Preparation and properties of lignin-based flame retardant-modified polyurethane insulation materials
-
摘要: 建筑保温材料的阻燃抑烟性能事关消防安全。本研究基于聚磷酸铵(APP),针对其界面相容性和抑烟性能差的问题,利用碱木素(AL)、双(4-异氰酸酯基苯基)甲烷(MDI),制备了核壳结构的膨胀型阻燃剂APP@AL (APP∶MDI∶AL为9∶2∶1),并应用于硬质聚氨酯(RPU)泡沫保温材料的阻燃处理(添加量25wt%)。通过SEM-EDS、XPS、FT-IR等方法分析APP@AL的结构及组成,采用锥形量热仪(CONE)、热重(TG)等仪器分析了阻燃抑烟性能。结果表明,APP@AL与RPU泡沫基体具有良好的界面相容性。与添加APP的RPU泡沫复合材料相比,APP@AL改性RPU泡沫复合材料的抗压强度显著提高(达31.8%),导热系数降低(7.0%);此外,CONE测试表明,平均放热速率和总放热量分别降低27.2%和24.4%,同时抑烟性能显著增强(总产烟量减少 47.6%,总CO产量降低 57.0%)。TG分析表明,APP@AL阻燃剂的热稳定性明显高于APP,且更有助于构建稳定的残炭层。综上,木质素基膨胀型阻燃剂对RPU泡沫保温材料具备优异的阻燃抑烟作用。Abstract: The fire retardant and smoke suppression performance of thermal insulation materials are crucial factors in ensuring building fire safety. In this study, based on ammonium polyphosphate (APP), a intumescent flame-retardant APP@AL (APP∶MDI∶AL=9∶2∶1) with core-shell structure was prepared by utilizing alkali lignin (AL) and bis(4-isocyanatophenyl) methane (MDI) for its poor interfacial compatibility and smoke suppression performance, and applied to the flame-retardant treatment of rigid polyurethane (RPU) thermal insulation materials (25wt% addition). The structure and composition of APP@AL were analyzed by SEM-EDS, XPS and FT-IR, and the flame retardant and smoke suppression properties were analyzed by CONE and TG instruments. The results show that APP@AL has excellent interfacial compatibility with the RPU matrix. The compressive strength of the APP@AL-modified RPU foam is significantly increased (up to 31.8%) compared with the APP-added RPU foam and the thermal conductivity is reduced (7.0%). CONE test show that mean heat release rate and total heat release were reduced by 27.2 % and 24.4 %, respectively, while smoke suppression was notably enhanced (47.6% reduction in total smoke production and 57.0% reduction in total CO production). TG analysis show that the thermal stability of APP@AL flame retardant is obviously higher than that of APP, and it is more beneficial to build a stable residual char layer. In conclusion, lignin-based intumescent flame retardant has excellent flame retardant and smoke suppression effect on RPU foam insulation materials.
-
表 1 APP改性配方
Table 1. formula of APP modification
Formulation APP@AL1 APP@AL2 APP@AL3 APP@AL4 APP / g 45 45 45 45 MDI / g 5 7.5 10 11.25 AL / g 10 7.5 5 3.75 Notes: APP−Ammonium polyphosphate; MDI− 4 4'-Methylenebiphenyl isocyanate; AL−Alkali lignin. 表 2 硬质聚氨酯(RPU)泡沫复合材料配方
Table 2. Preparation formula of rigid polyurethane (RPU) foam composites
Formulation Pure RPU 25APP/RPU 25APP@AL1/RPU 25APP@AL2/RPU 25APP@AL3/RPU 25APP@AL4/RPU APP/g 0 50 0 0 0 0 APP@AL1/g 0 0 50 0 0 0 APP@AL2/g 0 0 0 50 0 0 APP@AL3/g 0 0 0 0 50 0 APP@AL4/g 0 0 0 0 0 50 LY-4110/g 100 100 100 100 100 100 AK-8805/g 2 2 2 2 2 2 LC/g 1.5 1.5 1.5 1.5 1.5 1.5 HFC-365 mfc/g 33 33 33 33 33 33 PAPI/g 100 100 100 100 100 100 Notes: LY-4110−Polyetherpolyol; AK-8805−Silicone surfactant; LC−Dibutyltin dilaurate; HFC-365 mfc−Foaming agent;PAPI− Polymethylene polyphenyl isocyanate; 25APP/RPU,25APP@AL1/RPU,25APP@AL2/RPU, 25APP@AL3/RPU,25APP@AL4/RPU, the 25 indicates that the amount of flame retardant added is 25% of the total mass of LY-4110 and PAPI. 表 3 APP和APP@AL中C、P和N元素含量
Table 3. Elemental C, P and N content in APP and APP@AL
