留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高密度聚乙烯基水凝胶复合涂层制备及其摩擦学性能

刘春荣 刘思思 邓宇星 王思贤 段尚豪 贾海涛

刘春荣, 刘思思, 邓宇星, 等. 高密度聚乙烯基水凝胶复合涂层制备及其摩擦学性能[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 刘春荣, 刘思思, 邓宇星, 等. 高密度聚乙烯基水凝胶复合涂层制备及其摩擦学性能[J]. 复合材料学报, 2024, 42(0): 1-13.
LIU Chunrong, LIU Sisi, DENG Yuxing, et al. Preparation and tribological properties of high density polyethylene based hydrogel composite coating[J]. Acta Materiae Compositae Sinica.
Citation: LIU Chunrong, LIU Sisi, DENG Yuxing, et al. Preparation and tribological properties of high density polyethylene based hydrogel composite coating[J]. Acta Materiae Compositae Sinica.

高密度聚乙烯基水凝胶复合涂层制备及其摩擦学性能

基金项目: 湖南省青年科技人才项目(2022RC1133); 湖南省制造业关键产品“揭榜挂帅”项目(2023GXGG001, 2023GXGG018)
详细信息
    通讯作者:

    刘思思,博士,教授,博士研究生导师,研究方向为表/界面科学与摩擦学 E-mail: liusisi@xtu.edu.cn

  • 中图分类号: TH145.4;TB332

Preparation and tribological properties of high density polyethylene based hydrogel composite coating

Funds: Hunan Youth Science and Technology Talent Project (2022RC1133) and Key Manufacturing Products Project of Hunan Province (2023GXGG001, 2023GXGG018)
  • 摘要: 受天然关节结构启发,在高密度聚乙烯(HDPE)表面构建水凝胶涂层,从而提升材料润湿性能及承载性能。然而水凝胶与HDPE基体结合性能差易脱落,因此采用紫外诱导多巴胺(DA)聚合形成聚多巴胺(PDA)接枝在HDPE上,得到高密度聚乙烯-多巴胺(HDPE-PDA)样品,随后在HDPE-PDA表面构建纳米羟基磷灰石-聚乙烯醇(HA-PVA)水凝胶涂层,得到高密度聚乙烯基-聚多巴胺-纳米羟基磷灰石-聚乙烯醇水凝胶复合涂层(HDPE-PDA-HA-PVA)样品。研究了样品的润湿性能、生物相容性、界面结合性能及摩擦学特性等。将HDPE-PDA-HA-PVA置于分别加入Na+、Ca2+、Al3+的小牛血清稀释润滑(BSA)溶液中,探究了金属离子对摩擦副的影响规律。综上发现 :HDPE-PDA的静态水接触角由未接枝前的94.57°降低至26.87°,抗菌性能提升98%,与水凝胶的结合力提升了84%。在摩擦学性能研究中发现,HDPE-PDA-HA-PVA在2 N载荷水润滑条件下的摩擦系数低至0.012,仅存在微量磨损。当载荷增大至5 N时,与HDPE相比平均摩擦系数和磨损量分别降低了73%和46%。在探究含金属离子的润滑溶液对摩擦学性能的影响中发现,在3 N载荷下,含Ca2+的润滑溶液表现出较好的润滑性能,这是由于Ca2+能增强材料对润滑蛋白的吸附,易形成润滑层,表现出比其他含金属离子的润滑溶液更好的润滑特性。

     

  • 图  1  高密度聚乙烯(HDPE)、聚多巴胺(PDA)和高密度聚乙烯-聚多巴胺(HDPE-PDA)的FTIR图谱

    Figure  1.  FTIR spectra of high-density polyethylene (HDPE) 、polydopamine (PDA) and high-density polyethylene based polydopamine (HDPE-PDA)

    图  2  不同光照时间HDPE-PDA样品XPS精细谱

    Figure  2.  XPS fine spectra of HDPE-PDA samples with same illumination time

    图  3  不同样品表面形貌图

    Figure  3.  Surface morphology of different samples

    图  4  不同光照时间HDPE-PDA样品水接触角

    Figure  4.  Water contact angle of HDPE-PDA samples under different lighting times

