留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维空心MXene-rGO-CNT复合材料的制备及其电磁屏蔽性能

李杨 李斌 李仲明 赵一霖 孔硕硕 韩佳宏

李杨, 李斌, 李仲明, 等. 三维空心MXene-rGO-CNT复合材料的制备及其电磁屏蔽性能[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 李杨, 李斌, 李仲明, 等. 三维空心MXene-rGO-CNT复合材料的制备及其电磁屏蔽性能[J]. 复合材料学报, 2024, 42(0): 1-12.
LI Yang, LI Bin, LI Zhongming, et al. Preparation and EMI shielding properties of three-dimensional hollow MXene-rGO-CNT composites[J]. Acta Materiae Compositae Sinica.
Citation: LI Yang, LI Bin, LI Zhongming, et al. Preparation and EMI shielding properties of three-dimensional hollow MXene-rGO-CNT composites[J]. Acta Materiae Compositae Sinica.

三维空心MXene-rGO-CNT复合材料的制备及其电磁屏蔽性能

详细信息
    通讯作者:

    李斌,博士,教授,博士生导师,研究方向为功能复合材料,柔性传感技术 E-mail: kmlb@vip.Sina.com

  • 中图分类号: TB34;TB332

Preparation and EMI shielding properties of three-dimensional hollow MXene-rGO-CNT composites

  • 摘要: 随着科学技术的不断发展,“强吸收、宽频、轻质”的电磁屏蔽材料亟需被开发。本文选用聚甲基丙烯酸甲酯(PMMA)微球和冰模板,通过牺牲模板法制备了三维空心MXene-还原氧化石墨烯(rGO)-碳纳米管(MXene-rGO-CNT)复合材料,并对复合材料的形貌结构和电磁屏蔽性能进行了表征。结果表明,丰富微孔结构的构造改善了MXene薄片团聚现象,并减轻了复合材料的密度(低于0.26 g/cm3)。同时,互连多孔结构可以引起电磁波在材料内部的多次反射和散射,增强其电磁屏蔽性能。MXene-rGO-CNT复合材料在测量的1~18 GHz的宽频率范围内表现出良好的电磁波屏蔽性能,峰值达到54 dB的高电磁屏蔽效能。这项工作为制备高效电磁屏蔽应用的纳米复合材料提供了一种便捷的方法。

     

  • 图  1  三维空心MXene-还原氧化石墨烯(rGO)-碳纳米管(MXene-rGO-CNT)复合材料的制备示意图(a)和实物数码图片(b)

    Figure  1.  Schematic diagram (a) and physical digital image (b) of the preparation of three-dimensional hollow MXene-reduced graphene oxide (rGO)-carbon nanotube (MXene-rGO-CNT) composites

    图  2  Ti3C2Tx MXene粉末(a)超声前(b)超声后的SEM图像;(c)TEM图像;(d)Ti3AlC2 MAX相前驱体和Ti3C2Tx MXene粉末的XRD图像

    Figure  2.  SEM images of Ti3C2Tx MXene powder (a) before sonication (b) after sonication; (c) TEM image ; (d) XRD images of Ti3AlC2 MAX phase precursor and Ti3C2Tx MXene powder

    图  3  不同PMMA添加比例的PMMA@MXene-GO-CNT和MXene-rGO-CNT复合材料的SEM图像(a) PMMA@MXene-GO-CNT-10,(b) PMMA@MXene-GO-CNT-5,(e) MXene-rGO-CNT-5和(f) MXene-rGO-CNT-10;PMMA@MXene-GO-CNT-10的(c) TEM图像和(d)SEM图像及其C、O和Ti元素映射图像

    Figure  3.  SEM images of PMMA@MXene-GO-CNT and MXene-rGO-CNT composites with different PMMA addition ratios (a) PMMA@MXene-GO-CNT-10, (b) PMMA@MXene-GO-CNT-5, (e) MXene-rGO-CNT-5, and (f) MXene-rGO-CNT-10; (c) TEM image and (d) SEM image of PMMA@MXene-GO-CNT-10 and its C, O, and Ti elemental mapping images