Samples C/wt% P/wt% N/wt% APP 0 26.0 14.4 APP@AL1 13.8 19.5 11.9 APP@AL2 12.9 20.6 12.2 APP@AL3 11.6 22.1 12.8 APP@AL4 11.1 21.5 13.2 表 4 RPU泡沫复合材料的孔径尺寸、表观密度、导热系数和压缩强度
Table 4. The cell diameter, apparent density, compression strength and thermal conductivity of RPU foam composites
Samples Cell diameter/μm Apparent density/(kg·m−3) Thermal conductivity/(mW·m−1·K−1) Compressive strength/kg Pure RPU 533 ± 80* 50.5 ± 1.2 23.2 ± 0.1 194 ± 20 25APP/RPU 601 ± 90 49.4 ± 1.5 24.2 ± 0.2 173 ± 25 25APP@AL1/RPU 455 ± 60 51.8 ± 1.1 22.7 ± 0.1 214 ± 18 25APP@AL2/RPU 458 ± 55 51.7 ± 1.0 22.7 ± 0.2 215 ± 14 25APP@AL3/RPU 444 ± 65 52.0 ± 0.9 22.5 ± 0.2 228 ± 20 25APP@AL4/RPU 449 ± 70 51.9 ± 1.0 22.6 ± 0.2 221 ± 21 Note: * Average and standard deviations. 表 5 RPU泡沫复合材料燃烧性能测试结果
Table 5. Test results of fire performance of flame-retardant RPU foam composites
Samples HRR/(kW·m−2) LOI/% TTI/s THR/(MJ·m−2) SPR/(cm2·s−1) TSP/m2 COY/(kg·kg−1) Residue/% PHRR MHRR Pure RPU 403.8 253.1 18.5 6 56.0 0.0094 5.5 279.2 7.4 25APP/RPU 132.6 68.7 26.2 3 25.0 0.0034 2.1 54.2 25.4 25APP@AL1/RPU 149.2 58.6 26.8 5 19.1 0.0027 1.7 27.1 29.2 25APP@AL2/RPU 145.0 56.5 26.9 5 19.0 0.0026 1.5 26.5 28.5 25APP@AL3/RPU 140.5 50.0 27.0 5 18.9 0.0023 1.1 23.3 28.7 25APP@AL4/RPU 150.1 61.6 26.7 5 19.3 0.0025 1.3 25.8 28.0 Notes: PHRR−Peak heat release rate; MHRR−Mean heat release rate; LOI−Limiting oxygen index; TTI−Time to ignition; THR−Total heat release; SPR−Smoke release rate; TSP−Total smoke release; COY−CO yield; Residue−Charcoal residue rate. 表 6 在相应温度下RPU泡沫复合材料不同热解阶段和800℃的残炭
Table 6. The corresponding temperatures of RPU foam composites at different pyrolysis stages and the char residue at 800℃
Samples T10% / ℃ T50% / ℃ W800 / wt% Pure RPU 272 348 13.0 25APP/RPU 263 333 26.8 25APP@AL1/RPU 287 361 28.7 25APP@AL2/RPU 281 358 28.1 25APP@AL3/RPU 274 352 28.8 25APP@AL4/RPU 276 355 28.4 Notes: T10% and T50% represent the temperature where 10wt% and 50wt% of weight were lost, W800 represents the residual weight at 800℃. -
[1] 孙俊杰, 杨素洁, 黄新杰等. 阻燃硬质聚氨酯泡沫的进展[J]. 塑料, 2023, 52(5): 109-117.SUN Junjie, YANG Sujie, HANG Xinjie, et al. Advances in Flame Retardants Rigid Polyurethane Foam[J]. Plastics, 2023, 52(5): 109-117(in Chinese). [2] 张冰, 杨素洁, 杨亚东等. 三聚氰胺植酸/硬质聚氨酯泡沫复合材料的制备及其热解动力学特性[J]. 复合材料学报, 2021, 38(8): 2505-2516.ZHANG Bing, YANG Sujie, YANG Yadong, et al. Preparation and pyrolysis kinetics of melaminephytates/rigid polyurethane foam composites[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2505-2516 (in Chinese). [3] 王希, 董全霄, 谷晓昱等. 反应型阻燃聚氨酯研究进展[J]. 聚氨酯工业, 2020, 35(3): 1-4. doi: 10.3969/j.issn.1005-1902.2020.03.001WANG Xi, DONG Quanxiao, GU Xiaoyu, et al. Research Progress on Reactive Flame Retardant Polyurethane[J]. Polyurethane Industry, 2020, 35(3): 1-4(in Chinese). doi: 10.3969/j.issn.1005-1902.2020.03.001 [4] 杨亚东, 姜浩浩, 张冰等. 基于微胶囊化聚磷酸铵和微胶囊化膨胀石墨的阻燃硬质聚氨酯泡沫复合材料的制备及性能[J]. 