留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强MXene/PPy@BC复合薄膜的制备及其电磁屏蔽性能

唐婕 李翔

唐婕, 李翔. 高强MXene/PPy@BC复合薄膜的制备及其电磁屏蔽性能[J]. 复合材料学报, 2024, 42(0): 1-8.
引用本文: 唐婕, 李翔. 高强MXene/PPy@BC复合薄膜的制备及其电磁屏蔽性能[J]. 复合材料学报, 2024, 42(0): 1-8.
TANG Jie, LI Xiang. Preparation of high-strength MXene/PPy@BC composite films and their electromagnetic shielding properties[J]. Acta Materiae Compositae Sinica.
Citation: TANG Jie, LI Xiang. Preparation of high-strength MXene/PPy@BC composite films and their electromagnetic shielding properties[J]. Acta Materiae Compositae Sinica.

高强MXene/PPy@BC复合薄膜的制备及其电磁屏蔽性能

基金项目: 国家自然科学基金(52072245)
详细信息
    通讯作者:

    李翔,教授,博士,磁性功能材料方向; E-mail: xiangli@usst.edu.cn

Preparation of high-strength MXene/PPy@BC composite films and their electromagnetic shielding properties

Funds: National Natural Science Foundation of China (No.52072245)
  • 摘要: 随着通信技术和移动电子设备的不断发展,电磁干扰问题日益突显,因此研发高性能的电磁屏蔽材料成为当前重要的研究方向。本文采用简单的真空过滤方法,成功制备了高导电性能的MXene/聚吡咯(PPy)@细菌纤维素(BC)薄膜(MPB),深入研究了MXene和PPy@BC不同比例对复合薄膜导电性能、力学性能和电磁屏蔽性能的影响规律。研究表明:当MXene和PPy@BC比例为3∶1时,电导率和X波段电磁屏蔽效能(EMI SE)均达到最大值,分别1209 S/cm和63.89 dB;此外,由于PPy@BC和MXene之间存在丰富的氢键相互作用,使得复合薄膜的最大抗拉强度可达到24.73 MPa,较纯MXene薄膜提升了近10倍。MPB薄膜优异的综合性能展示了其在下一代智能和可穿戴电子产品的EMI屏蔽方面的巨大潜力。

     

  • 图  1  MXene/聚吡咯(PPy)@细菌纤维素(BC) (MPB)薄膜的制备流程图

    Figure  1.  Flow chart for the preparation of MXene/polypyrrole (PPy)@bacterial cellulose (BC) (MPB) films

    图  2  (a)纯BC的TEM照片;(b)纯BC的SEM照片;(c)PPy@BC的TEM照片;(d)Ti3C2Tx多层的SEM照片;(e)MPB的TEM照片;(f)MPB的SEM照片

    Figure  2.  (a) TEM image of pure BC; (b) SEM image of pure BC; (c) TEM image of PPy@BC; (d) SEM image of Ti3C2Tx multilayer; (e) TEM image of MPB; (f) SEM image of MPB

    图  3  MPB薄膜的EDS能谱图

    Figure  3.  EDS mapping images of MPB film

    图  4  MXene,PPy@BC和MPB的XRD图

    Figure  4.  XRD patterns of MXene, PPy@BC and MPB

    图  5  (a)纯MXene和MPB薄膜的XPS全谱图;(b)PPy@BC的N 1 s高分辨XPS谱图

    Figure  5.  (a) XPS full spectra of pure MXene and MPB films; (b) N 1 s high-resolution XPS spectra of PPy@BC

    图  6  (a) MPB薄膜的拉伸应力-应变曲线; (b) MPB薄膜的抗拉强度

    Figure  6.  (a) Tensile stress-strain curve of MPB film; (b) Tensile strength of MPB film

    图  7  MPB薄膜的电阻率变化

    Figure  7.  Resistivity variation of MPB film

    图  8  MPB 薄膜集成电路点亮 LED 灯的数码照片

    Figure  8.  Digital photo of MPB film IC lighting up an LED lamp

    图  9  不同 MXene和PPy@BC比例的MPB复合薄膜电磁屏蔽效能(EMI SE)(a),反射损耗(SER),吸收损耗(SEA)和总电磁屏蔽效能(SET)(b),R-A-T系数(c)

    Figure  9.  Electromagnetic shielding effectiveness (EMI SE) (a), reflection loss (SER), absorption loss (SEA) and total electromagnetic shielding effectiveness (SET) (b), and R-A-T coefficients (c) of MPB composite films with different MXene and PPy@BC ratios

    图  10  其他EMI屏蔽膜的电磁屏蔽性能比较

    Figure  10.  Comparison of electromagnetic shielding performance of other EMI shielding films