    图  5  HDPE-PDA样品润湿机制示意图

    Figure  5.  Schematic diagram of wetting mechanism for HDPE-PDA samples

    图  6  不同样品生物相容性分析

    Figure  6.  Different sample biocompatibility analysis

    图  7  HA-PVA水凝胶与不同样品拉伸力分析

    Figure  7.  Tensile force analysis of HA-PVA hydrogel after stripping and different products

    图  8  HDPE-PDA基体与水凝胶涂层相互作用示意图

    Figure  8.  Schematic diagram of interaction between HDPE-PDA matrix and hydrogel coating

    图  9  HDPE、HDPE-PDA和HDPE-PDA-HA-PVA样品在不同载荷下摩擦系数

    Figure  9.  Friction coefficient of HDPE、HDPE-PDA and HDPE-PDA-HA-PVA samples under different loads

    图  10  HDPE、HDPE-PDA和HDPE-PDA-HA-PVA样品磨损机制示意图

    Figure  10.  Schematic diagram of wear mechanism of HDPE、HDPE-PDA and HDPE-PDA-HA-PVA samples

    图  11  不同样品5 N载荷下磨痕图

    Figure  11.  Wear marks of different samples under 5 N load

    图  12  HDPE-PDA-HA-PVA样品在不同润滑溶液中摩擦系数

    Figure  12.  Friction coefficient of HDPE-PDA-HA-PVA sample in different lubrication solutions

    图  13  HDPE-PDA-HA-PVA样品在3 N载荷下不同润滑溶液中磨痕图

    Figure  13.  Wear pattern of HDPE-PDA-HA-PVA sample in different lubrication solutions under 3 N load

    图  14  HDPE-PDA-HA-PVA样品在不同金属离子溶液中的润滑机制示意图

    Figure  14.  Schematic diagram of lubrication mechanism of HDPE-PDA-HA-PVA samples in different metal ion solutions

    表  1  溶血吸光度测试结果

    Table  1.   Hemolytic absorbance test results

    Group 1 2 3 4 $\overline X $
    Negative control 0.0253 0.0249 0.0252 0.0254 0.0252
    Positive control 0.6975 0.6949 0.7001 0.6981 0.6976
    HDPE 0.0269 0.0269 0.0274 0.0271 0.0270
    HDPE-PDA 0.0287 0.0288 0.0287 0.0286 0.0287
    下载: 导出CSV

    表  2  不同样品磨损量分析

    Table  2.   Analysis of wear amount of different products

    HDPE HDPE-PDA HDPE-PDA-HA/PVA
    Wear width/µm 582 546 432
    Wear depth /µm 6.60 6.20 4.81
    Wear value/10−6 mm3(N·m)−1 21.34 18.81 11.54
    下载: 导出CSV
  • [1] ZHANG Hao, GUO Yuhai, TIAN Feng, et al. Discussion of orientation and performance of crosslinked ultrahigh-molecular-weight polyethylene used for artificial joints[J]. ACS applied materials & interfaces, 2022, 14(25): 29230-29237.
    [2] 任姗姗, 陆海林, 董光能. 氧化石墨烯/聚乙二醇复合材料在人工关节材料上的润滑性能[J]. 复合材料学报, 2017, 34(11): 2598-2604

    REN Shanshan, LU Hailin, DONG Guangneng. Tribological properties of graphene oxide/polyethylene glycol composites applied on artificial joint[J]. Acta Materiae Compositae Sinica, 2017, 34(11): 2598-2604(in Chinese).
    [3] AMIR Elhadad A, ANA Alcudia, BELEN Begines, et al. A multidisciplinary perspective on the latest trends in artificial cartilage fabrication to mimic real tissue[J]. Applied Materials Today, 2022, 29: 101603. doi: 10.1016/j.apmt.2022.101603
    [4] LUO Chunhui, GUO Andi, LI Jing, et al. Janus hydrogel to mimic the structure and property of articular cartilage[J]. ACS applied materials & interfaces, 2022, 14(31): 35434-35433.
    [5] YU Shrike Zhang, ALI Khademhosseini. Advances in engineering hydrogels[J]. Science, 2017, 356: eeaf3627. doi: 10.1126/science.aaf3627
    [6] 郭玺, 曹金珍, 王佳敏. 聚乙二醇改性相变微胶囊-木粉/高密度聚乙烯复合材料的制备与热性能[J]. 复合材料学报, 2017, 34(6): 1185-1190

