Preparation of high-strength MXene/PPy@BC composite films and their electromagnetic shielding properties
-
摘要:
随着通信技术和移动电子设备的不断发展,电磁干扰问题日益突显,因此研发高性能的电磁屏蔽材料成为当前重要的研究方向。本文采用简单的真空过滤方法,成功制备了高导电性能的MXene/聚吡咯(PPy)@细菌纤维素(BC)薄膜(MPB),深入研究了MXene和PPy@BC不同质量比对复合薄膜导电性能、力学性能和电磁屏蔽性能的影响规律。研究表明:当MXene和PPy@BC质量比为3∶1时,电导率和X波段电磁屏蔽效能(EMI SE)均达到最大值,分别为
1209 S/cm和63.89 dB;此外,由于PPy@BC和MXene之间存在丰富的氢键相互作用,使得复合薄膜的最大抗拉强度可达到24.73 MPa,较纯MXene薄膜提升了近10倍。MPB薄膜优异的综合性能展示了其在下一代智能和可穿戴电子产品的EMI屏蔽方面的巨大潜力。Abstract:With the continuous development of communication technology and mobile electronic devices, electromagnetic interference problem is increasingly prominent, so the development of high performance electromagnetic shielding materials has become an important research direction. In this paper, a high conductivity MXene/polypyrrole (PPy)@bacterial cellulose (BC) film (MPB) with high conductivity was successfully prepared by a simple vacuum filtration method. The influence of different mass ratios of MXene and PPy@BC on the conductivity, mechanical properties and electromagnetic shielding performance of the composite film was deeply studied. The results show that when the mass ratio of MXene and PPy@BC is 3∶1, the conductivity and X-band electromagnetic shielding efficiency (EMI SE) reach the maximum,
1209 S/cm and 63.89 dB, respectively. In addition, due to the rich hydrogen bond interaction between PPy@BC and MXene, the maximum tensile strength of the composite film can reach 24.73 MPa, which is nearly 10 times higher than that of pure MXene film. The excellent comprehensive performance of MPB film shows its great potential in the EMI shielding of the next generation of intelligent and wearable electronic products.-
Keywords:
- MXene /
- polypyrrole /
- bacterial cellulose /
- electromagnetic shielding /
- mechanical property /
- composite film
-
随着我国桥梁建设的快速发展,交通量的增加,桥梁结构遭遇火灾情况也时有发生[1-4],2007年10月广东广深高速虎门大桥,油罐车爆炸引发大火,拉索和桥墩都被大火湮灭;2014年,湖南郴州在建赤石特大桥在主跨合拢前6号桥墩左幅塔顶突发大火,事故导致6号桥墩左幅9根斜拉索断裂,这些火灾事故对缆索的受力性能构成了极大的考验。文献[5-8]对钢丝缆索的高温力学性能进行研究,在火灾高温下钢丝力学性能会明显下降,导致缆索的承载能力急剧下降。
