Preparation of high-strength MXene/PPy@BC composite films and their electromagnetic shielding properties
-
摘要: 随着通信技术和移动电子设备的不断发展,电磁干扰问题日益突显,因此研发高性能的电磁屏蔽材料成为当前重要的研究方向。本文采用简单的真空过滤方法,成功制备了高导电性能的MXene/聚吡咯(PPy)@细菌纤维素(BC)薄膜(MPB),深入研究了MXene和PPy@BC不同比例对复合薄膜导电性能、力学性能和电磁屏蔽性能的影响规律。研究表明:当MXene和PPy@BC比例为3∶1时,电导率和X波段电磁屏蔽效能(EMI SE)均达到最大值,分别1209 S/cm和63.89 dB;此外,由于PPy@BC和MXene之间存在丰富的氢键相互作用,使得复合薄膜的最大抗拉强度可达到24.73 MPa,较纯MXene薄膜提升了近10倍。MPB薄膜优异的综合性能展示了其在下一代智能和可穿戴电子产品的EMI屏蔽方面的巨大潜力。Abstract: With the continuous development of communication technology and mobile electronic devices, electromagnetic interference problem is increasingly prominent, so the development of high performance electromagnetic shielding materials has become an important research direction. In this paper, a high conductivity MXene/polypyrrole (PPy)@bacterial cellulose (BC) film (MPB) with high conductivity was successfully prepared by a simple vacuum filtration method. The influence of different proportions of MXene and PPy@BC on the conductivity, mechanical properties and electromagnetic shielding performance of the composite film was deeply studied. The results show that when the ratio of MXene and PPy@BC is 3∶1, the conductivity and X-band electromagnetic shielding efficiency (EMI SE) reach the maximum, 1209 S/cm and 63.89 dB, respectively. In addition, due to the rich hydrogen bond interaction between PPy@BC and MXene, the maximum tensile strength of the composite film can reach 24.73 MPa, which is nearly 10 times higher than that of pure MXene film. The excellent comprehensive performance of MPB film shows its great potential in the EMI shielding of the next generation of intelligent and wearable electronic products.
-
Key words:
- MXene /
- polypyrrole /
- bacterial cellulose /
- electromagnetic shielding /
- mechanical property /
- composite film
-
图 9 不同 MXene和PPy@BC比例的MPB复合薄膜电磁屏蔽效能(EMI SE)(a),反射损耗(SER),吸收损耗(SEA)和总电磁屏蔽效能(SET)(b),R-A-T系数(c)
Figure 9. Electromagnetic shielding effectiveness (EMI SE) (a), reflection loss (SER), absorption loss (SEA) and total electromagnetic shielding effectiveness (SET) (b), and R-A-T coefficients (c) of MPB composite films with different MXene and PPy@BC ratios
-
[1] 张淑琴, 张彭. 电磁辐射的危害与防护[J]. 工业安全与环保, 2008, 34(3): 30-32. doi: 10.3969/j.issn.1001-425X.2008.03.014ZHANG Shuqin, ZHANG Peng. Hazards and protection of electromagnetic radiation[J]. Industrial Safety and Environmental Protection, 2008, 34(3): 30-32(in Chinese). doi: 10.3969/j.issn.1001-425X.2008.03.014 [2] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. doi: 10.1126/science.aag2421 [3] 王静, 罗蕙敏, 刘元军, 等. 电磁吸收与屏蔽材料[J]. 染整技术, 2020, 42(2): 9.WANG Jing, LUO Huimin, LIU Yuanjun, et al. Electromagnetic absorption and shielding materials[J]. Dyeing and Finishing Technology, 2020, 42(2): 9(in Chinese). [4] 文峰, 符佳伟, 王新远, 等. 多壁碳纳米管导电纸/碳纤维复合材料的制各及电磁屏蔽性能研究[J]. 化工新型材料, 2020, 48(9): 68-71.WEN Feng, FU Jiawei, WANG Xinyuan, et al. Research on the fabrication of multi-walled carbon nanotube conductive paper/carbon fiber composites and electromagnetic shielding performance[J]. New Chemical Materials, 2020, 48(9): 68-71(in Chinese). [5] YAO Y, JIN S, WANG M, et al. MXene hybrid polyvinyl alcohol flexible composite films for electromagnetic interference shielding[J]. Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2022, (Mar.15): 578. [6] ZHANG Y Z, WANG Y, JIANG Q, et al. MXene printing and patterned coating for device applications[J]. Advanced materials, 2020, 32(21): 1908486. doi: 10.1002/adma.201908486 [7] PANG J, MENDES R G, BACHMATIUK A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews, 2019, 48(1): 72-133. doi: 10.1039/C8CS00324F [8] FU Z, WANG N, LEGUT D, et al. Rational design of flexible two-dimensional MXenes with multiple functionalities[J]. Chemical reviews, 2019, 119(23): 11980-12031. doi: 10.1021/acs.chemrev.9b00348 [9] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced materials, 2011, 23(37): 4248-4253. doi: 10.1002/adma.201102306 [10] LIU F, Li Y, HAO S, et al. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding[J]. Carbohydrate polymers, 2020, 243: 116467. doi: 10.1016/j.carbpol.2020.116467 [11] MA Z, KANG S, MA J, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding[J]. Acs Nano, 2020, 14(7): 8368-8382. doi: 10.1021/acsnano.0c02401 [12] CHENG W, FU J, HU H, et al. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density[J]. Advanced Science, 2021, 8(16): 2100775. doi: 10.1002/advs.202100775 [13] JIAO S, ZHOU A, WU M, et al. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays[J]. Advanced Science, 2019, 6(12): 1900529. doi: 10.1002/advs.201900529 [14] XU X, CHEN Y, HE P, et al. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring[J]. Nano Research, 2021, 14(8): 2875-2883. doi: 10.1007/s12274-021-3536-3 [15] LI X P, LI Y, LI X, et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets[J]. Journal of colloid and interface science, 2019, 542: 54-62. doi: 10.1016/j.jcis.2019.01.123 [16] ZHAO Y, DENG C, YAN B, et al. One-Step Method for Fabricating Janus Aramid Nanofiber/MXene Nanocomposite Films with Improved Joule Heating and Thermal Camouflage Properties[J]. ACS Applied Materials & Interfaces, 2023, 15(47): 55150-55162. [17] LIU R, MIAO M, LI Y, et al. Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding[J]. ACS applied materials & interfaces, 2018, 10(51): 44787-44795. [18] 施鸥玲, 谭妍妍, 武晓等. 具有高导电性的PVDF/MWCNTs-AgNWs@MXene双层三维网络的电磁屏蔽复合薄膜[J/OL]. 复合材料学报, 2024, 1-14.SHI Ouling, TAN Yanyan, WU Xiao, et al. Electromagnetic shielding composite films with highly conductive PVDF/MWCNTs-AgNWs@MXene bilayer three-dimensional network[J/OL]. Journal of Composite Materials, 2024, 1-14. (in Chinese) [19] HUO Y, GUO D, YANG J, et al. Multifunctional bacterial cellulose nanofibers/polypyrrole (PPy) composite films for joule heating and electromagnetic interference shielding[J]. ACS Applied Electronic Materials, 2022, 4(5): 2552-2560. doi: 10.1021/acsaelm.2c00316 [20] SHI Y, XIANG Z, CAI L, et al. Multi-interface Assembled N-Doped MXene/HCFG/AgNW Films for Wearable Electromagnetic Shielding Devices with Multimodal Energy Conversion and Healthcare Monitoring Performances[J]. 2022, 16(5): 7816–7833. [21] 张艳, 马忠雷, 李桢等. 轻质高强MXene/细菌纤维素复合气凝胶的制备及其电磁屏蔽性能[J]. 