    图  4  (a) Ti3C2Tx MXene粉末、PMMA@MXene-GO-CNT和MXene-rGO-CNT复合材料的拉曼光谱;(b) PMMA@MXene-GO-CNT和MXene-rGO-CNT复合材料的XRD图像;(c) MXene-GO-CNT复合材料的热重曲线图谱

    Figure  4.  (a) Raman spectra of Ti3C2Tx MXene powder, PMMA@MXene-GO-CNT and MXene-rGO-CNT composites; (b) XRD images of PMMA@MXene-GO-CNT and MXene-rGO-CNT composites; (c) Thermogravimetric curves of MXene-GO-CNT composites graphs of MXene-GO-CNT composites

    图  5  MXene、PMMA@MXene-GO-CNT和MXene-rGO-CNT复合材料的XPS测量光谱(a);(b)(d)(g) Ti3C2Tx MXene,(c)(e)(h) PMMA@MXene-GO-CNT复合材料,(f)(i) MXene-rGO-CNT复合材料的高分辨率光谱。

    Figure  5.  XPS measurement spectra of MXene, PMMA@MXene-GO-CNT and MXene-rGO-CNT composites (a); (b) (d) (g) Ti3C2Tx MXene, (c) (e) (h) PMMA@MXene-GO-CNT composites, (f) (i) MXene-rGO-CNT composites with high-resolution spectra

    图  6  具有不同PMMA添加量的MXene-rGO-CNT和PMMA@MXene-GO-CNT复合材料的(a)总EMI SET;(b) SEA、SER和SET平均值;以及(c) T、A和R平均比例曲线和(d)与之前报道的EMI屏蔽材料的比较

    Figure  6.  (a) total EMI SET; (b) average SEA, SER, and SET; and (c) T, A, and R average ratio curves for MXene-rGO-CNT and PMMA@MXene-GO-CNT composites with different PMMA additions, and (d) comparison with previously reported EMI shielding materials.

    图  7  MXene-rGO-CNT复合材料电磁屏蔽机制示意图

    Figure  7.  Schematic diagram of electromagnetic interference shielding mechanism of MXene-rGO-CNT composites

    表  1  复合材料的命名

    Table  1.   Nomenclature of Composites Notes:polymethyl methacrylate (PMMA); Ti3C2Tx MXene (MXene); graphene oxide (GO); carbon nanotube (CNT); reduced graphene oxide (rGO)

