Numerical simulation of microwave curing of resin matrix composites workpiece
-
摘要: 以T800/X850(碳纤维/环氧树脂)复合材料T型制件为结合对象,利用COMSOL Multiphysics仿真软件,建立了反映复合材料制件单馈口谐振腔体微波固化的有限元仿真模型,研究了微波腔体和制件内部的电磁场、温度场、固化度场的分布规律及其与微波输入功率的映射关系。结果表明:在微波腔体内和制件内存在相反的电场强度分布,在复合材料制件内,远离微波馈入端口的区域的电场强度要高于近馈入端口区域,且在制件棱角区域,电场强度存在较强的尖端效应;随微波输入功率增加,微波腔体及制件内部的电场强度均随之增加,制件内电场强度最大值出现在上、下表面,且下表面温度明显较上表面高;提高微波输入功率会导致制件升温过快,进而诱发温度及固化度梯度。在升温中后期的制件厚度方向,温度和固化度梯度较明显。本研究推荐微波输入功率应控制在500 W以内。Abstract: Taking T800/X850 (carbon fiber/epoxy) composites T-shaped workpiece as the combined object, using COMSOL Multiphysics simulation software, the finite element simulation model reflecting the microwave curing of single feed resonant cavity of composites workpiece was established, and the distribution laws of electromagnetic field, temperature field and curing degree field inside the microwave cavity and workpiece and their mapping relationship with microwave input power were studied. The results show that there are opposite electric field intensity distributions in the microwave cavity and the workpiece. In the composite workpiece, the electric field intensity in the area far away from the microwave feed port is higher than that near the feed port, and there is a strong tip effect in the angular area of the workpiece; With the increase of microwave input power, the electric field intensity in the microwave cavity and the workpiece increases. The maximum electric field intensity appears on the upper and lower surfaces, and the temperature of the lower surface is significantly higher than that of the upper surface; Increasing the microwave input power will lead to the rapid temperature rise of the workpiece, and then induce the gradient of temperature and curing degree. In the middle and late stage of heating up, the gradient of temperature and curing degree is obvious. This study recommends that the microwave input power should be controlled within 500W.
-
Key words:
- resin matrix composites /
- microwave curing /
- curing temperature /
- curing degree /
- numerical simulation
-
表 1 T800碳纤维/X850环氧树脂预浸料的材料属性[16-18]
Table 1. Material properties of T800 carbon fiber/X850 epoxy resin prepregs[16-18]
Parameter Value Relative dielectric constant 65-20j Relative permeability 1 Conductivity (CX, CY, CZ) (8696.45, 52.3, 52.3) s/m Thermal conductivity in parallel fiber direction −0.8863+0.0109T+0.2503α−0.3318 e−5T2−0.0286α2 W/(m·K) Thermal conductivity in vertical fiber direction −0.5178+0.0055T+0.0784α−4.5880 e−6T2−0.0663α2 W/(m*K) Density 1570 kg/m3 Constant pressure heat capacity −401.7+5.9T+135.1α−4.8723 e(−3)T2 J/(kg·K) Surface emissivity 1 Fiber volume fraction 0.65 Resin volume fraction 0.35 Notes:j is the imaginary part of the relative dielectric constant; CX, CY and CZ are conductivity in different directions; T is the instantaneous temperature of T800/X850 composites; α is the instantaneous curing degree of T800/X850 composites. 表 2 T800/X850复合材料微波固化工艺数据
Table 2. Microwave curing process data of T800/X850 composites
Pin/W Maximum curing gradient/% t/s 200 5.9 3600 500 14.5 2000 1000 21 1500 1500 21.5 1200 2000 25 1000 Notes:Pin is microwave power; t is time required to achieve complete curing -
[1] HASSANA M R, GANJEHB B. Application of microwave heating in acrospace composite processing[J]. Applied Mechanics and Materials,2014,564:310-314. doi: 10.4028/www.scientific.net/AMM.564.310 [2] 李树健, 湛利华, 白海明, 等. 基于树脂流动的变截面复合材料结构固化过程热-流-固多场强耦合数值仿真[J]. 复合材料学报, 2018, 35(8):2095-2102.LI S J, ZHAN L H, B H M, et al. Numerical simulation of thermal fluid solid multi field coupling in curing process of variable cross-section composite structure based on resin flow[J]. Acta Materiae Compositae Sinica,2018,35(8):2095-2102(in Chinese). [3] LI Yingguang, LI Nanya, ZHOU Jing, et al. Microwave curing of multidirectional carbon fiber reinforced polymer composites[J]. Composite Structures,2019,212:83-93. doi: 10.1016/j.compstruct.2019.01.027 [4] ZHOU Jing, LI Yingguang, LI Di, etal. Online learning based intelligent temperature control during polymer composites microwave curing process[J]. Chemical Engineering Journal,2019,370:455-465. doi: 10.1016/j.cej.2019.03.204 [5] 李自强, 湛利华, 常腾飞, 等. 基于微波固化工艺的碳纤维T800/环氧树脂复合材料固化反应动力学[J]. 