留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孔隙对碳纤维/环氧树脂复合材料剪切性能和破坏模式的影响

史俊伟 杨柳 王文贵 荀国立 信泽坤

史俊伟, 杨柳, 王文贵, 等. 孔隙对碳纤维/环氧树脂复合材料剪切性能和破坏模式的影响[J]. 复合材料学报, 2024, 41(9): 4966-4979. doi: 10.13801/j.cnki.fhclxb.20240722.004
引用本文: 史俊伟, 杨柳, 王文贵, 等. 孔隙对碳纤维/环氧树脂复合材料剪切性能和破坏模式的影响[J]. 复合材料学报, 2024, 41(9): 4966-4979. doi: 10.13801/j.cnki.fhclxb.20240722.004
SHI Junwei, YANG Liu, WANG Wengui, et al. Effects of voids on shear properties and failure mode of carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4966-4979. doi: 10.13801/j.cnki.fhclxb.20240722.004
Citation: SHI Junwei, YANG Liu, WANG Wengui, et al. Effects of voids on shear properties and failure mode of carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4966-4979. doi: 10.13801/j.cnki.fhclxb.20240722.004

孔隙对碳纤维/环氧树脂复合材料剪切性能和破坏模式的影响

doi: 10.13801/j.cnki.fhclxb.20240722.004
详细信息
    通讯作者:

    史俊伟,硕士,高级工程师,研究方向为复合材料无损检测与评估技术 E-mail: aaron_sjw@163.com

  • 中图分类号: TB332

Effects of voids on shear properties and failure mode of carbon fiber/epoxy resin composites

  • 摘要: 孔隙对碳纤维/环氧树脂复合材料剪切性能的影响十分显著。本文采用吸湿饱和和固化压力阶梯下降的方法在复合材料层压板中模拟制备出不同含量的孔隙缺陷,通过短梁剪切强度测试试验,建立不同孔隙率对短梁剪切强度的影响曲线,结合金相观察和超声成像分析了不同孔隙率下损伤分布与破坏模式。研究结果表明:当孔隙率小于1.0%时,短梁剪切强度保留率约为88.4%~90.8%;当孔隙率增加至1.0%~1.5%时,短梁剪切强度保留率约为74.9%~80.6%;当孔隙率增加至1.5%~2.0%时,短梁剪切强度保留率约为66.3%~71.9%;当孔隙率增加至2.0%~3.0%时,短梁剪切强度急剧下降,短梁剪切强度保留率降至50%以下。短梁剪切破坏模式对孔隙缺陷十分敏感,层剪破坏主要发生在孔隙及其周边应力集中的区域,孔隙对裂纹的萌生和扩展具有明显的促进作用。

     

  • 图  1  GW800G/BA9918E碳纤维增强环氧树脂单向带预浸料的标准固化曲线

    Figure  1.  Typical curing curves for GW800G/BA9918E CF/EP unidirectional prepreg

    图  2  短梁剪切试样取样示意图

    Figure  2.  Diagrams of ILSS specimen preparations

    SBS—Short beam shear

    图  3  短梁剪切(SBS)测试装置及层压板加载示意图

    Figure  3.  SBS test device and laminate load diagram

    图  4  金相显微镜对孔隙、裂纹和损伤分析的示意图

    Figure  4.  Elaboration of microscopy for voids, cracks, and damage analysis

    图  5  CUS-21 J水浸式超声检测系统

    Figure  5.  CUS-21 J immersion ultrasonic detection system

    图  6  换能器聚焦声束截面

    Figure  6.  Focused transducer beam cross-section

    图  7  超声反射法B-Scan成像检测示意图

    Figure  7.  Ultrasonic reflection B-Scan imaging detection diagram

    图  8  不同孔隙率(Pv) CF/EP复合材料层压板中孔隙的微观形貌和分布

    Figure  8.  Morphology and distributions of voids in CF/EP composite laminates with different porosities (Pv)

