  12  不同面密度PAV层间增韧CF/EP复合材料的层间剪切强度

    Figure  12.  ILSS of PAV interlayer toughened CF/EP composites with different areal densities

    表  1  线性热膨胀系数对比表

    Table  1.   Comparison table of linear coefficients of thermal expansion

    Sample YY23 CF/EP PA8-CF/EP
    CTE.m/(×10−6·℃−1) 31 17 45
    Notes:CTE.m is mean coefficient of thermal expansion;YY23 is YY23 epoxy;CF/EP is carbon fiber/epoxy composite;PA8-CF/EP is carbon fiber/epoxy composite toughened by copolymerized nylon fiber veil with 8 gsm areal densities
    下载: 导出CSV
  • [1] 吴龙强, 欧云福, 茅东升, 等. 取向碳纳米管纤维纱插层碳纤维/环氧树脂复合材料的层间性能及增韧机制[J]. 复合材料学报, 2023, 40(10): 5611-5620.

    WU Longqiang, OU Yunfu, MAO Dongsheng, et al. Interlaminar properties and toughening mechanisms of aligned carbon nanotube fiber veil interleaved carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5611-5620(in Chinese).
    [2] 赵庆志, 阳泽濠, 薛怿, 等. 低面密度PA66纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 复合材料学报: 1-9.

    ZHAO Qingzhi, YANG Zehao , XUE Yi, et al. Performance of interlayer toughened carbon fiber/epoxy composites of low areal density PA66 fiber veil[J]. Acta Materiae Compositae Sinica, 2025, 42 (in Chinese).
    [3] CHANG, W, L R F ROSE, M S ISLAM, et al, Strengthening and toughening epoxy polymer at cryogenic temperature using cupric oxide nanorods[J]. Composites Science and Technology, 2021, 208: 108762.
    [4] QU, C B, T WU, G W HUANG, et al, Improving cryogenic mechanical properties of carbon fiber reinforced composites based on epoxy resin toughened by hydroxyl-terminated polyurethane[J]. Composites Part B: Engineering, 2021, 210: 108569.
    [5] YAN, M, Y LIU, W JIANG, et al, Mechanism of matrix influencing the cryogenic mechanical property of carbon fibre reinforced epoxy resin composite[J]. Composites Communications, 2022, 33: 101220.
    [6] KARA, M, M KıRıCı, A C TATAR, et al, Impact behavior of carbon fiber/epoxy composite tubes reinforced with multi-walled carbon nanotubes at cryogenic environment[J]. Composites Part B: Engineering, 2018, 145: 145-154.
    [7] HE, Y, Q CHEN, S YANG, et al, Micro-crack behavior of carbon fiber reinforced Fe3O4/graphene oxide modified epoxy composites for cryogenic application[J]. Composites Part A: Applied Science and Manufacturing, 2018, 108: 12-22.
    [8] ISLAM, M S, W CHANG, Z SHA, et al, Mitigating cryogenic microcracking in carbon-fibre reinforced polymer composites using negative thermal-expansion nanoparticles functionalized by a polydopamine coating[J]. Composites Part B: Engineering, 2023, 257: 110676.
    [9] WANG, W T, H YU, K POTTER, et al, Effect of the characteristics of nylon microparticles on Mode-I interlaminar fracture toughness of carbon-fibre/epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 138: 106073.
    [10] LIU, D, G LI, B LI, et al, In-situ toughened CFRP composites by shear-calender orientation and fiber-bundle filtration of PA microparticles at prepreg interlayer[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 165-174.
    [11] ALJARRAH, M T and N R ABDELAL, Improvement of the mode I interlaminar fracture toughness of carbon fiber composite reinforced with electrospun nylon nanofiber[J]. Composites Part B: Engineering, 2019, 165: 379-385.
    [12] ZHENG, N, H-Y LIU, J GAO, et al, Synergetic improvement of interlaminar fracture energy in carbon fiber/epoxy composites with nylon nanofiber/polycaprolactone blend interleaves[J]. Composites Part B: Engineering, 2019, 171: 320-328.
    [13] ASTM. Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis: E831-19[S]. West Conshohocken: ASTM International, 2019.
    [14] ASTM. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites: D5528/D5528M-21[S]. West Conshohocken: ASTM International, 2021.
    [15] ASTM. Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites: D7905/D7905M-19[S]. West Conshohocken: ASTM International, 2019.
    [16] ASTM. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials: D3039/D3039M-17[S]. West Conshohocken: ASTM International, 2017.
    [17] ASTM. Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials: D7264/D7264M-21[S]. West Conshohocken: ASTM International, 2021.
    [18] ASTM. Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates: D2344/D2344M−16[S]. West Conshohocken: ASTM International, 2016.
    [19] ISLAM, M S, L F BENNINGER, G PEARCE, et al, Toughening carbon fibre composites at cryogenic temperatures using low-thermal expansion nanoparticles[J]. Composites Part A: Applied Science and Manufacturing, 2021, 150: 106613.
    [20] AL-SHAWABKEH, A F, Thermodynamic characteristics of the aliphatic polyamide crystal structures: Enhancement of nylon 66α, 610α and 77γ polymers[J]. Heliyon, 2023, 9(10): e21042.
    [21] BECHEL, V T, M B FREDIN, S L DONALDSON, et al, Effect of stacking sequence on micro-cracking in a cryogenically cycled carbon/bismaleimide composite[J]. Composites Part A: Applied Science and Manufacturing, 2003, 34(7): 663-672.
    [22] XUE, Y, Z LI, J LUO, et al, Simultaneous toughening and strengthening of CF/EP composites through bi-component thermoplastics with hybrid phases between composite layers[J]. Composites Part B: Engineering, 2024, 274: 111286.
    [23] BECKERMANN, G W and K L PICKERING, Mode I and Mode II interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils[J]. Composites Part A: Applied Science and Manufacturing, 2015, 72: 11-21.
    [24] HOHE, J, M SCHOBER, S FLIEGENER, et al, Effect of cryogenic environments on failure of carbon fiber reinforced composites[J]. Composites Science and Technology, 2021, 212: 108850.
    [25] JIA, L, P QI, K SHI, et al, High performance epoxy-based composites for cryogenic use: A approach based on synergetic strengthening effects of epoxy grafted polyurethane and MWCNTs-NH2[J]. Composites Science and Technology, 2019, 184: 107865.
  • 加载中
计量
  • 文章访问数:  42
  • HTML全文浏览量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-05
  • 修回日期:  2024-07-29
  • 录用日期:  2024-08-09
  • 网络出版日期:  2024-09-07

目录

    /

    返回文章
    返回