留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米铜线的制备及其在柔性电子领域的应用

林晓婷 刘健 苏舟 王洁 李美馨 赵彦州

林晓婷, 刘健, 苏舟, 等. 纳米铜线的制备及其在柔性电子领域的应用[J]. 复合材料学报, 2023, 40(8): 4327-4341. doi: 10.13801/j.cnki.fhclxb.20230227.002
引用本文: 林晓婷, 刘健, 苏舟, 等. 纳米铜线的制备及其在柔性电子领域的应用[J]. 复合材料学报, 2023, 40(8): 4327-4341. doi: 10.13801/j.cnki.fhclxb.20230227.002
LIN Xiaoting, LIU Jian, SU Zhou, et al. Synthesis of copper nanowires and its application in flexible electronic devices[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4327-4341. doi: 10.13801/j.cnki.fhclxb.20230227.002
Citation: LIN Xiaoting, LIU Jian, SU Zhou, et al. Synthesis of copper nanowires and its application in flexible electronic devices[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4327-4341. doi: 10.13801/j.cnki.fhclxb.20230227.002

纳米铜线的制备及其在柔性电子领域的应用

doi: 10.13801/j.cnki.fhclxb.20230227.002
基金项目: 陕西省自然科学基础研究计划(2022JM-236)
详细信息
    通讯作者:

    刘健,博士,副教授,硕士生导师,研究方向为印刷电子材料与印刷制造工艺 E-mail: liujian@xaut.edu.cn

  • 中图分类号: O614.12;TB333

Synthesis of copper nanowires and its application in flexible electronic devices

Funds: Natural Science Basic Research Plan in Shaanxi Province of China (2022JM-236)
  • 摘要: 纳米铜线不仅具有银优良的导电性,由于纳米级别的尺寸效应,还具有优异的透光性和耐曲挠性,且其价格远远低于金和银等贵金属,成为制备柔性电子器件理想的电极材料。本文系统分析了制备纳米铜线的模板法、气相沉积法、静电纺丝技术和化学液相法的优缺点,介绍了基于水-疏水有机溶剂体系和酸处理等纳米铜线的纯化工艺,列举了纳米铜线的抗氧化表面包覆材料(惰性金属、碳基材料和有机聚合物包覆材料)及其包覆工艺。最后,总结了由纳米铜线及其复合材料与柔性基底(纸基、聚氨酯、聚对苯二甲酸乙二酯等)组装而成的柔性电子器件在柔性透明电极、能量存储/转化和柔性传感器等领域的应用现状及面临的挑战。

     

  • 图  1  采用水热法制得纳米铜线(CuNWs) (a)及微观形貌((b)~(d))[37];(e) 反应前的溶液照片;(f) 在80°C生长1 h后的溶液照片[38];((g)~(j)) Jin等[41]制备的CuNWs微观形貌

    Figure  1.  Copper nanowires (CuNWs) obtained by hydrothermal method (a) and its micromorphologies ((b)-(d))[37]; (e) Photographs of the solution before reaction for synthesizing CuNWs; (f) Photographs of the solution after reaction for 1 h at 80°C[38]; ((g)-(j)) Morphology of CuNWs prepared by Jin et al[41]

    图  2  核-壳结构CuNWs的EDS图像:(a) Cu@Zn;(b) Cu@Sn;(c) Cu@Pt;(d) Cu@Ni;(e) Cu@Ag;(f) Cu@Au[72]

    Figure  2.  EDS mapping images of core-shell nanowires: (a) Cu@Zn; (b) Cu@Sn; (c) Cu@Pt; (d) Cu@Ni; (e) Cu@Ag; (f) Cu@Au[72]

    图  3  ((a)~(c)) Cu@Au NWs的形貌;(d) 电生理传感器的示意图;((e), (f)) 安装在目标皮肤上的可穿戴肌电图(EMG)和心电图(ECG)传感器的实物照片;((g), (h)) CuNWs氧化前后传感器采集到的EMG、ECG信号变化[64]

    PUA—Polyurethane acrylate

    Figure  3.  ((a)-(c)) Microstructure of Cu@Au NWs; (d) Schematic of the electrophysiology sensor; ((e), (f)) Electromyography (EMG) and Electrocardiograph (ECG) sensor mounted on the target skin; ((g), (h)) EMG, ECG signal change collected using CuNWs-based sensor before and after the oxidation[64]