复合材料学报, 2023, 40(11): 6407-6415.ZHANG Yan, MA Zhonglei, LI Zhen et al. Preparation of lightweight and high-strength MXene/bacterial cellulose composite aerogels and their electromagnetic shielding properties[J]. Journal of Composite Materials, 2023, 40(11): 6407-6415(in Chinese). [22] SONG Q, ZHAN Z, CHEN B, et al. Biotemplate synthesis of polypyrrole@ bacterial cellulose/MXene nanocomposites with synergistically enhanced electrochemical performance[J]. Cellulose, 2020, 27: 7475-7488. doi: 10.1007/s10570-020-03310-7 [23] WU H, ZHU C, LI X, et al. Layer-by-Layer Assembly of Multifunctional NR/MXene/CNTs Composite Films with Exceptional Electromagnetic Interference Shielding Performances and Excellent Mechanical Properties[J]. Macromolecular Rapid Communications, 2022, 43(18): 2200387. doi: 10.1002/marc.202200387 [24] WANG J, ZHU X, XIONG P, et al. Flexible, robust and washable bacterial cellulose/silver nanowire conductive paper for high-performance electromagnetic interference shielding[J]. Journal of Materials Chemistry A, 2022, 10(2): 960-968. doi: 10.1039/D1TA07900J [25] ROSTAMI M, MAGHAMI S, VATANPOUR V, et al. The nanocomposites of N-doped graphene oxide decorated with La-doped Zn-Cu-Ni ferrite with lightweight and excellent absorption-dominant electromagnetic interference shielding performance[J]. Journal of Materials Science:Materials in Electronics, 2023, 34(10): 882. doi: 10.1007/s10854-023-10293-1 [26] SONG W L, GUAN X T, FAN L Z, et al. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding[J]. Journal of Materials Chemistry A, 2015, 3(5): 2097-2107. doi: 10.1039/C4TA05939E [27] LIU F, LI Y, HAO S, et al. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding[J]. Carbohydrate Polymers:Scientific and Technological Aspects of Industrially Important Polysaccharides, 2020, 243: 116467. [28] XIN W, XI GQ, CAO WT, et al. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding[J]. RSC Adv, 2019, 9(51): 29636-29644. doi: 10.1039/C9RA06399D [29] WU F, TIAN Z, HU P, et al. Lightweight and flexible PAN@ PPy/MXene films with outstanding electromagnetic interference shielding and Joule heating performance[J]. Nanoscale, 2022, 14(48): 18133-18142. doi: 10.1039/D2NR05318G [30] LI S, LI S, XU S, et al. Ultra-thin broadband terahertz absorption and electromagnetic shielding properties of MXene/rGO composite film[J]. Carbon, 2022, 194: 127-139. doi: 10.1016/j.carbon.2022.03.048 [31] ZHANG Y, WANG L, ZHANG J, et al. Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films[J]. Composites Science and Technology, 2019, 183: 107833. doi: 10.1016/j.compscitech.2019.107833 [32] WANG S J, LI D S, JIANG L. Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films[J]. Advanced Materials Interfaces, 2019, 6(19): 1900961. doi: 10.1002/admi.201900961 [33] ZHANG K, GU X, DAI Q, et al. Flexible polyaniline-coated poplar fiber composite membranes with effective electromagnetic shielding performance[J]. Vacuum, 2019, 170: 108990. doi: 10.1016/j.vacuum.2019.108990 [34] MA M, TAO W, LIAO X, et al. Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding[J]. Chemical Engineering Journal, 2023, 452: 139471. doi: 10.1016/j.cej.2022.139471 [35] LIANG L, XU P, WANG Y, et al. Flexible polyvinylidene fluoride film with alternating oriented graphene/Ni nanochains for electromagnetic interference shielding and thermal management[J]. Chemical Engineering Journal, 2020, 395: 125209. doi: 10.1016/j.cej.2020.125209 [36] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: a review[J]. Advanced Functional Materials, 2020, 30(47): 2000883. doi: 10.1002/adfm.202000883
计量
- 文章访问数: 172
- HTML全文浏览量: 120
- 被引次数: 0