采用轻质、高强、耐腐蚀、抗疲劳的碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)用于桥梁缆索,可提高桥梁跨径,从根本上解决钢质拉索的腐蚀及疲劳问题。但CFRP索内的CFRP筋遇到火灾后环氧树脂会燃烧分解,影响其极限承载性能,对桥梁结构的安全造成影响。文献[9-12]通过试验研究发现,高温下CFRP筋的力学性能下降十分明显。付成龙等[11]研究了温度对CFRP筋弯曲强度和压缩强度的影响,研究显示温度对试样弯曲强度和压缩强度的影响较大,CFRP筋的强度保留率随温度升高而降低。方志等[12]对较高玻璃化转变温度Tg(Tg >200℃)的CFRP筋高温后力学性能进行研究,处理温度为100℃时,筋材静力性能与常温试件相比未发生明显变化,筋材经历200℃和300℃温升作用后,其抗拉强度、弹性模量和极限拉应变均有所下降。
文献[13-15]对桥梁缆索的阻燃防火措施做了一些研究。李艳等[13]在索体外表面设置一种导热系数很低的耐高温防火涂层,从而降低火源热辐射传给索体的温度。张凯等[14]研究了带砂浆包覆层CFRP筋的高温力学性能,在砂浆包覆层保持完好未爆裂的情况下,包覆层为CFRP筋提供了较好的隔氧环境,CFRP筋在长时间高温作用后具有较高的残余强度。徐玉林等[15]对外包陶瓷纤维防火层的CFRP索的耐火性进行了火灾试验研究,对CFRP 缆索外包陶瓷纤维防火层可大幅提高缆索的临界安全耐火时长。
综上所述,目前已有一些缆索的阻燃防火措施,如外包砂浆或陶瓷纤维防火层,但这些措施会大幅度增大索体直径,严重影响索体外表面的空气动力学特性。本文针对桥梁缆索用CFRP筋在高温下的力学性能及CFRP索的阻燃防火措施进行系统研究,研制开发具有阻燃防火特性的CFRP索,避免火灾带来的风险,保障应用安全,有助于CFRP索的推广应用。
1. CFRP筋高温力学性能
CFRP筋采用拉挤成型工艺制备,为了便于锚固,筋材表面带有螺旋肋,筋材底径7 mm,纤维体积分数为72vol%,密度为1.52 g/cm3,玻璃化转变温度Tg为120℃。
图1为CFRP筋高温拉伸试验。可见,筋材两端采用粘结型锚固方式,筋材锚固后穿过试验台架,在筋材中间自由段部位外套金属铝筒,金属铝筒外缠绕加热带对筒内空气进行加热,采用热电偶监测空气温度,采用温度继电器控制温度,使金属铝筒内温度保持设定温度,采用千斤顶加载,加载速度不超过300 MPa/min。筋材拉伸强度为筋材破断时压力传感器载荷读数除以筋材承载面积。
1.1 CFRP筋不同加热温度下力学性能
对筋材中间自由段部位进行加热,加热至指定温度,保温2 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。
图2为不同温度下保温 2 h后的CFRP筋材抗拉强度。可以看出,随着试验温度的升高,筋材拉伸强度呈线性下降趋势,270℃加热2 h,筋材强度降为2000 MPa左右,210℃加热2 h,筋材强度最低为2245.8 MPa,比初始强度下降26.13%。图3为保温2 h后筋材高温拉伸破断照片。可以看出,筋材发生了散丝状断裂。
1.2 CFRP筋不同加热时间下力学性能
对筋材中间自由段部位进行加热,加热至210℃,分别保温1、2、3 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。图4为210℃不同保温时间下的CFRP筋材抗拉强度。
可以看出,筋材高温拉伸强度仅与试验温度有关,当筋材芯部温度达到保温温度时,筋材的高温拉伸强度与保温时间无关,210℃的高温3 h内,筋材剩余拉伸强度均能达到2245.8 MPa以上。
1.3 CFRP筋加热冷却后力学性能
对筋材中间自由段部位进行加热,加热至指定温度,保温2 h,待筋材充分冷却至室温后进行破断拉伸试验,获得筋材经历高温冷却后的拉伸强度,如图5所示。可以看出,筋材高温加热冷却后继续进行拉伸试验,拉伸强度会存在一定的可逆性恢复,且恢复后的剩余强度均能达到2800 MPa以上,但最终剩余拉伸强度较原始强度呈略微下降趋势,且加热温度越高,剩余拉伸强度越低,最大下降幅度为6.13%。
2. CFRP索阻燃防火措施
分别采用石棉布、陶瓷纤维布及阻燃防火涂层材料来研究对CFRP筋/索的阻燃防火效果。
2.1 石棉布、陶瓷纤维布阻燃防火效果
对在持荷状态下的7 mm直径CFRP筋试验件中间部位用火焰温度1000℃的高温火焰枪进行灼烧,如图6所示,其中图6(a)中筋材无保护,图6(b)中筋材包裹陶瓷纤维布,观测不同时间筋材的受力状态及筋材表面的温度变化,灼烧2 h后,进行破断拉伸试验,获得剩余强度。