复合材料学报, 2021, 38(5): 1387-1397.YANG Yadong, JIANG Haohao, ZHANG Bing, et al. Preparation and properties of flame retardant rigid polyurethane foam composites based on microencapsulated ammonium polyphosphate and microencapsulated expanded graphite[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1387-1397(in Chinese). [5] ZHU M, MA Z, LIU L, et al. Recent advances in fire-retardant rigid polyurethane foam[J]. Journal of Materials Science & Technology, 2022, 112: 315-328. [6] TIAN F, MAO W, XU X. Effect of a layered combination of APP and TBC on the mechanics and flame retardancy of poplar strandboards[J]. Construction and Building Materials, 2023, 401: 132881. doi: 10.1016/j.conbuildmat.2023.132881 [7] YUAN Y, YU B, SHI Y, et al. Highly efficient catalysts for reducing toxic gases generation change with temperature of rigid polyurethane foam nanocomposites: A comparative investigation[J]. Composites Part a-Applied Science and Manufacturing, 2018, 112: 142-154. doi: 10.1016/j.compositesa.2018.05.028 [8] CHEN Y, LI L, QI X, et al. The pyrolysis behaviors of phosphorus-containing organosilicon compound modified APP with different polyether segments and their flame retardant mechanism in polyurethane foam[J]. Composites Part B-Engineering, 2019, 173: 106784. doi: 10.1016/j.compositesb.2019.04.045 [9] 靳昕怡, 魏丽菲, 窦娟等. 无卤阻燃剂在聚合物阻燃中的应用研究进展[J]. 高科技纤维与应用, 2022, 47(6): 67-73. doi: 10.3969/j.issn.1007-9815.2022.06.011JI Xiyi, WEI Lifei, DOU Juan et al. Research on the Application of Halogen - free Flame Retardants in Polymer Flame Retardants[J]. Hi-Tech Fiber and Application, 2022, 47(6): 67-73(in Chinese). doi: 10.3969/j.issn.1007-9815.2022.06.011 [10] TAO J, YANG F, WU T, et al. Thermal insulation, flame retardancy, smoke suppression, and reinforcement of rigid polyurethane foam enabled by incorporating a P/ Cu-hybrid silica aerogel[J]. Chemical Engineering Journal, 2023, 461: 142061. doi: 10.1016/j.cej.2023.142061 [11] ZHAO X, CHEN L, LI D-F, et al. Biomimetic construction peanut-leaf structure on ammonium polyphosphate surface: Improving its compatibility with poly (lactic acid) and flame-retardant efficiency simultaneously[J]. Chemical Engineering Journal, 2021, 412: 128737. doi: 10.1016/j.cej.2021.128737 [12] TAN Y, SHAO Z-B, CHEN X-F, et al. Novel Multifunctional Organic Inorganic Hybrid Curing Agent with High Flame-Retardant Efficiency for Epoxy Resin[J]. Acs Applied Materials & Interfaces, 2015, 7(32): 17919-17928. [13] WAN M, SHI C, QIAN X, et al. Design of novel double-layer coated ammonium polyphosphate and its application in flame retardant thermoplastic polyurethanes[J]. Chemical Engineering Journal, 2023, 459: 141448. doi: 10.1016/j.cej.2023.141448 [14] GAO C, ZHOU L, YAO S, et al. Phosphorylated kraft lignin with improved thermal stability[J]. International Journal of Biological Macromolecules, 2020, 162: 1642-1652. doi: 10.1016/j.ijbiomac.2020.08.088 [15] 宋艳, 林肯, 周宇彤等. 含硅-氮木质素协同聚磷酸铵阻燃聚乳酸[J]. 复合材料学报, 2024, 42: 1-13.SONG Yan, LIN Ken, ZHOU Yutong, et al. Synergistic flame retardant effect of lignin containing silicon-nitrogen with ammonium polyphosphate on polylactic acid[J]. Acta Materiae Compositae Sinica, 2024, 42: 1-13(in Chinese). [16] LU W, YE J, ZHU L, et al. Intumescent Flame Retardant Mechanism of Lignosulfonate as a Char Forming Agent in Rigid Polyurethane Foam[J]. Polymers, 2021, 13(10): 1585. doi: 10.3390/polym13101585 [17] ARAUJO T R, BRESOLIN D, DE OLIVEIRA D, et al. Conventional lignin functionalization for polyurethane applications and a future vision in the use of enzymes as an alternative method[J]. European Polymer Journal, 2023, 188: 111934. doi: 10.1016/j.eurpolymj.2023.111934 [18] 尚欣宇, 毕晓柯, 谭海彦等. 木质素和焦磷酸哌嗪复合膨胀型阻燃剂对环氧树脂材料阻燃性能的影响[J]. 