复合材料学报, 2018, 35(9):2458-2464.LI Z Q, ZHAN L H, CHANG T F, et al. Curing reaction kinetics of carbon fiber T800/Epoxy resin composites based on microwave curing process[J]. Acta Materiae Compositae Sinica,2018,35(9):2458-2464(in Chinese). [6] BOGETTI T A, GILLESPIE J W. Jr. Two-Dimensional cure simulation of thick thermosetting composites[J]. Journal of Composite Materials,1991,25(3):239-273. doi: 10.1177/002199839102500302 [7] KIM Y K, WHITE S R. Viscoelastic analysis of processing-induced residual stresses in thick composite iaminates[J]. Mechanics of Composite Materials and Structures,2007,4(4):361-387. [8] HOSSEINI T H, SADIGHI M, VOJDANI Ali. Effects of curing thermal residual stresses on fatigue crack propagation of aluminum plates repaired by FML patches[J]. Composite Structures,2013,100:154-162. doi: 10.1016/j.compstruct.2012.12.052 [9] VAUTARD F, OZCAN S, POLAND L, et al. Influence of thermal history on the mechanical properties of carbonfiber–acrylate composites cured by electron beam and thermal processes[J]. Composites Part A,2012,45:162-172. [10] ZHOU Jing, LI Yingguang, ZHU Zexin, et al. Microwave heating and curing of metal-like CFRP laminates through ultrathin and flexible resonance structures[J]. Composites Science and Technology,2021,218:109-200. [11] BHUDOLIA S K, GOHEL G, JOSHI S C, et al. Vibration damping and dynamic mechanical attributes of core-shell particles modified glass epoxy prepregs cured using microwave irradiations[J]. Composites Communications,2020,21:100412. doi: 10.1016/j.coco.2020.100412 [12] 袁铁军, 周来水, 郑伟峰, 等. 微波固化成型三维中空复合材料结构的力学性能[J]. 玻璃钢/复合材料, 2017(3):53-59.YUAN T J, ZHOU L S, ZHENG W F, et al. Mechanical properties of three-dimensional hollow composite structures formed by microwave curing[J]. CRP/CM,2017(3):53-59(in Chinese). [13] 徐学宏, 王小群, 闫超, 等. 环氧树脂及其复合材料微波固化研究进展[J]. 材料工程, 2016, 44(8):111-120. doi: 10.11868/j.issn.1001-4381.2016.08.018XU X H, WANG X Q, YAN C, et al. Research progress of microwave curing of epoxy resin and its composites[J]. Journal of Materials Engineering,2016,44(8):111-120(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.08.018 [14] LOOA C, SPRINGERG S. Curing of epoxy matrixcomposites[J]. Journal of Composite Materials,1983,17(2):135-169. doi: 10.1177/002199838301700204 [15] BOEY F Y C, SONG X L, YUE C Y, et al. Modeling the curing kinetics for a modified bismaleimide resin[J]. Journal of Polymer Science,2000,38:907-913. [16] 朱攀星, 杨绍昌. X850树脂预浸料材料工艺性研究[J]. 科技展望, 2016, 26(24):70-72. doi: 10.3969/j.issn.1672-8289.2016.24.063ZHU P X, YANG S C. Study on the processability of X850 resin prepreg[J]. Science and Technology,2016,26(24):70-72(in Chinese). doi: 10.3969/j.issn.1672-8289.2016.24.063 [17] 李伟东, 张金栋, 刘刚, 等. 国产T800碳纤维/双马来酰亚胺复合材料的界面及力学性能[J]. 复合材料学报, 2016, 33(7):1484-1491.LI W D, ZHANG J D, LIU G, et al. Interface and mechanical properties of domestic T800 carbon fiber / bismaleimide composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1484-1491(in Chinese). [18] 陈伟明, 王成忠, 周同悦, 等. T800碳纤维复合材料界面吸湿性能分析[J]. 玻璃钢/复合材料, 2006(5):20-23,27.CHEN W M, WANG C Z, ZHOU T Y, et al. Analysis of interfacial hygroscopic properties of T800 carbon fiber composites[J]. CRP/CM,2006(5):20-23,27(in Chinese). [19] HAHN D W, OZISIK M N. Heat Conduction, Third Edition [M], New Jersey: John Wiley & Sons, Inc. 2012. [20] CREYSSELS M. Model for thermal convection with uniform volumetric energy sources[J]. Journal of Fluid Mechanics,2021,919(A13):1-18. [21] AHMED S E, RAIZAH Z A S. Analysis of the entropy due to radiative flow of nano-encapsulated phasechange materials within inclined porous prismatic enclosures finite element simulation[J]. Journal of Energy Storage,2021,40:102719. doi: 10.1016/j.est.2021.102719 [22] ZONGA L, KEMOELB L C, Hawleya Martin C. Dielectric studies of three epoxy resin systems during microwave cure[J]. Polymer,2005,46:2638-2645. doi: 10.1016/j.polymer.2005.01.083 [23] CHENG Jun, WANG Buyun, XU Dezhang, et al. Resistive loss considerations in the finite element analysis of eddy current[J]. NDT and E International,2021,119:102403. doi: 10.1016/j.ndteint.2021.102403 [24] 徐笑娟, 罗进, 陈兆权, 等. 考虑层间界面导电行为和电阻损耗的碳纤维增强树脂基复合材料结构电磁场扩散与衰减特性[J]. 复合材料学报, 2022, 39:1-11.XU X J, LUO J, CHEN Z Q, et al. Electromagnetic field diffusion and attenuation characteristics of carbon fiber reinforced resin matrix composites considering interlayer interface conductive behavior and resistance loss[J]. Acta Materiae Compositae Sinica,2022,39:1-11(in Chinese). [25] LINK G, RAMOPOULOS V. Simple analytical approach for industrial microwave applicator design[J]. Chemical Engineering & Processing:Process Intensification,2018,125:334-342. -

计量
- 文章访问数: 98
- HTML全文浏览量: 43
- 被引次数: 0