    Sample Mass Ratio
    MXene∶PMMA
    PMMA@MXene-GO-CNT-0 1∶0
    MXene-rGO-CNT-0 1∶0
    PMMA@MXene-GO-CNT-2 1∶2
    MXene-rGO-CNT-2 1∶2
    PMMA@MXene-GO-CNT-5 1∶5
    MXene-rGO-CNT-5 1∶5
    PMMA@MXene-GO-CNT-10 1∶10
    MXene-rGO-CNT-10 1∶10
    下载: 导出CSV
  • [1] STAM R, YAMAGUCHI-SEKINO S. Occupational exposure to electromagnetic fields from medical sources[J]. Industrial Health, 2018, 56(2): 96-105. doi: 10.2486/indhealth.2017-0112
    [2] MA W J, CAI W R, CHEN W H, et al. A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding[J]. Chemical Engineering Journal, 2021, 426: 130729. doi: 10.1016/j.cej.2021.130729
    [3] ZHAO B, HAMIDINEJAD M, WANG S, et al. Advances in electromagnetic shielding properties of composite foams[J]. Journal of Materials Chemistry A, 2021, 9(14): 8896-8949. doi: 10.1039/D1TA00417D
    [4] LIU J, ZHANG H B, SUN R H, et al. Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding[J]. Advanced Materials, 2017, 29(38): 1702367. doi: 10.1002/adma.201702367
    [5] LIU J R, ITOH M, HORIKAWA T, et al. Iron based carbon nanocomposites for electromagnetic wave absorber with wide bandwidth in GHz range[J]. Applied Physics A, 2005, 82(3): 509-513.
    [6] HUANG W, WEI S C, WANG Y J, et al. A New Broadband and Strong Absorption Performance FeCO3/RGO Microwave Absorption Nanocomposites[J]. Materials, 2019, 12(13): 2206. doi: 10.3390/ma12132206
    [7] ZHANG J J, LI J W, TAN G G, et al. Thin and Flexible Fe–Si–B/Ni–Cu–P Metallic Glass Multilayer Composites for Efficient Electromagnetic Interference Shielding[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 42192-42199.
    [8] YANG C B, PAN F S, CHEN X H, et al. Effects of Sm addition on electromagnetic interference shielding property of Mg–Zn–Zr alloys[J]. Applied Physics A, 2017, 123(6): 400. doi: 10.1007/s00339-017-1011-5
    [9] XU Y D, YANG Y Q, DUAN H J, et al. Flexible and highly conductive sandwich nylon/nickel film for ultra-efficient electromagnetic interference shielding[J]. Applied Surface Science, 2018, 455: 856-863. doi: 10.1016/j.apsusc.2018.06.061
    [10] LI L Y, LI S L, SHAO Y, et al. PVDF/PS/HDPE/MWCNTs/Fe3O4 nano- composites: Effective and lightweight electromagnetic interference shielding material through the synergetic effect of MWCNTs and Fe3O4 nanoparticles[J]. Current Applied Physics, 2018, 18(4): 388-396. doi: 10.1016/j.cap.2018.01.014
    [11] YANG Y, LI M, WU Y P, et al. Nanoscaled self-alignment of Fe3O4 nanodiscs in ultrathin rGO films with engineered conductivity for electromagnetic interference shielding[J]. Nanoscale, 2016, 8(35): 15989-15998. doi: 10.1039/C6NR04539A
    [12] LIU D, KONG Q-Q, JIA H, et al. Dual-functional 3D multi-wall carbon nanotubes/graphene/silicone rubber elastomer: Thermal management and electromagnetic interference shielding[J]. Carbon, 2021, 183: 216-224. doi: 10.1016/j.carbon.2021.07.013
    [13] SHEN B, ZHAI W T, ZHENG W G. Ultrathin Flexible Graphene Film: An Excellent Thermal Conducting Material with Efficient EMI Shielding[J]. Advanced Functional Materials, 2014, 24(28): 4542-4548. doi: 10.1002/adfm.201400079
    [14] YANG W, YAN L, JIANG B, et al. Crumpled Nitrogen-Doped Porous Carbon Nanosheets Derived from Petroleum Pitch for High-Performance and Flexible Electromagnetic Wave Absorption[J]. Industrial & Engineering Chemistry Research, 2022, 61(7): 2799-2808.
    [15] HUANGFU Y, RUAN K, QIU H, et al. Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 265-272. doi: 10.1016/j.compositesa.2019.03.041
    [16] YANG W, BAI H X, JIANG B, et al. Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding[J]. Nano Research, 2022, 15(11): 9926-9935. doi: 10.1007/s12274-022-4414-3
    [17] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2[J]. Adv Mater, 2011, 23(37): 4248-4253. doi: 10.1002/adma.201102306
    [18] FAN Z M, WANG D L, YUAN Y, et al. A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding[J]. Chemical Engineering Journal, 2020, 381: 122696. doi: 10.1016/j.cej.2019.122696