表1为不同防护措施下筋材温度及持荷性能。可以看出,在无任何防护条件下,对拉伸应力水平1170 MPa条件下的CFRP筋用火焰温度1000℃的高温火焰枪进行灼烧,25 min后,筋材灼烧部位树脂热解,筋材断裂;采用45 mm厚度陶瓷纤维布与石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高分别为562℃与635℃,筋材高温部位树脂发生热解,没有发生断裂(图7),剩余强度分别为1646 MPa与1249 MPa,图8为其破断试样;采用60 mm厚度石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高为170℃,筋材完好,没有发生断裂,剩余强度为3121 MPa,筋材基本没有发生损伤。
表 1 不同防护类型下CFRP筋材温度及持荷性能Table 1. Temperature and load carrying capacity of CFRP tendons under different protection typesProtection
typeProtection thickness/mm Burning time/min CFRP tendons temperature/℃ Stress level/MPa Test result Resident strength/MPa — — 25 1000 1170 Resin pyrolysis,
tendon tensile fracture— Ceramic fiber cloth 45 120 562 1170 Resin pyrolysis,
tendon is not fracture1646 Asbestos 45 120 635 1170 Resin pyrolysis,
tendon is not fracture1249 Asbestos 60 120 170 1170 The tendon is not damaged 3121 以上试验研究可以看出,包裹60 mm厚的石棉可以起到很好的阻燃防火效果,但是过厚的石棉必然影响索体直径,给CFRP索的盘卷带来困难,同时会改变索体表面原有的空气动力学特性,不方便应用。
2.2 阻燃防火涂层
选用一种阻燃防火涂层,刷在CFRP索股索体双层聚乙烯(PE)护套外表面,其中索股直径61 mm,PE护套厚度6 mm,阻燃防火涂层厚度2 mm,如图9所示。所用阻燃防火涂料层由基料丙烯酸乳液、膨胀催化剂聚磷酸铵、碳化剂季戊四醇、膨胀发泡剂三聚氰胺与氯化石蜡、颜料钛白粉、成膜助剂醇酯等组成。
在PE表面刷有2 mm阻燃防火涂层,并在索体PE内表面预埋测温线,用火焰温度1000℃的高温火焰枪对索股局部进行长达2 h的高温灼烧试验(图10),阻燃防火涂料层发生膨胀并形成均匀而致密蜂窝状碳化层,保护双层PE护套不发生燃烧,使得缆索具有阻燃防火特性,PE护套仅发生软化。无阻燃防火涂层保护的索体5 min内PE护套燃烧殆尽,漏出索体(图11)。图12为2 mm阻燃防火涂层温度-时间曲线。可以看出,2 h灼烧索股PE内表面最高温度为206℃。
2.3 CFRP索股表层不同位置处温度测定
为探究发生火灾时CFRP索股内部PE内筋材温度,将测温线置于不同位置处测量灼烧试验时各位置的温度(图13),分别为索股PE内表面、距离PE内表面7 mm、距离PE内表面14 mm。图14为灼烧2 h索股内部不同位置处温度-时间曲线。可以看出,紧贴PE内表面的温度最高,为206℃,其次是测温线与PE内表层间隔7 mm处的温度(次外层筋材),为156℃,温度最低的是与PE内表层距离14 mm处的温度(第三层筋材),为100℃。
3. 阻燃防火涂层耐火时间
针对阻燃防火涂层的不同厚度,试验研究在1000℃火焰灼烧下阻燃防火效果的持续性,索股规格同2.2节。图15为不同厚度阻燃防火涂层温度-时间曲线。可知无阻燃防火涂层防护,索股PE层5 min燃烧殆尽;0.3 mm厚度阻燃防火涂层可保护索股PE层20 min;1.4 mm厚度阻燃防火涂层可保护索股PE层160 min;刷有2 mm厚度阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层厚度为2 mm。
图16为2 mm厚度阻燃防火涂层的索股燃烧360 min试验过程的发泡过程。可以看出,随着火焰灼烧时间的增长,发泡层高度逐渐增大,发泡尺寸也逐渐增大,6 h熄火后形成一个6 cm×8 cm、高4 cm的发泡层,长达6 h的灼烧试验,PE内表面最高温度为245℃,熄火后,拨开厚厚的发泡层,PE护套仅发生软化。结合图15与图16,可以看出,燃烧前20 min为快速发泡升温阶段,发泡层快速增大,PE内表面温度从室温上升到196℃;20~140 min为稳定阶段,发泡层缓慢增大,PE内表面温度维持在203~209℃之间;140~360 min为动态平衡阶段,继续燃烧温度缓慢升高,燃烧至180 min,PE内表面温度达到216℃,阻燃防火涂层内层达到发泡温度开始发泡,发泡层高度增加,PE内表面温度下降,燃烧至240 min,PE内表面温度降至200℃,燃烧至280 min左右,发泡层表层开始发生热解,PE内表面温度升高至230℃左右,阻燃防火涂层内层达到发泡温度进一步发泡,发泡层高度持续增加,PE内表面温度下降,但随着发泡层表层热解,PE内表面温度又缓慢上升。