    图  4  (a) RCC电极的制造工艺示意图;(b) RCC电极的柔性透明电容触摸板的结构;((c)~(g)) RCC电极电容式触摸传感器的性能测试:(c) “ON”和“OFF”触摸信号;(d) 连续触摸和相应的信号输出;连续触摸力在不同弯曲半径条件下产生的输出触摸信号:(e)平面;(f) 15 mm;(g) 5 mm[94]

    Figure  4.  (a) Schematic of the fabrication process for the RCC electrode; (b) Structure of flexible transparent capacitive touch plate based on RCC electrode, performance tests of the RCC-electrode-based capacitive touch sensor; (c) "ON" and "OFF" touch signal; (d) A successive touch and corresponding signal output; Successive touch forces generate different output touch signals at the different bending radius conditions: (e) Flat; (f) 15 mm; (g) 5 mm[94]

    PTFE—Polytetrafiuoroethylene; RCC—Resin covered Cu nanowires; PET—Polyethylene terephthalate

    图  5  (a) Cu RGONW表皮仿生棘突微结构压阻传感器(SMPS)的制造过程;(b) Cu RGONW表皮仿生SMPS的工作机制;表皮仿生Cu RGONW-SMPS用于实时监测人体运动和微妙生理信号的信号反馈:(c) 手腕弯曲;(d) 二头肌屈曲;(e) 颈部扭转;(f) 颈动脉搏动;(g) 咽喉吞咽;(h) 手指按压;(i) 快速敲击;(j) 手指弯曲;(k) 膝盖弯曲-释放循环;(l) 行走[113]

    PDMS—Polydimethylsiloxane; SMPS—Spinosum microstructured piezoresistive sensor; FTE—Flexible transparent electrode; RGO—Reduced graphene oxide

    Figure  5.  (a) Schematics of the epidermis-bioinspired Cu RGO NW-SMPS; (b) Mechanism revelation of the bioinspired SMPS with Cu RGONW; Wearable applications of the epidermis-bioinspired Cu RGONW-SMPS for real-time monitoring of human motions and subtle physiological signals feedback in the form of current change: (c) Wrist bending; (d) Bicep flexion; (e) Neck torsion; (f) Carotid artery pulse; (g) Throat swallowing; (h) Finger pressing; (i) Quick tapping; (j) Finger bending; (k) Knee bending-release cycle; (l) Walking[113]

    表  1  化学液相法制备的纳米铜线的尺寸

    Table  1.   Dimension of copper nanowires fabricated by chemical liquid phase method

    NumberSolventCu sourceReductantCapping agentDiameter
    /nm
    Length
    /μm
    Ref.
    1H2OCuCl2L-AAODA35100[10]
    2H2OCuCl2C6H12O6HDA25-3550-60[46]
    3H2OCuCl2C6H12O6OLA/
    OA
    6570[44]
    4NaOH(aq)Cu(NO3)2N2H4EDA35200[47]
    5H2OCuCl2C6H12O6DDA18200[48]
    6H2OCu(OH)2C6H12O6DETA3717[49]
    7H2OCuCl2ODAODA30-100Several millimeters[42]
    8EGCu(NO3)2PVP/
    CTAC
    6040[50]
    9OLA/
    C18H36
    CuCl2,
    Cu(acac)2
    OLAOLA30-3535-45[51]
    10H2OCuCl2C6H12O6/
    KBr
    ODA20-40Hundreds of micrometers[52]
    Notes: L-AA—L-ascorbic acid; ODA—Octadecylamine; HDA—Hexadecylamine; OLA—Oleylamine; OA—Oleic acid; PVP—Polyvinylpyrrolidone; CTAC—Cetyltrimethylammonium chloride; EG—Ethylene glycol; EDA—Ethylenediamine; DDA—Dodecylamine; C18H36—Octotene; DETA—Diethylenetriamine; N2H4—Hydrazine hydrate; Cu(acac)2—Copper(II) acetylpyruvate.
    下载: 导出CSV
  • [1] WANG J L, HASSAN M, LIU J W, et al. Nanowire assemblies for flexible electronic devices: Recent advances and perspectives[J]. Advanced Science, 2018, 30(48): 1803430-1803459.
    [2] HASSAN M, ABBAS G, LI N, et al. Significance of flexible substrates for wearable and implantable devices: Recent advances and perspectives[J]. Advanced Materials Technologies,2021,7(3):2100773-2100816.
    [3] FENG Y, ZHU J. Copper nanomaterials and assemblies for soft electronics[J]. Science China Materials,2019,62(11):1679-1708. doi: 10.1007/s40843-019-9468-5
    [4] CLAVER U, ZHAO G. Recent progress in flexible pressure sensors based electronic skin[J]. Advanced Engineering Materials,2021,23(5):2001187. doi: 10.1002/adem.202001187
    [5] LI W, SUN Q, LI L, et al. The rise of conductive copper inks: Challenges and perspectives[J]. Applied Materials Today,2020,18:100451. doi: 10.1016/j.apmt.2019.100451
    [6] LI Z, CHANG S, KHUJE S, et al. Recent advancement of emerging nano copper-based printable flexible hybrid electronics[J]. ACS Nano,2021,15(4):6211-6232. doi: 10.1021/acsnano.1c02209
    [7] 方鲲, 彭睿, 李玫, 等. 先进柔性电子材料及应用进展[J]. 新材料产业, 2022, 326(1):55-58.