    图  9  孔隙率对SBS强度的影响:(a) 短梁剪切强度;(b) 归一化短梁剪切强度

    Figure  9.  Effects of porosity on SBS strength: (a) SBS strength; (b) Normalized SBS strength

    图  10  SBS载荷作用下0°和90° SBS试件的应力状态图:(a) 拉压应力;(b) 剪应力

    Figure  10.  Stress state diagrams of the 0° and 90° SBS specimens under SBS loading: (a) Tension-compression stress; (b) Shear stress

    图  11  不同孔隙率SBS试样断口处的金相观察图:(a) Pv=0.02%,0°取样方向;(b) Pv=0.02%,90°取样方向;(c) Pv=1.01%,0°取样方向;(d) Pv=1.32%,0°取样方向;(e) Pv=1.69%,0°取样方向;(f) Pv=2.89%,0°取样方向

    Figure  11.  Metallographic observations at the fractures of SBS specimen with different porosities: (a) Pv=0.02%, 0° sampling direction; (b) Pv=0.02%, 90° sampling direction; (c) Pv=1.01%, 0° sampling direction; (d) Pv=1.32%, 0° sampling direction; (e) Pv=1.69%, 0° sampling direction; (f) Pv=2.89%, 0° sampling direction

    图  12  不同孔隙率SBS试样破坏后的超声三维成像结果(0°取样方向)

    Figure  12.  3D ultrasonic imaging results of SBS specimens with different porosities after failure (0° sampling direction)

    图  13  不同孔隙率SBS试样破坏后的超声三维成像结果(90°取样方向)

    Figure  13.  3D ultrasonic imaging results of SBS specimens with different porosities after failure (90° sampling direction)

    表  1  碳纤维增强环氧树脂(CF/EP)单向带预浸料的力学性能

    Table  1.   Mechanical properties of carbon fiber/epoxy resin (CF/EP) unidirectional prepreg

    Mechanical property Strength/
    MPa
    Modulus/
    GPa
    0°-Tension 2867 171
    0°-Compression 1470 158
    90°-Tension 76 8.9
    90°-Compression 235 9.33
    In-plane shear 143
    In-plane shear (5% strain) 88.1 4.67
    Interlaminar shear 101
    Note: The properties are characterized at room temperature dry (RTD) environmental condition.
    下载: 导出CSV

    表  2  CF/EP复合材料层压板的孔隙率

    Table  2.   Porosity of CF/EP composite laminates

    Sample No.Autoclave pressure/kPaPorosity/%
    16000.02
    23000.32
    32500.82
    42201.01
    52001.08
    61501.52
    71301.69
    81102.35
    91002.89
    下载: 导出CSV