    GUO Xi, CAO Jinzhen, WANG Jiamin. Preparation and thermal properties of WF/HDPE composites filled with microcapsules modified by polyethylene glycol[J]. Acta Materiae Compositae Sinica, 2017, 34(6): 1185-1190(in Chinese).
    [7] CAO Yi, XIONG Dangsheng, WANG Kun, et al. Semi-degradable porous poly (vinyl alcohol) hydrogel scaffold for cartilage repair: Evaluation of the initial and cell-cultured tribological properties[J]. Journal of the mechanical behavior of biomedical materials, 2017, 68: 163-172. doi: 10.1016/j.jmbbm.2017.02.001
    [8] ZHANG Xinyue, LOU Zichen, YANG Xuehui, et al. Fabrication and characterization of a multilayer hydrogel as a candidate for artificial cartilage[J]. ACS Applied Polymer Materials, 2021, 3(10): 5039-5050. doi: 10.1021/acsapm.1c00807
    [9] 刘雨晗, 刘德, 王意, 等. 多巴胺表面修饰在医疗领域的研究进展[J]. 表面技术, 2022, 51(11): 164-173

    LIU Yuhan, LIU De, WANG Yi, et al. Research progress of the surface modification by dopamine in medical field[J]. Surface Technology, 2022, 51(11): 164-173(in Chinese).
    [10] CHEN Qin, ZHANG Xinyue, LIU Siyu, et al. Cartilage-bone inspired the construction of soft-hard composite material with excellent interfacial binding performance and low friction for artificial joints[J]. Friction, 2022, 11: 1177-1193.
    [11] CHEN Kai, CHEN Guangyan, WEI Sheng, et al. Preparation and property of high strength and low friction PVA-HA/PAA composite hydrogel using annealing treatment[J]. Materials Science and Engineering C, 2018, 91: 579-588. doi: 10.1016/j.msec.2018.05.080
    [12] FANG Zhonghang, TU Qunzhang, SHEN Xinmin, et al. Biomimetic surface modification of UHMWPE fibers to enhance interfacial adhesion with rubber matrix via constructing polydopamine functionalization platform and then depositing zinc oxide nanoparticles[J]. Surfaces and interfaces, 2022, 29: 101728. doi: 10.1016/j.surfin.2022.101728
    [13] TAMARE Posati, CLAUDIA Ferroni, ANNALISA Aluigi, et al. Mild and effective polymerization of dopamine on keratin films for Innovative photoactivable and biocompatible coated materials[J]. Macromolecular Materials and Engineering, 2018, 303(8): 1700653. doi: 10.1002/mame.201700653
    [14] FANG Hui, QI Xiaoyun, ZHOU Shicheng, et al. High-efficient vacuum ultraviolet-ozone assist-deposited polydopamine for poly (lactic-co-glycolic acid)-coated pure Zn toward biodegradable cardiovascular stent applications[J]. ACS applied materials & interfaces, 2022, 14(2): 3536-3550.
    [15] CAI Tun, ZHAN Shengpeng, YANG Tian, et al. Study on the tribological properties of UHMWPE modified by UV-induced grafting under seawater lubrication[J]. Tribology International, 2021, 168: 107419.
    [16] YANG Biao, DUAN Xiaobo, HUANG Jijun. Ultrathin, biomimetic, superhydrophilic layers of cross-linked poly(phosphobetaine) on polyethylene by photografting[J]. Langmuir, 2015, 31(3): 1120-1126. doi: 10.1021/la5031137
    [17] YANG Lumin, ZHAO Xiaoduo, MA Zhengfeng, et al. An overview of functional biolubricants[J]. Friction, 2022, 11(1): 23-47.
    [18] 刘国强, 郭文清, 刘志鲁, 等. 聚合物仿生润滑剂研究进展[J]. 摩擦学学报, 2015, 35(1): 108-120