    图  11  MPB薄膜的电磁屏蔽机制图

    Figure  11.  Electromagnetic shielding mechanism diagrams of MPB films

  • [1] 张淑琴, 张彭. 电磁辐射的危害与防护[J]. 工业安全与环保, 2008, 34(3): 30-32. doi: 10.3969/j.issn.1001-425X.2008.03.014

    ZHANG Shuqin, ZHANG Peng. Hazards and protection of electromagnetic radiation[J]. Industrial Safety and Environmental Protection, 2008, 34(3): 30-32(in Chinese). doi: 10.3969/j.issn.1001-425X.2008.03.014
    [2] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. doi: 10.1126/science.aag2421
    [3] 王静, 罗蕙敏, 刘元军, 等. 电磁吸收与屏蔽材料[J]. 染整技术, 2020, 42(2): 9.

    WANG Jing, LUO Huimin, LIU Yuanjun, et al. Electromagnetic absorption and shielding materials[J]. Dyeing and Finishing Technology, 2020, 42(2): 9(in Chinese).
    [4] 文峰, 符佳伟, 王新远, 等. 多壁碳纳米管导电纸/碳纤维复合材料的制各及电磁屏蔽性能研究[J]. 化工新型材料, 2020, 48(9): 68-71.

    WEN Feng, FU Jiawei, WANG Xinyuan, et al. Research on the fabrication of multi-walled carbon nanotube conductive paper/carbon fiber composites and electromagnetic shielding performance[J]. New Chemical Materials, 2020, 48(9): 68-71(in Chinese).
    [5] YAO Y, JIN S, WANG M, et al. MXene hybrid polyvinyl alcohol flexible composite films for electromagnetic interference shielding[J]. Applied Surface Science:A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2022, (Mar.15): 578.
    [6] ZHANG Y Z, WANG Y, JIANG Q, et al. MXene printing and patterned coating for device applications[J]. Advanced materials, 2020, 32(21): 1908486. doi: 10.1002/adma.201908486
    [7] PANG J, MENDES R G, BACHMATIUK A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews, 2019, 48(1): 72-133. doi: 10.1039/C8CS00324F
    [8] FU Z, WANG N, LEGUT D, et al. Rational design of flexible two-dimensional MXenes with multiple functionalities[J]. Chemical reviews, 2019, 119(23): 11980-12031. doi: 10.1021/acs.chemrev.9b00348
    [9] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced materials, 2011, 23(37): 4248-4253. doi: 10.1002/adma.201102306
    [10] LIU F, Li Y, HAO S, et al. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding[J]. Carbohydrate polymers, 2020, 243: 116467. doi: 10.1016/j.carbpol.2020.116467
    [11] MA Z, KANG S, MA J, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding[J]. Acs Nano, 2020, 14(7): 8368-8382. doi: 10.1021/acsnano.0c02401
    [12] CHENG W, FU J, HU H, et al. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density[J]. Advanced Science, 2021, 8(16): 2100775. doi: 10.1002/advs.202100775
    [13] JIAO S, ZHOU A, WU M, et al. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays[J]. Advanced Science, 2019, 6(12): 1900529. doi: 10.1002/advs.201900529
    [14] XU X, CHEN Y, HE P, et al. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring[J]. Nano Research, 2021, 14(8): 2875-2883. doi: 10.1007/s12274-021-3536-3
    [15] LI X P, LI Y, LI X, et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets[J]. Journal of colloid and interface science, 2019, 542: 54-62. doi: 10.1016/j.jcis.2019.01.123
    [16] ZHAO Y, DENG C, YAN B, et al. One-Step Method for Fabricating Janus Aramid Nanofiber/MXene Nanocomposite Films with Improved Joule Heating and Thermal Camouflage Properties[J]. ACS Applied Materials & Interfaces, 2023, 15(47): 55150-55162.
    [17] LIU R, MIAO M, LI Y, et al. Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding[J]. ACS applied materials & interfaces, 2018, 10(51): 44787-44795.
    [18] 施鸥玲, 谭妍妍, 武晓等. 具有高导电性的PVDF/MWCNTs-AgNWs@MXene双层三维网络的电磁屏蔽复合薄膜[J/OL]. 复合材料学报, 2024, 1-14.

    SHI Ouling, TAN Yanyan, WU Xiao, et al. Electromagnetic shielding composite films with highly conductive PVDF/MWCNTs-AgNWs@MXene bilayer three-dimensional network[J/OL]. Journal of Composite Materials, 2024, 1-14. (in Chinese)
    [19] HUO Y, GUO D, YANG J, et al. Multifunctional bacterial cellulose nanofibers/polypyrrole (PPy) composite films for joule heating and electromagnetic interference shielding[J]. ACS Applied Electronic Materials, 2022, 4(5): 2552-2560. doi: 10.1021/acsaelm.2c00316
    [20] SHI Y, XIANG Z, CAI L, et al. Multi-interface Assembled N-Doped MXene/HCFG/AgNW Films for Wearable Electromagnetic Shielding Devices with Multimodal Energy Conversion and Healthcare Monitoring Performances[J]. 2022, 16(5): 7816–7833.
    [21] 张艳, 马忠雷, 李桢等. 轻质高强MXene/细菌纤维素复合气凝胶的制备及其电磁屏蔽性能[J]. 复合材料学报, 2023, 40(11): 6407-6415.