    [19] LI S, XU S, PAN K, et al. Ultra-thin broadband terahertz absorption and electromagnetic shielding properties of MXene/rGO composite film[J]. Carbon, 2022, 194: 127-139. doi: 10.1016/j.carbon.2022.03.048
    [20] WANG L, LIU H, LV X, et al. Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption[J]. Journal of Alloys and Compounds, 2020, 828: 154251. doi: 10.1016/j.jallcom.2020.154251
    [21] KUMAR S, KUMAR P, SINGH N, et al. Highly efficient and sustainable MXene based heterostructure composites filled with ferrites and MWCNTs to mitigate the radiation interference in X-band frequency region[J]. Materials Science and Engineering: B, 2022, 282: 115798. doi: 10.1016/j.mseb.2022.115798
    [22] DENG Z, TANG P, WU X, et al. Superelastic, Ultralight, and Conductive Ti3C2Tx MXene/Acidified Carbon Nanotube Anisotropic Aerogels for Electromagnetic Interference Shielding[J]. ACS Appl Mater Interfaces, 2021, 13(17): 20539-20547. doi: 10.1021/acsami.1c02059
    [23] NGUYEN V-T, NGUYEN Q-D, MIN B K, et al. Ti3C2Tx MXene/carbon nanotubes/waterborne polyurethane based composite ink for electromagnetic interference shielding and sheet heater applications[J]. Chemical Engineering Journal, 2022, 430: 133171. doi: 10.1016/j.cej.2021.133171
    [24] R. M. RONCHI J T A, S. F. Santos, Synthesis, structure, properties and applications of MXenes: current status and perspectives[J]. Ceram Int, 2019, 45(15): 18167-18188.
    [25] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials[J]. Advanced Materials, 2013, 26(7): 992-1005.
    [26] ZHU M, YUE Y, CHENG Y, et al. Hollow MXene Sphere/Reduced Graphene Aerogel Composites for Piezoresistive Sensor with Ultra-High Sensitivity[J]. Advanced Electronic Materials, 2019, 6(2): 1901064.
    [27] ZHAO M Q, XIE X, REN C E, et al. Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na-Ion Storage[J]. Adv Mater, 2017, 29(37): 1702410. doi: 10.1002/adma.201702410
    [28] YUE Y, LIU N S, MA Y N, et al. Highly Self-Healable 3D Microsupercapacitor with MXene–Graphene Composite Aerogel[J]. ACS Nano, 2018, 12(5): 4224-4232. doi: 10.1021/acsnano.7b07528
    [29] BIAN R J, HE G L, ZHI W Q, et al. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance[J]. Journal of Materials Chemistry C, 2019, 7(3): 474-478. doi: 10.1039/C8TC04795B
    [30] HAN M K, YIN X M, HANTANASIRISAKUL K, et al. Anisotropic MXene Aerogels with a Mechanically Tunable Ratio of Electromagnetic Wave Reflection to Absorption[J]. Advanced Optical Materials, 2019, 7(10): 1900267. doi: 10.1002/adom.201900267
    [31] LI R S, DING L, GAO Q, et al. Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene[J]. Chemical Engineering Journal, 2021, 415: 128930. doi: 10.1016/j.cej.2021.128930
    [32] ZHANG Y Z, WANG Y, JIANG Q, et al. MXene Printing and Patterned Coating for Device Applications[J]. Advanced Materials, 2020, 32(21): 1908486. doi: 10.1002/adma.201908486
    [33] LIU X L, WU J S, HE J, et al. Electromagnetic interference shielding effectiveness of titanium carbide sheets[J]. Materials Letters, 2017, 205: 261-263. doi: 10.1016/j.matlet.2017.06.101
    [34] GHIDIU M, LUKATSKAYA M R, ZHAO M-Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. doi: 10.1038/nature13970
    [35] LI Z M, FENG D, LI B, et al. FDM printed MXene/MnFe2O4/MWCNTs reinforced TPU composites with 3D Voronoi structure for sensor and electromagnetic shielding applications[J]. Composites Science and Technology, 2023, 231: 109803. doi: 10.1016/j.compscitech.2022.109803
    [36] WANG Q W, ZHANG H B, LIU J, et al. Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances[J]. Advanced Functional Materials, 2018, 29(7): 1806819.
    [37] ZHAO C J, WANG Q, ZHANG H, et al. Two-Dimensional Titanium Carbide/RGO Composite for High-Performance Supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(24): 15661-15667.
    [38] MA W L, CHEN H H, HOU S Y, et al. Compressible Highly Stable 3D Porous MXene/GO Foam with a Tunable High-Performance Stealth Property in the Terahertz Band[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25369-25377.