4. 结 论
(1) 碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)筋材高温剩余强度随温度升高呈线性下降趋势,210℃加热3 h,剩余强度最低为2245.8 MPa,比初始强度下降26.13%。
(2) CFRP筋材高温加热冷却后强度存在一定程度的可逆性恢复,剩余强度均能达到2800 MPa以上,但较原始强度略微下降,且经历温度越高剩余强度越低,最大下降幅度为6.13%。
(3) 对比3种阻燃防火措施,阻燃防火涂层具有较好的阻燃防火效果,2 h灼烧索股聚乙烯(PE)内表面最高温度为206℃,次外层筋材最高温度为156℃,第三层筋材最高温度为100℃,火灾2 h内,索股仍可承载,剩余强度≥2245 MPa。
(4) 阻燃防火涂层越厚防护时间越长,2 mm厚阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层的厚度为2 mm。
-
图 9 不同 MXene和PPy@BC质量比的MPB复合薄膜电磁屏蔽效能(EMI SE) (a),反射损耗(SER)、吸收损耗(SEA)和总电磁屏蔽效能(SET) (b),以及反射(R)、吸收(A)、透射(T)系数(c)
Figure 9. Electromagnetic shielding effectiveness (EMI SE) (a), reflection loss (SER), absorption loss (SEA) and total electromagnetic shielding effectiveness (SET) (b), and reflection (R), absorption (A), transmission (T) coefficients (c) of MPB composite films with different MXene and PPy@BC mass ratios
Figure 10. Comparison of electromagnetic shielding performance of other EMI shielding films[26-35]
RGO—Reduced graphene oxides; CS—Chitosan; MCS—MXene/cellulose nanofiber (CNF)/silver; PPy—polypyrrole; PAN—Polyacrylonitrile; PANI—Polyaniline; PVDF—Polyvinylidene fluoride; HAMS—Heterogeneous alternating multilayer structure
表 1 各个样品MXene和PPy@BC对应的比例及其含量
Table 1 Ratio of MXene to PPy@BC for each sample and its content
Sample Mass ratio (MXene∶PPy@BC) MXene content/wt% PPy@BC content/wt% Pure MXene — 100 0 MPB-1 1∶1 50 50 MPB-2 1∶2 33.3 66.7 MPB-3 2∶1 66.7 33.3 MPB-4 3∶1 75 25 -
[1] 张淑琴, 张彭. 电磁辐射的危害与防护[J]. 工业安全与环保, 2008, 34(3): 30-32. DOI: 10.3969/j.issn.1001-425X.2008.03.014 ZHANG Shuqin, ZHANG Peng. Hazards and protection of electromagnetic radiation[J]. Industrial Safety and Environmental Protection, 2008, 34(3): 30-32(in Chinese). DOI: 10.3969/j.issn.1001-425X.2008.03.014
[2] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. DOI: 10.1126/science.aag2421
[3] 王静, 罗蕙敏, 刘元军, 等. 电磁吸收与屏蔽材料[J]. 染整技术, 2020, 42(2): 1-9. WANG Jing, LUO Huimin, LIU Yuanjun, et al. Electromagnetic absorption and shielding materials[J]. Dyeing and Finishing Technology, 2020, 42(2): 1-9(in Chinese).