    表  3  不同孔隙率下CF/EP复合材料层压板的SBS强度

    Table  3.   SBS strength of CF/EP composite laminates at different porosities

    Sampling
    direction
    Pv/% SBS strength of samples τ/MPa Mean strength
    $ \stackrel{-}{\tau } $/MPa
    Standard
    deviation
    Sn-1/MPa
    Coefficient of
    variation (CV)/%
    1# 2# 3# 4# 5# 6#
    0.0285.0586.37 88.51 77.39 87.7186.12 85.19 4.011 4.71
    0.3274.4776.40 78.21 73.90 75.2676.94 75.86 1.620 2.14
    0.8276.1571.95 77.38 75.64 76.2174.48 75.30 1.892 2.51
    1.0168.0863.68 61.20 60.69 62.8263.96 63.40 2.638 4.16
    1.0864.5762.96 64.18 62.05 66.0063.27 63.84 1.387 2.17
    1.5255.6158.88 59.74 56.60 55.2053.79 56.64 2.275 4.02
    1.6957.4452.63 59.00 57.94 58.0153.82 56.47 2.592 4.59
    2.3539.6238.50 39.61 37.89 37.7935.12 38.09 1.515 4.00
    2.8914.3510.44 11.41 9.41012.8912.27 11.79 1.76714.98
    90°0.0274.7076.80 74.99 76.01 78.9476.57 76.33 1.526 2.00
    0.3268.8770.17 69.28 69.63 71.1367.34 69.40 1.280 1.84
    0.8268.1770.83 68.82 72.42 68.7166.69 69.27 2.038 2.94
    1.0164.0161.60 62.92 61.75 61.9060.19 62.06 1.295 2.09
    1.0861.0062.66 62.64 60.83 60.8461.04 61.50 0.892 1.45
    1.5250.5051.04 55.66 62.29 61.2352.39 55.52 5.169 9.31
    1.6953.8755.34 54.80 54.56 54.2856.36 54.87 0.882 1.61
    2.3537.2235.02 37.91 35.17 31.7137.83 35.81 2.173 6.07
    2.8911.04 9.826 9.618 9.77910.10 8.874 9.8730.705 7.14
    下载: 导出CSV
  • [1] SHETTY K, BOJJA R, SRIHARI S. Effect of hygrothermal aging on the mechanical properties of IMA/M21E aircraft-grade CFRP composite[J]. Advanced Composites Letters, 2020, 29: 1-9.
    [2] 包建文, 钟翔屿, 张代军, 等. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48. doi: 10.11868/j.issn.1001-4381.2020.000208

    BAO Jianwen, ZHONG Xiangyu, ZHANG Daijun, et al. Progress in high strength intermediate modulus carbon fiber and its high toughness resin matrix composites in China[J]. Journal of Materials Engineering, 2020, 48(8): 33-48(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000208
    [3] 王先锋, 曹正华, 彭公秋, 等. 不同纺丝工艺国产高强中模碳纤维及其复合材料性能对比[J]. 表面技术, 2023, 52(4): 446-457.

    WANG Xianfeng, CAO Zhenghua, PENG Gongqiu, et al. Characterization of different types domestic T800 carbon fibers and their composites[J]. Surface Technology, 2023, 52(4): 446-457(in Chinese).
    [4] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2019, 40(1): 1-29.

    ZHAO Libin, GONG Yu, ZHANG Jianyu. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522509(in Chinese)
    [5] 李西宁, 王悦舜, 周新房. 复合材料层合板分层损伤数值模拟方法研究现状[J]. 复合材料学报, 2021, 38(4): 1076-1086.

    LI Xining, WANG Yueshun, ZHOU Xinfang. Status of numerical simulation methods for delamination damage of composite laminates[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 1076-1086(in Chinese).
    [6] 王志凯, 陈志鹏, 杨娜娜, 等. 初始缺陷对复合材料层合板力学性能影响研究[J]. 西北工业大学学报, 2019, 37(4): 730-736. doi: 10.3969/j.issn.1000-2758.2019.04.012

    WANG Zhikai, CHEN Zhipeng, YANG Nana, et al. Damage analysis and experimental study of composite structures with initial delamination[J]. Journal of Northwestern Polythechnical University, 2019, 37(4): 730-736(in Chinese). doi: 10.3969/j.issn.1000-2758.2019.04.012
    [7] 韩学群. 复合材料层合板分层损伤数值模拟 [D]. 武汉: 武汉理工大学, 2010.

    HAN Xuequn. Numerical simulation of delamination damage for composite laminates[D]. Wuhan: Wuhan University of Technology, 2010(in Chinese).
    [8] 朱洪艳, 昙莹昌, 裕室妥, 等. 孔隙对碳纤维/环氧复合材料层合板层间剪切疲劳性能的影响[J]. 复合材料学报, 2010, 27(6): 32-37.