    ZHANG Yan, MA Zhonglei, LI Zhen et al. Preparation of lightweight and high-strength MXene/bacterial cellulose composite aerogels and their electromagnetic shielding properties[J]. Journal of Composite Materials, 2023, 40(11): 6407-6415(in Chinese).
    [22] SONG Q, ZHAN Z, CHEN B, et al. Biotemplate synthesis of polypyrrole@ bacterial cellulose/MXene nanocomposites with synergistically enhanced electrochemical performance[J]. Cellulose, 2020, 27: 7475-7488. doi: 10.1007/s10570-020-03310-7
    [23] WU H, ZHU C, LI X, et al. Layer-by-Layer Assembly of Multifunctional NR/MXene/CNTs Composite Films with Exceptional Electromagnetic Interference Shielding Performances and Excellent Mechanical Properties[J]. Macromolecular Rapid Communications, 2022, 43(18): 2200387. doi: 10.1002/marc.202200387
    [24] WANG J, ZHU X, XIONG P, et al. Flexible, robust and washable bacterial cellulose/silver nanowire conductive paper for high-performance electromagnetic interference shielding[J]. Journal of Materials Chemistry A, 2022, 10(2): 960-968. doi: 10.1039/D1TA07900J
    [25] ROSTAMI M, MAGHAMI S, VATANPOUR V, et al. The nanocomposites of N-doped graphene oxide decorated with La-doped Zn-Cu-Ni ferrite with lightweight and excellent absorption-dominant electromagnetic interference shielding performance[J]. Journal of Materials Science:Materials in Electronics, 2023, 34(10): 882. doi: 10.1007/s10854-023-10293-1
    [26] SONG W L, GUAN X T, FAN L Z, et al. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding[J]. Journal of Materials Chemistry A, 2015, 3(5): 2097-2107. doi: 10.1039/C4TA05939E
    [27] LIU F, LI Y, HAO S, et al. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding[J]. Carbohydrate Polymers:Scientific and Technological Aspects of Industrially Important Polysaccharides, 2020, 243: 116467.
    [28] XIN W, XI GQ, CAO WT, et al. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding[J]. RSC Adv, 2019, 9(51): 29636-29644. doi: 10.1039/C9RA06399D
    [29] WU F, TIAN Z, HU P, et al. Lightweight and flexible PAN@ PPy/MXene films with outstanding electromagnetic interference shielding and Joule heating performance[J]. Nanoscale, 2022, 14(48): 18133-18142. doi: 10.1039/D2NR05318G
    [30] LI S, LI S, XU S, et al. Ultra-thin broadband terahertz absorption and electromagnetic shielding properties of MXene/rGO composite film[J]. Carbon, 2022, 194: 127-139. doi: 10.1016/j.carbon.2022.03.048
    [31] ZHANG Y, WANG L, ZHANG J, et al. Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films[J]. Composites Science and Technology, 2019, 183: 107833. doi: 10.1016/j.compscitech.2019.107833
    [32] WANG S J, LI D S, JIANG L. Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films[J]. Advanced Materials Interfaces, 2019, 6(19): 1900961. doi: 10.1002/admi.201900961
    [33] ZHANG K, GU X, DAI Q, et al. Flexible polyaniline-coated poplar fiber composite membranes with effective electromagnetic shielding performance[J]. Vacuum, 2019, 170: 108990. doi: 10.1016/j.vacuum.2019.108990
    [34] MA M, TAO W, LIAO X, et al. Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding[J]. Chemical Engineering Journal, 2023, 452: 139471. doi: 10.1016/j.cej.2022.139471
    [35] LIANG L, XU P, WANG Y, et al. Flexible polyvinylidene fluoride film with alternating oriented graphene/Ni nanochains for electromagnetic interference shielding and thermal management[J]. Chemical Engineering Journal, 2020, 395: 125209. doi: 10.1016/j.cej.2020.125209
    [36] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: a review[J]. Advanced Functional Materials, 2020, 30(47): 2000883. doi: 10.1002/adfm.202000883
  • 加载中
计量
  • 文章访问数:  172
  • HTML全文浏览量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-25
  • 修回日期:  2024-02-25
  • 录用日期:  2024-03-07
  • 网络出版日期:  2024-04-13

目录

    /

    返回文章
    返回