[4] 文峰, 符佳伟, 王新远, 等. 多壁碳纳米管导电纸/碳纤维复合材料的制各及电磁屏蔽性能研究[J]. 化工新型材料, 2020, 48(9): 68-71. WEN Feng, FU Jiawei, WANG Xinyuan, et al. Research on the fabrication of multi-walled carbon nanotube conductive paper/carbon fiber composites and electromagnetic shielding performance[J]. New Chemical Materials, 2020, 48(9): 68-71(in Chinese).
[5] YAO Y, JIN S, WANG M, et al. MXene hybrid polyvinyl alcohol flexible composite films for electromagnetic interference shielding[J]. Applied Surface Science, 2022, 578: 152007.
[6] ZHANG Y Z, WANG Y, JIANG Q, et al. MXene printing and patterned coating for device applications[J]. Advanced Materials, 2020, 32(21): 1908486. DOI: 10.1002/adma.201908486
[7] PANG J, MENDES R G, BACHMATIUK A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews, 2019, 48(1): 72-133. DOI: 10.1039/C8CS00324F
[8] FU Z, WANG N, LEGUT D, et al. Rational design of flexible two-dimensional MXenes with multiple functionalities[J]. Chemical Reviews, 2019, 119(23): 11980-12031. DOI: 10.1021/acs.chemrev.9b00348
[9] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. DOI: 10.1002/adma.201102306
[10] LIU F, LI Y, HAO S, et al. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding[J]. Carbohydrate Polymers, 2020, 243: 116467. DOI: 10.1016/j.carbpol.2020.116467
[11] MA Z, KANG S, MA J, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2T x MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding[J]. ACS Nano, 2020, 14(7): 8368-8382. DOI: 10.1021/acsnano.0c02401
[12] CHENG W, FU J, HU H, et al. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density[J]. Advanced Science, 2021, 8(16): 2100775. DOI: 10.1002/advs.202100775
[13] JIAO S, ZHOU A, WU M, et al. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays[J]. Advanced Science, 2019, 6(12): 1900529. DOI: 10.1002/advs.201900529
[14] XU X, CHEN Y, HE P, et al. Wearable CNT/Ti3C2T x MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring[J]. Nano Research, 2021, 14(8): 2875-2883. DOI: 10.1007/s12274-021-3536-3
[15] LI X P, LI Y, LI X, et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets[J]. Journal of Colloid and Interface Science, 2019, 542: 54-62. DOI: 10.1016/j.jcis.2019.01.123
[16] ZHAO Y, DENG C, YAN B, et al. One-step method for fabricating Janus aramid nanofiber/MXene nanocomposite films with improved Joule heating and thermal camouflage properties[J]. ACS Applied Materials & Interfaces, 2023, 15(47): 55150-55162.
[17] LIU R, MIAO M, LI Y, et al. Ultrathin biomimetic polymeric Ti3C2T x MXene composite films for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44787-44795.
[18] 施鸥玲, 谭妍妍, 武晓, 等. 高导电性PVDF/MWCNTs-AgNWs@MXene双层三维网络的电磁屏蔽复合薄膜的构建[J]. 复合材料学报, 2024, 41(8): 4200-4210. SHI Ouling, TAN Yanyan, WU Xiao, et al. Electromagnetic shielding composite films with highly conductive PVDF/MWCNTs-AgNWs@MXene bilayer three-dimensional network[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4200-4210(in Chinese).
[19] HUO Y, GUO D, YANG J, et al. Multifunctional bacterial cellulose nanofibers/polypyrrole (PPy) composite films for Joule heating and electromagnetic interference shielding[J]. ACS Applied Electronic Materials, 2022, 4(5): 2552-2560. DOI: 10.1021/acsaelm.2c00316
[20] SHI Y, XIANG Z, CAI L, et al. Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances[J]. ACS Nano, 2022, 16(5): 7816-7833.
[21] 张艳, 马忠雷, 李桢, 等. 轻质高强MXene/细菌纤维素复合气凝胶的制备及其电磁屏蔽性能[J]. 复合材料学报, 2023, 40(11): 6407-6415. ZHANG Yan, MA Zhonglei, LI Zhen, et al. Preparation of lightweight and high-strength MXene/bacterial cellulose composite aerogels and their electromagnetic shielding properties[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6407-6415(in Chinese).
