留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

树脂基复合材料制件微波固化数值模拟

龙习坤 李树健 陈蓉 曹正 李常平 常腾飞

龙习坤, 李树健, 陈蓉, 等. 树脂基复合材料制件微波固化数值模拟[J]. 复合材料学报, 2022, 40(0): 1-12
引用本文: 龙习坤, 李树健, 陈蓉, 等. 树脂基复合材料制件微波固化数值模拟[J]. 复合材料学报, 2022, 40(0): 1-12
Xikun LONG, Shujian LI, Rong CHEN, Zheng CAO, Changping LI, Tengfei CHANG. Numerical simulation of microwave curing of resin matrix composites workpiece[J]. Acta Materiae Compositae Sinica.
Citation: Xikun LONG, Shujian LI, Rong CHEN, Zheng CAO, Changping LI, Tengfei CHANG. Numerical simulation of microwave curing of resin matrix composites workpiece[J]. Acta Materiae Compositae Sinica.

树脂基复合材料制件微波固化数值模拟

基金项目: 国家自然科学基金 (51975208); 湖南省自然科学基金 (2020 JJ4301)
详细信息
    通讯作者:

    李树健,博士,副教授,硕士生导师,研究方向为树脂基复合材料成型与切削加工技术 E-mail: smart0110@126.com

  • 中图分类号: TQ327.3

Numerical simulation of microwave curing of resin matrix composites workpiece

  • 摘要: 以T800/X850(碳纤维/环氧树脂)复合材料T型制件为结合对象,利用COMSOL Multiphysics仿真软件,建立了反映复合材料制件单馈口谐振腔体微波固化的有限元仿真模型,研究了微波腔体和制件内部的电磁场、温度场、固化度场的分布规律及其与微波输入功率的映射关系。结果表明:在微波腔体内和制件内存在相反的电场强度分布,在复合材料制件内,远离微波馈入端口的区域的电场强度要高于近馈入端口区域,且在制件棱角区域,电场强度存在较强的尖端效应;随微波输入功率增加,微波腔体及制件内部的电场强度均随之增加,制件内电场强度最大值出现在上、下表面,且下表面温度明显较上表面高;提高微波输入功率会导致制件升温过快,进而诱发温度及固化度梯度。在升温中后期的制件厚度方向,温度和固化度梯度较明显。本研究推荐微波输入功率应控制在500 W以内。

     

  • 图  1  T型制件微波固化建模示意图

    Figure  1.  Schematic diagram of microwave curing modeling of T-shaped workpiece

    图  2  微波固化数值模拟流程图

    Figure  2.  Flow chart of microwave curing numerical simulation

    图  3  T800/X850复合材料制件电磁场分布云图 (Pin=200 W)

    Figure  3.  Cloud diagram of electromagnetic field distribution of T800/X850 composites workpiece (Pin=200 W)

    图  4  T800/X850复合材料制件环境域及其域内的电场强度

    Figure  4.  Electric field strength in environment and in T800/X850 composites workpiece

    图  5  T800/X850复合材料制件域内中轴线的电场强度

    Figure  5.  Electric field intensity of central axis in T800/X850 composites workpiece

    图  6  T800/X850复合材料的电阻损耗-温度-输入功率关系

    Figure  6.  Relationship of resistance loss-temperature-input power of T800/X850 composites

    图  7  T800/X850复合材料固化工艺曲线与微波冷、热点分布:(a) 固化工艺曲线 (b)冷、热点分布

    Figure  7.  Curing curve and distribution of microwave cold and hot spot of T800/X850 composites: (a) curing curve (b) distribution of cold spot and hot spot

    图  8  T800/X850复合材料制件温度场分布云图 (Pin=200 W)

    Figure  8.  Cloud diagram of temperature field distribution of T800/X850 composites workpiece (Pin=200 W)

    图  9  微波输入功率对T800/X850复合材料升温过程的影响

    Figure  9.  Effect of microwave input power on temperature rising process of T800/X850 composites

    图  10  微波输入功率Pin对T800/X850复合材料制件固化度的影响

    Figure  10.  Effect of Pin on curing degree of T800/X850 composite workpiece

    图  11  T800/X850复合材料温度、固化度仿真与实验结果对比

    Figure  11.  Comparison between simulation and experimental results of temperature and curing degree of T800/X850 composite

    表  1  T800碳纤维/X850环氧树脂预浸料的材料属性[16-18]

    Table  1.   Material properties of T800 carbon fiber/X850 epoxy resin prepregs[16-18]