    FANG Kun, PENG Rui, LI Mei, et al. Advanced flexible electronic materials and application progress[J]. Advanced Materials Industry,2022,326(1):55-58(in Chinese).
    [8] 李晓燕, 张智慧, 姚继明. 基于印刷技术制备柔性微型电容器的研究进展[J]. 纺织学报, 2022, 43(12):197-202, 212. doi: 10.13475/j.fzxb.20210203707

    LI Xiaoyan, ZHANG Zhihui, YAO Jiming. Research progress on fabrication of flexible microcapacitors based on printing technology[J]. Journal of Textile Science,2022,43(12):197-202, 212(in Chinese). doi: 10.13475/j.fzxb.20210203707
    [9] DANG R, SONG L, DONG W, et al. Synthesis and self-assembly of large-area Cu nanosheets and their application as an aqueous conductive ink on flexible electronics[J]. ACS Applied Materials & Interfaces,2014,6(1):622-629.
    [10] WANG Y, LIU P, ZENG B, et al. Facile synthesis of ultralong and thin copper nanowires and its application to high-performance plexible transparent conductive electrodes[J]. Nanoscale Research Letters,2018,13(1):78. doi: 10.1186/s11671-018-2486-5
    [11] 崔铮, 邱松, 陈征, 等. 印刷电子学材料、技术及其应用[M]. 北京: 高等教育出版社, 2012: 68.

    CUI Zheng, QIU Song, CHEN Zheng, et al. Printing electronics-materials, technologies and applications[M]. Beijing: High education press, 2012: 68(in Chinese).
    [12] 高琪, 阚彩侠, 李俊龙, 等. 铜纳米线的液相制备及其表面修饰研究进展[J]. 物理化学学报, 2016, 32:1604-1622. doi: 10.3866/PKU.WHXB201604182

    GAO Qi, KAN Caixia, LI Junlong, et al. Pregress in liquid-phase preparation and surface modification of copper nanowires[J]. Acta Physico Chimica Sinica,2016,32:1604-1622(in Chinese). doi: 10.3866/PKU.WHXB201604182
    [13] AZIZ A, ZHANG T, LIN Y H, et al. 1D copper nanowires for flexible printable electronics and high ampacity wires[J]. Nanoscale,2017,9(35):13104-13111. doi: 10.1039/C7NR02478A
    [14] XU L, YANG Y, HU Z W, et al. Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid[J]. ACS Nano,2016,10(3):3823-3834. doi: 10.1021/acsnano.6b00704
    [15] LI W, YANG Y, ZHANG B, et al. Highly densified Cu wirings fabricated from air-stable Cu complex ink with high conductivity, enhanced oxidation resistance, and flexibi-lity[J]. Advanced Materials Interfaces,2018,5(19):1800798. doi: 10.1002/admi.201800798
    [16] PARK H J, JO Y, CHO M K, et al. Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: Flash-light-sintered, kinetically-controlled microstructure[J]. Nanoscale,2018,10(11):5047-5053. doi: 10.1039/C8NR00200B
    [17] FAN G, YU L, DONGA L. Template-assisted synthesis and catalytic property of copper nanowires[J]. ECS Transactions,2013,53(34):29-34. doi: 10.1149/05334.0029ecst
    [18] CHOI H, PARK S H. Seedless growth of free-standing copper nanowires by chemical vapor deposition[J]. Journal of the American Chemical Society,2004,126(20):6248-6249. doi: 10.1021/ja049217+
    [19] 石晓磊. 电纺CuNWs透明电极在钙钛矿太阳能电池中的应用[D]. 太原: 太原理工大学, 2019.