    ZHU Hongyan, Tan Yingchang, YU Shituo, et al. Effect of void on the interlaminar shear fatigue of carbon fiber/epoxy composite laminates[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 32-37(in Chinese).
    [9] FENG S W, LI Q M, XIAO Z M, et al. Elastic wave propagation in a porous composite with gradient porosity[J]. International Journal of Mechanical Sciences, 2024, 265: 108904.
    [10] MEHDIKHANI M, GORBATIKH L, VERPOEST I, et al. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance[J]. Journal of Composite Materials, 2019, 53(12): 1579-1669. doi: 10.1177/0021998318772152
    [11] BOSSI R H, GIURGIUTIU V. Nondestructive testing of damage in aerospace composites[M]//IRVING P E, SOUTIS C. Polymer composites in the aerospace industry. Sawston, Cambridge: Woodhead Publishing, 2015: 413-448.
    [12] 史俊伟, 刘松平, 荀国立, 等. 孔隙对碳纤维增强环氧树脂复合材料超声衰减系数及压缩性能的影响[J]. 复合材料学报, 2020, 37(6): 1295-1311.

    SHI Junwei, LIU Songping, XUN Guoli, et al. Effects of voids on ultrasonic attenuation coefficient and compressive properties of carbon fiber/epoxy resin composite[J]. Acta Materiae Compositae Sinica, 2020, 37(6): 1295-1311(in Chinese).
    [13] WHEN J J, WU Y, HOU X, et al. Effect of high temperature on mechanical properties and porosity of carbon fiber/epoxy composites[J]. Journal of Reinforced Plastics and Composites, 2022, 42(19-20): 990-1005.
    [14] LIEBIG W V, VIETS C, SCHULTE K, et al. Influence of voids on the compressive failure behaviour of fibre-reinforced composites[J]. Composites Science and Technology, 2015, 117: 225-233. doi: 10.1016/j.compscitech.2015.06.020
    [15] FISHER B, EATON M, PULLIN R. A novel multi-scale modelling approach to predict the reduction of transverse strength due to porosity in composite materials[J]. Composite Structures, 2023, 312: 116861.
    [16] 李波, 赵美英, 万小朋. 孔隙微观特征对碳纤维/环氧树脂复合材料横向拉伸强度的影响[J]. 复合材料学报, 2018, 35(7): 1864-1868.

    LI Bo, ZHAO Meiying, WAN Xiaopeng. Influence of void micro-characteristics on transverse tensile strength of unidirectional carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2018, 35(7): 1864-1868(in Chinese).
    [17] COSTA M L, ALMEIDA S F M, REZENDE M C. The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates[J]. Composites Science and Technology, 2001, 61(14): 2101-2108. doi: 10.1016/S0266-3538(01)00157-9
    [18] ZHANG C, DUAN Y, XIAO H, et al. Effect of porosity and crystallinity on mechanical properties of laser in-situ consolidation thermoplastic composites[J]. Polymer, 2022, 242: 124573. doi: 10.1016/j.polymer.2022.124573
    [19] ZHANG J, XIE J, ZHAO X, et al. Influence of void defects on impact properties of CFRP laminates based on multi-scale simulation method[J]. International Journal of Impact Engineering, 2023, 180: 104706. doi: 10.1016/j.ijimpeng.2023.104706
    [20] SAENZ-CASTILLO D, MARTÍN M I, CALVO S, et al. Effect of processing parameters and void content on mechanical properties and NDI of thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 308-320. doi: 10.1016/j.compositesa.2019.03.035
    [21] LANDRO L D, MONTALTO A, BETTINI P, et al. Detection of voids in carbon/epoxy laminates and their influence on mechanical properties[J]. Polymers and Polymer Composites, 2017, 25(5): 371-380. doi: 10.1177/096739111702500506
    [22] TRETIAK I, KAWASHITA L F, HALLETT S R. Predicting short beam shear strength reduction in carbon/epoxy laminates containing voids[J]. Composite Structures, 2022, 290: 115472. doi: 10.1016/j.compstruct.2022.115472
    [23] DEI SOMMI A, BUCCOLIERO G, LIONETTO F, et al. A finite element model for the prediction of porosity in autoclave cured composites[J]. Composites Part B: Engineering, 2023, 264: 110882.
    [24] 徐骥威, 李敏, 顾轶卓, 等. 热固性树脂中孔隙形成条件的定量测试方法与影响因素[J]. 复合材料学报, 2008, 25(2): 52-56. doi: 10.3321/j.issn:1000-3851.2008.02.010