    ParameterValue
    Relative dielectric constant65-20j
    Relative permeability1
    Conductivity (CX, CY, CZ)(8696.45, 52.3, 52.3) s/m
    Thermal conductivity in parallel fiber direction−0.8863+0.0109T+0.2503α−0.3318 e−5T2−0.0286α2 W/(m·K)
    Thermal conductivity in vertical fiber direction−0.5178+0.0055T+0.0784α−4.5880 e−6T2−0.0663α2 W/(m*K)
    Density1570 kg/m3
    Constant pressure heat capacity−401.7+5.9T+135.1α−4.8723 e(−3)T2 J/(kg·K)
    Surface emissivity1
    Fiber volume fraction0.65
    Resin volume fraction0.35
    Notes:j is the imaginary part of the relative dielectric constant; CX, CY and CZ are conductivity in different directions; T is the instantaneous temperature of T800/X850 composites; α is the instantaneous curing degree of T800/X850 composites.
    下载: 导出CSV

    表  2  T800/X850复合材料微波固化工艺数据

    Table  2.   Microwave curing process data of T800/X850 composites

    Pin/WMaximum curing gradient/%t/s
    2005.93600
    50014.52000
    1000211500
    150021.51200
    2000251000
    Notes:Pin is microwave power; t is time required to achieve complete curing
    下载: 导出CSV
  • [1] HASSANA M R, GANJEHB B. Application of microwave heating in acrospace composite processing[J]. Applied Mechanics and Materials,2014,564:310-314. doi: 10.4028/www.scientific.net/AMM.564.310
    [2] 李树健, 湛利华, 白海明, 等. 基于树脂流动的变截面复合材料结构固化过程热-流-固多场强耦合数值仿真[J]. 复合材料学报, 2018, 35(8):2095-2102.

    LI S J, ZHAN L H, B H M, et al. Numerical simulation of thermal fluid solid multi field coupling in curing process of variable cross-section composite structure based on resin flow[J]. Acta Materiae Compositae Sinica,2018,35(8):2095-2102(in Chinese).
    [3] LI Yingguang, LI Nanya, ZHOU Jing, et al. Microwave curing of multidirectional carbon fiber reinforced polymer composites[J]. Composite Structures,2019,212:83-93. doi: 10.1016/j.compstruct.2019.01.027
    [4] ZHOU Jing, LI Yingguang, LI Di, etal. Online learning based intelligent temperature control during polymer composites microwave curing process[J]. Chemical Engineering Journal,2019,370:455-465. doi: 10.1016/j.cej.2019.03.204
    [5] 李自强, 湛利华, 常腾飞, 等. 基于微波固化工艺的碳纤维T800/环氧树脂复合材料固化反应动力学[J]. 复合材料学报, 2018, 35(9):2458-2464.

    LI Z Q, ZHAN L H, CHANG T F, et al. Curing reaction kinetics of carbon fiber T800/Epoxy resin composites based on microwave curing process[J]. Acta Materiae Compositae Sinica,2018,35(9):2458-2464(in Chinese).
    [6] BOGETTI T A, GILLESPIE J W. Jr. Two-Dimensional cure simulation of thick thermosetting composites[J]. Journal of Composite Materials,1991,25(3):239-273. doi: 10.1177/002199839102500302
    [7] KIM Y K, WHITE S R. Viscoelastic analysis of processing-induced residual stresses in thick composite iaminates[J]. Mechanics of Composite Materials and Structures,2007,4(4):361-387.
    [8] HOSSEINI T H, SADIGHI M, VOJDANI Ali. Effects of curing thermal residual stresses on fatigue crack propagation of aluminum plates repaired by FML patches[J]. Composite Structures,2013,100:154-162. doi: 10.1016/j.compstruct.2012.12.052
    [9] VAUTARD F, OZCAN S, POLAND L, et al. Influence of thermal history on the mechanical properties of carbonfiber–acrylate composites cured by electron beam and thermal processes[J]. Composites Part A,2012,45:162-172.
    [10] ZHOU Jing, LI Yingguang, ZHU Zexin, et al. Microwave heating and curing of metal-like CFRP laminates through ultrathin and flexible resonance structures[J]. Composites Science and Technology,2021,218:109-200.
    [11] BHUDOLIA S K, GOHEL G, JOSHI S C, et al. Vibration damping and dynamic mechanical attributes of core-shell particles modified glass epoxy prepregs cured using microwave irradiations[J]. Composites Communications,2020,21:100412. doi: 10.1016/j.coco.2020.100412
    [12] 袁铁军, 周来水, 郑伟峰, 等. 微波固化成型三维中空复合材料结构的力学性能[J]. 玻璃钢/复合材料, 2017(3):53-59.