    LIU Guoqiang, GUO Wenqing, LIU Zhilu, et al. Research Progress on Polymer-based Biomimetic Lubricants[J]. Tribology, 2015, 35(1): 108-120(in Chinese).
    [19] KIRK J Samaroo, MINGCHEE Tan, DAVID Putnam, et al. Binding and lubrication of biomimetic boundary lubricants on articular cartilage[J]. Journal of orthopaedic research, 2017, 35(3): 548-557. doi: 10.1002/jor.23370
    [20] 邓宇星, 刘思思, 刘金刚, 等. 接枝-游离态两性离子聚合物刷的制备及润滑特性研究[J]. 摩擦学学报, 2023, 43(7): 717-727

    DENG Yuxing, LIU Sisi, LIU Jingang, et al. Preparation and lubricating properties of grafted-free zwitterionic polymer brushes[J]. Tribology, 2023, 43(7): 717-727(in Chinese).
    [21] JELENA Zec, NATASA Tomic Z, MILORAD Zrilić, et al. Optimization of Al2O3 particle modification and UHMWPE fiber oxidation of EVA based hybrid composites: compatibility, morphological and mechanical properties[J]. Composites Part B:Engineering, 2018, 153: 36-48. doi: 10.1016/j.compositesb.2018.07.031
    [22] XIAN peng, CHEN Yingqi, GAO Shuai, et al. Polydopamine (PDA) mediated nanogranular-structured titanium dioxide (TiO2) coating on polyetheretherketone (PEEK) for oral and maxillofacial implants application[J]. Surface & Coatings Technology, 2020, 401: 126282.
    [23] YUAN Junya, ZHANG Zhaozhu, YANG Mingming, et al. Surface modification of hybrid-fabric composites with amino silane and polydopamine for enhanced mechanical and tribological behaviors[J]. Tribology International, 2017, 107: 10-17. doi: 10.1016/j.triboint.2016.11.013
    [24] JIANG Jinhong, ZHU Liping, LI Xiaolin, et al. Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin[J]. Journal of Membrane Science, 2010, 364(1-2): 194-202. doi: 10.1016/j.memsci.2010.08.017
    [25] ZHU Liping, JIANG Jinhong, ZHU Baoku, et al. Immobilization of bovine serum albumin onto porous polyethylene membranes using strongly attached polydopamine as a spacer[J]. Colloids & Surfaces B:Biointerfaces, 2011, 86(1): 111-118.
    [26] 刘宗光, 屈树新, 翁 杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2/3): 212-219

    LIU Zongguang, QU Shuxin, WENG Jie. Application of polydopamine in surface modification of biomaterials[J]. Progress in Chemistry, 2015, 27(2/3): 212-219 (in Chinese).
    [27] 周 磊, 李 涛, 翁习生, 等. 超低磨损聚乙烯人工关节材料的生物相容性评价[J]. 中国矫形外科杂志, 2015, 23(4): 7

    ZHOU Lei, LI Tao, WENG Xisheng, Li Tao, Weng Xisheng, et al. Biocompatibility of the artificial joint material ultra-low-wear polyethylene[J]. Chinese Journal of Orthopedics, 2015, 23(4): 7(in Chinese).
    [28] RATAN Dey K, ALOK Ray R, SYNTHESIS, characterization, and blood compatibility of polyamidoamines copolymers[J]. Biomaterials, 2003, 24(18): 2985-2993.
    [29] 姜福贵, 伍俊峰, 杨 标, 等. 原发性关节感染与关节假体周围感染病原学[J]. 中华医院感染学杂志, 2323, 33(24): 3762-3765

    JIANG Fugui, WU Junfeng YANG Biao, et al. Etiological characteristics of primary joint infection and periprosthetic joint infection[J]. Chinese Journal of Nosocomiology, 2323, 33(24): 3762-3765(in Chinese).
    [30] WU Qing, RAZZAK Abdur, BAI Huanhuan, et al. Dopamine concentration-dependent surface modification for gaining carbon fiber composites with enhanced interfacial adhesion[J]. Composites Communications, 2022, 29: 101047. doi: 10.1016/j.coco.2021.101047
    [31] GREENE George W, THAPA Rajiv, HOLT Stephen A, et al. Structure and property changes in self-assembled lubricin layers induced by calcium ion interactions[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2017, 33(10): 2559-2570.
  • 加载中
计量
  • 文章访问数:  45
  • HTML全文浏览量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-01
  • 修回日期:  2024-03-13
  • 录用日期:  2024-03-22
  • 网络出版日期:  2024-04-24

目录

    /

    返回文章
    返回