[22] SONG Q, ZHAN Z, CHEN B, et al. Biotemplate synthesis of polypyrrole@bacterial cellulose/MXene nanocomposites with synergistically enhanced electrochemical performance[J]. Cellulose, 2020, 27: 7475-7488. DOI: 10.1007/s10570-020-03310-7
[23] WU H, ZHU C, LI X, et al. Layer-by-layer assembly of multifunctional NR/MXene/CNTs composite films with exceptional electromagnetic interference shielding performances and excellent mechanical properties[J]. Macromolecular Rapid Communications, 2022, 43(18): 2200387. DOI: 10.1002/marc.202200387
[24] WANG J, ZHU X, XIONG P, et al. Flexible, robust and washable bacterial cellulose/silver nanowire conductive paper for high-performance electromagnetic interference shielding[J]. Journal of Materials Chemistry A, 2022, 10(2): 960-968. DOI: 10.1039/D1TA07900J
[25] ROSTAMI M, MAGHAMI S, VATANPOUR V, et al. The nanocomposites of N-doped graphene oxide decorated with La-doped Zn-Cu-Ni ferrite with lightweight and excellent absorption-dominant electromagnetic interference shielding performance[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(10): 882. DOI: 10.1007/s10854-023-10293-1
[26] SONG W L, GUAN X T, FAN L Z, et al. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding[J]. Journal of Materials Chemistry A, 2015, 3(5): 2097-2107. DOI: 10.1039/C4TA05939E
[27] LIU F, LI Y, HAO S, et al. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding[J]. Carbohydrate Polymers: Scientific and Technological Aspects of Industrially Important Polysaccharides, 2020, 243: 116467.
[28] XIN W, XI G Q, CAO W T, et al. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding[J]. RSC Advances, 2019, 9(51): 29636-29644. DOI: 10.1039/C9RA06399D
[29] WU F, TIAN Z, HU P, et al. Lightweight and flexible PAN@ PPy/MXene films with outstanding electromagnetic interference shielding and Joule heating performance[J]. Nanoscale, 2022, 14(48): 18133-18142. DOI: 10.1039/D2NR05318G
[30] LI S, LI S, XU S, et al. Ultra-thin broadband terahertz absorption and electromagnetic shielding properties of MXene/rGO composite film[J]. Carbon, 2022, 194: 127-139. DOI: 10.1016/j.carbon.2022.03.048
[31] ZHANG Y, WANG L, ZHANG J, et al. Fabrication and investigation on the ultra-thin and flexible Ti3C2T x/co-doped polyaniline electromagnetic interference shielding composite films[J]. Composites Science and Technology, 2019, 183: 107833. DOI: 10.1016/j.compscitech.2019.107833
[32] WANG S J, LI D S, JIANG L. Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films[J]. Advanced Materials Interfaces, 2019, 6(19): 1900961. DOI: 10.1002/admi.201900961
[33] ZHANG K, GU X, DAI Q, et al. Flexible polyaniline-coated poplar fiber composite membranes with effective electromagnetic shielding performance[J]. Vacuum, 2019, 170: 108990. DOI: 10.1016/j.vacuum.2019.108990
[34] MA M, TAO W, LIAO X, et al. Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding[J]. Chemical Engineering Journal, 2023, 452: 139471. DOI: 10.1016/j.cej.2022.139471
[35] LIANG L, XU P, WANG Y, et al. Flexible polyvinylidene fluoride film with alternating oriented graphene/Ni nanochains for electromagnetic interference shielding and thermal management[J]. Chemical Engineering Journal, 2020, 395: 125209. DOI: 10.1016/j.cej.2020.125209
[36] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: A review[J]. Advanced Functional Materials, 2020, 30(47): 2000883. DOI: 10.1002/adfm.202000883
-
期刊类型引用(2)
1. 李友明,景昭,吴增文,李冰垚,刘琛,葛敬冉,梁军. 随机疲劳下复合材料剩余刚度-剩余强度关联模型及寿命预测. 强度与环境. 2024(01): 23-30 . 百度学术
2. 马帅,金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用. 材料导报. 2022(S1): 252-256 . 百度学术
其他类型引用(1)
-