    YUAN T J, ZHOU L S, ZHENG W F, et al. Mechanical properties of three-dimensional hollow composite structures formed by microwave curing[J]. CRP/CM,2017(3):53-59(in Chinese).
    [13] 徐学宏, 王小群, 闫超, 等. 环氧树脂及其复合材料微波固化研究进展[J]. 材料工程, 2016, 44(8):111-120. doi: 10.11868/j.issn.1001-4381.2016.08.018

    XU X H, WANG X Q, YAN C, et al. Research progress of microwave curing of epoxy resin and its composites[J]. Journal of Materials Engineering,2016,44(8):111-120(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.08.018
    [14] LOOA C, SPRINGERG S. Curing of epoxy matrixcomposites[J]. Journal of Composite Materials,1983,17(2):135-169. doi: 10.1177/002199838301700204
    [15] BOEY F Y C, SONG X L, YUE C Y, et al. Modeling the curing kinetics for a modified bismaleimide resin[J]. Journal of Polymer Science,2000,38:907-913.
    [16] 朱攀星, 杨绍昌. X850树脂预浸料材料工艺性研究[J]. 科技展望, 2016, 26(24):70-72. doi: 10.3969/j.issn.1672-8289.2016.24.063

    ZHU P X, YANG S C. Study on the processability of X850 resin prepreg[J]. Science and Technology,2016,26(24):70-72(in Chinese). doi: 10.3969/j.issn.1672-8289.2016.24.063
    [17] 李伟东, 张金栋, 刘刚, 等. 国产T800碳纤维/双马来酰亚胺复合材料的界面及力学性能[J]. 复合材料学报, 2016, 33(7):1484-1491.

    LI W D, ZHANG J D, LIU G, et al. Interface and mechanical properties of domestic T800 carbon fiber / bismaleimide composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1484-1491(in Chinese).
    [18] 陈伟明, 王成忠, 周同悦, 等. T800碳纤维复合材料界面吸湿性能分析[J]. 玻璃钢/复合材料, 2006(5):20-23,27.

    CHEN W M, WANG C Z, ZHOU T Y, et al. Analysis of interfacial hygroscopic properties of T800 carbon fiber composites[J]. CRP/CM,2006(5):20-23,27(in Chinese).
    [19] HAHN D W, OZISIK M N. Heat Conduction, Third Edition [M], New Jersey: John Wiley & Sons, Inc. 2012.
    [20] CREYSSELS M. Model for thermal convection with uniform volumetric energy sources[J]. Journal of Fluid Mechanics,2021,919(A13):1-18.
    [21] AHMED S E, RAIZAH Z A S. Analysis of the entropy due to radiative flow of nano-encapsulated phasechange materials within inclined porous prismatic enclosures finite element simulation[J]. Journal of Energy Storage,2021,40:102719. doi: 10.1016/j.est.2021.102719
    [22] ZONGA L, KEMOELB L C, Hawleya Martin C. Dielectric studies of three epoxy resin systems during microwave cure[J]. Polymer,2005,46:2638-2645. doi: 10.1016/j.polymer.2005.01.083
    [23] CHENG Jun, WANG Buyun, XU Dezhang, et al. Resistive loss considerations in the finite element analysis of eddy current[J]. NDT and E International,2021,119:102403. doi: 10.1016/j.ndteint.2021.102403
    [24] 徐笑娟, 罗进, 陈兆权, 等. 考虑层间界面导电行为和电阻损耗的碳纤维增强树脂基复合材料结构电磁场扩散与衰减特性[J]. 复合材料学报, 2022, 39:1-11.

    XU X J, LUO J, CHEN Z Q, et al. Electromagnetic field diffusion and attenuation characteristics of carbon fiber reinforced resin matrix composites considering interlayer interface conductive behavior and resistance loss[J]. Acta Materiae Compositae Sinica,2022,39:1-11(in Chinese).
    [25] LINK G, RAMOPOULOS V. Simple analytical approach for industrial microwave applicator design[J]. Chemical Engineering & Processing:Process Intensification,2018,125:334-342.
  • 加载中
计量
  • 文章访问数:  98
  • HTML全文浏览量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 录用日期:  2022-04-10
  • 修回日期:  2022-03-28
  • 网络出版日期:  2022-04-29

目录

    /

    返回文章
    返回