    [39] MA Y N, YUE Y, ZHANG H, et al. 3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor[J]. ACS Nano, 2018, 12(4): 3209-3216. doi: 10.1021/acsnano.7b06909
    [40] LI X, YIN X, SONG C, et al. Self-Assembly Core–Shell Graphene-Bridged Hollow MXenes Spheres 3D Foam with Ultrahigh Specific EM Absorption Performance[J]. Advanced Functional Materials, 2018, 28(41): 1803938. doi: 10.1002/adfm.201803938
    [41] CHEN T D, WANG J Q, WU X Z, et al. Ethanediamine induced self-assembly of long-range ordered GO/MXene composite aerogel and its piezoresistive sensing performances[J]. Applied Surface Science, 2021, 566: 150719. doi: 10.1016/j.apsusc.2021.150719
    [42] ZHOU T Z, WU C, WANG Y L, et al. Super-tough MXene-functionalized graphene sheets[J]. Nature Communications, 2020, 11(1): 2077. doi: 10.1038/s41467-020-15991-6
    [43] CHENG Y, LU Y, XIA M, et al. Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion[J]. Composites Science and Technology, 2021, 215: 109023. doi: 10.1016/j.compscitech.2021.109023
    [44] WANG H, ZHENG K, ZHANG X, et al. 3D network porous polymeric composites with outstanding electromagnetic interference shielding[J]. Composites Science and Technology, 2016, 125: 22-29. doi: 10.1016/j.compscitech.2016.01.007
    [45] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. doi: 10.1126/science.aag2421
    [46] HUANG H-D, LIU C-Y, ZHOU D, et al. Cellulose composite aerogel for highly efficient electromagnetic interference shielding[J]. Journal of Materials Chemistry A, 2015, 3(9): 4983-4991. doi: 10.1039/C4TA05998K
    [47] WAN Y J, ZHU P L, YU S H, et al. Anticorrosive, Ultralight, and Flexible Carbon-Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding[J]. Small, 2018, 14(27): 1800534. doi: 10.1002/smll.201800534
    [48] YANG H, YU Z, WU P, et al. Electromagnetic interference shielding effectiveness of microcellular polyimide/in situ thermally reduced graphene oxide/carbon nanotubes nanocomposites[J]. Applied Surface Science, 2018, 434: 318-325. doi: 10.1016/j.apsusc.2017.10.191
    [49] SIMA H, LIU B, CHENG C, et al. MXene/PDMS composite foam with regulatable cell structures for improved EMI shielding performance[J]. Journal of Applied Polymer Science, 2024, 141(13): 55161. doi: 10.1002/app.55161
    [50] ZHANG H, ZHANG G, GAO Q, et al. Electrically electromagnetic interference shielding microcellular composite foams with 3D hierarchical graphene-carbon nanotube hybrids[J]. Composites Part A: Applied Science and Manufacturing, 2020, 130: 105773. doi: 10.1016/j.compositesa.2020.105773
    [51] LI H, YUAN D, LI P, et al. High conductive and mechanical robust carbon nanotubes/waterborne polyurethane composite films for efficient electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 411-417. doi: 10.1016/j.compositesa.2019.04.003
    [52] WU Y, WANG Z, LIU X, et al. Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9059-9069.
    [53] ZHENG X H, TANG J H, WANG P, et al. Interfused core-shell heterogeneous graphene/MXene fiber aerogel for high-performance and durable electromagnetic interference shielding[J]. Journal of Colloid and Interface Science, 2022, 628: 994-1003. doi: 10.1016/j.jcis.2022.08.019
    [54] SUN R H, ZHANG H-B, LIU J, et al. Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding[J]. Advanced Functional Materials, 2017, 27(45): 1702807 . doi: 10.1002/adfm.201702807
    [55] WAN Y-J, LI X-M, ZHU P-L, et al. Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2020, 130: 105764. doi: 10.1016/j.compositesa.2020.105764
    [56] XU H, YIN X, LI X, et al. Lightweight Ti2CTxMXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature[J]. ACS Appl Mater Interfaces, 2019, 11(10): 10198-10207. doi: 10.1021/acsami.8b21671
    [57] WANG L, QIU H, SONG P, et al. 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 293-300. doi: 10.1016/j.compositesa.2019.05.030
  • 加载中
计量
  • 文章访问数:  89
  • HTML全文浏览量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-04-28
  • 录用日期:  2024-05-06
  • 网络出版日期:  2024-06-13

目录

    /

    返回文章
    返回