东北林业大学学报, 2023, 51(6): 140-145+149. doi: 10.3969/j.issn.1000-5382.2023.06.022SHANG Xinyu, BI Xiaoke, TAN Haiyan et al. Effect of Lignin Compounded with Pyrophosphorie Acid Piperazine Intumescent Flame Retardant on Flame Retardant Properties of Epoxy Resin[J]. Journal of Northeast Forestry University, 2023, 51(6): 140-145+149(in Chinese). doi: 10.3969/j.issn.1000-5382.2023.06.022 [19] ZHANG S, LI S-N, WU Q, et al. Phosphorus containing group and lignin toward intrinsically flame retardant cellulose nanofibril-based film with enhanced mechanical properties[J]. Composites Part B-Engineering, 2021, 212: 108699. doi: 10.1016/j.compositesb.2021.108699 [20] WEI Y, ZHU S, QIAN Q, et al. Hexachlorocyclotriphosphazene functionalized lignin as a sustainable and effective flame retardant for epoxy resins[J]. Industrial Crops and Products, 2022, 187: 115543. doi: 10.1016/j.indcrop.2022.115543 [21] American Society for Testing Material International. Standard test method for measuring the thermal conductivity: ASTM C518-10[S]. West Conshohocken: ASTM International, 2019. [22] American Society for Testing Material International. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index): ASTM D2863−19[S]. West Conshohocken: ASTM International, 2019 [23] ISO. Reaction-to-fire tests-Heat release, smoke production and mass loss rate−part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement): ISO 5660-1: 2015 [S]. Geneva: ISO, 2015. [24] XU W, WANG G, ZHENG X. Research on highly flame-retardant rigid PU foams by combination of nanostructured additives and phosphorus flame retardants[J]. Polymer Degradation and Stability, 2015, 111: 142-150. doi: 10.1016/j.polymdegradstab.2014.11.008 [25] 毛威, 田飞宇, 朱春锋等. 聚磷酸铵分层阻燃处理对杨木大片刨花板性能的影响[J]. 林业工程学报, 2023, 8(3): 71-78.MAO Wei, TIAN FeiYu, ZHU Chunfeng, et al. Effect of flame retarding treatment with ammonium polyphosphite on properties of poplar[J]. Journal of Forestry Engineering, 2023, 8(3): 71-78(in Chinese). [26] GONG Q, QIN L, WANG N. Combining hyperbranched polyol containing three flame retardant elements, P, N and Si, with expanded graphite to improve the flame retardancy of bio-based rigid polyurethane foam[J]. European Polymer Journal, 2023, 196: 112307. doi: 10.1016/j.eurpolymj.2023.112307 [27] ZHANG C, ZHANG C, JIANG Z, et al. Design and preparation of flame-retardant cellulose fabric with low strength loss using polycarboxylic acid as crosslinker[J]. Industrial Crops and Products, 2022, 180: 114738. doi: 10.1016/j.indcrop.2022.114738 [28] XU W, WANG G, XU J, et al. Modification of diatomite with melamine coated zeolitic imidazolate framework-8 as an effective flame retardant to enhance flame retardancy and smoke suppression of rigid polyurethane foam[J]. Journal of Hazardous Materials, 2019, 379: 120819. doi: 10.1016/j.jhazmat.2019.120819 [29] LIM K-S, BEE S-T, SIN L T, et al. A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites[J]. Composites Part B-Engineering, 2016, 84: 155-174. doi: 10.1016/j.compositesb.2015.08.066 [30] 黄皓琪, 邓军平, 康乐等. 膨胀型阻燃剂的制备和阻燃机理研究进展[J]. 塑料科技, 2023, 51(8): 124-128.HANG Haoqi, DENG Junping, KANG Le, et al. Research Progress of Preparation and Flame Retardant Mechanism of Intumescent Flame Retardant[J]. Plastics Science and Technology, 2023, 51(8): 124-128(in Chinese).
计量
- 文章访问数: 142
- HTML全文浏览量: 76
- 被引次数: 0