    XU Jiwei, LI Min, GU Yizhuo, et al. Quantitative measuring method and influencing factors of void formation conditions in thermosetting resins[J]. Acta Materiae Compositae Sinica, 2008, 25(2): 52-56(in Chinese). doi: 10.3321/j.issn:1000-3851.2008.02.010
    [25] 荀国立, 邱启艳, 史俊伟, 等. 热压罐固化环氧基复合材料孔隙形成研究[J]. 航空制造技术, 2014(15): 110-111, 115. doi: 10.3969/j.issn.1671-833X.2014.15.024

    XUN Guoli, QIU Qiyan, SHI Junwei, et al. Study on formation of voids in autoclave curing epoxy matrix composites[J]. Aeronautical Manufacturing Technology, 2014(15): 110-111, 115(in Chinese). doi: 10.3969/j.issn.1671-833X.2014.15.024
    [26] HUDSON T B, FOLLIS P J, PINAKIDIS J J, et al. Porosity detection and localization during composite cure inside an autoclave using ultrasonic inspection[J]. Composites Part A: Applied Science and Manufacturing, 2021, 147: 106337. doi: 10.1016/j.compositesa.2021.106337
    [27] 管清宇, 李卫平. 湿热环境对7781/ CYCOM 7701玻璃纤维/环氧复合材料典型力学性能的影响[J]. 复合材料学报, 2018, 35(12): 3288-3297.

    GUAN Qingyu, LI Weiping. Effect of hygro-thermal condition on typical mechanical property of 7781/CYCOM 7701 fiberglass/ epoxy composite[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3288-3297(in Chinese).
    [28] SHI J, LIU S, LIU F, et al. Multi-mode ultrasonic visualization of porosity in composites using a focused transducer with high sensitivity and near-surface resolution[J]. Composites Part C: Open Access, 2021, 4: 100104. doi: 10.1016/j.jcomc.2020.100104
    [29] ASTM. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344/D2344M—22[S]. West Conshohocken: ASTM International, 2022.
    [30] SHI J, WANG W, LIU F, et al. Effects of porosity on ultrasonic attenuation coefficient, shear properties and failure mechanisms of CF/EP laminates[J]. Heliyon, 2024, 10(3): e25288. doi: 10.1016/j.heliyon.2024.e25288
    [31] SANTOS A C M Q S, MONTICELI F M, ORNAGHI H, et al. Porosity characterization and respective influence on short-beam strength of advanced composite processed by resin transfer molding and compression molding[J]. Polymers and Polymer Composites, 2021, 29(8): 1353-1362.
    [32] 李步炜, 尧军平, 陈国鑫, 等. SiC/AZ91D复合材料中孔隙缺陷对裂纹萌生和扩展行为的影响[J]. 复合材料学报, 2024, 41(3): 1554-1566.

    LI Buwei, YAO Junping, CHEN Guoxin, et al. Effect of porosity defects on crack initiation and propagation behavior in SiC/AZ91D composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1554-1566(in Chinese).
    [33] SOUTIS C. Measurement of the static compressive strength of carbon-fibre/epoxy laminates[J]. Composites Science and Technology, 1991, 42(4): 373-392. doi: 10.1016/0266-3538(91)90064-V
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  61
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-28
  • 修回日期:  2024-06-06
  • 录用日期:  2024-07-09
  • 网络出版日期:  2024-07-22
  • 刊出日期:  2024-09-15

目录

    /

    返回文章
    返回