    SHI Xiaolei. Application of electrospun CuNWs transparent electrode in perovskite solar cells[D]. Taiyuan: Taiyuan University of Technology, 2021(in Chinese).
    [20] XU J, ZHU X, XIA S, et al. Au-catalyzed ultrathin copper nanowires[J]. Journal of Materials Chemistry A,2022,10(48):25431-25436. doi: 10.1039/D2TA07668C
    [21] 范国威. 模板法制备铜纳米线及其催化生长纳米碳纤维的研究[D]. 青岛: 青岛科技大学, 2014.

    FAN Guowei. Preparation of copper nanowires by template method and catalytic growth of carbon nanofibers[D]. Qingdao: Qingdao University of Science and Technology, 2014(in Chinese).
    [22] 宋文进. 软模板法制备基于Cu2O的复合光催化剂及其性能研究[D]. 沈阳: 沈阳工业大学, 2022.

    SONG Wenjin. Preparation and properties of composite photocatalysts based on Cu2O by soft template method[D]. Shenyang: Shenyang University of Technology, 2022(in Chinese)
    [23] ZHANG H, WANG Y, GAO X, et al. High reproducibility and sensitivity of bifacial copper nanowire array for detection of glucose[J]. Progress in Natural Science: Materials International,2017,27(3):311-315. doi: 10.1016/j.pnsc.2017.04.008
    [24] 慕霞霞, 陈虎魁, 蒋红丽, 等. 模板法制备纳米金属氧化物材料现状及发展趋势[J]. 化工新型材料, 2020, 48:39-43. doi: 10.19817/j.cnki.issn1006-3536.2020.11.009

    MU Xiaxia, CHEN Hukui, JIANG Hongli, et al. Status and development of nanostructured metal oxide by templated synthesis[J]. New Chemical materials,2020,48:39-43(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2020.11.009
    [25] LI C, JIANG B, WANG Z, et al. First synthesis of continuous mesoporous copper films with uniformly sized pores by electrochemical soft templating[J]. Angewandte Chemie International Edition,2016,55(41):12746-12750. doi: 10.1002/anie.201606031
    [26] 王然龙. 铜纳米线透明导电薄膜的制备及性能研究[D]. 重庆: 重庆理工大学, 2016.

    WANG Ranlong. Preparation and properties of copper nanowire transparent conductive films[D]. Chongqing: Chongqing University of Technology, 2016(in Chinese).
    [27] QIN B, MA H, HOSSAIN M, et al. Substrates in the synthesis of two-dimensional materials via chemical vapor deposition[J]. Chemistry of Materials,2020,32(24):10321-10347. doi: 10.1021/acs.chemmater.0c03549
    [28] 刘昆. 液相还原法制备铜纳米线及其在透明导电薄膜上的应用[D]. 深圳: 哈尔滨工业大学, 2018.

    LIU Kun. Synthesis of copper nanowires by liquid-phase reduction method and their application in transparent conductive films[D]. Shenzhen: Harbin Polytechnic Institute, 2018(in Chinese).
    [29] KIM C, GU W, BRICENO M, et al. Copper nanowires with a five-twinned structure grown by chemical vapor depo-sition[J]. Advanced Materials,2008,20(10):1859-1863. doi: 10.1002/adma.200701460
    [30] 廖子健, 童周禹, 钟国麟, 等. 静电纺丝技术制备纳米纤维吸波材料的研究进展[J]. 化工新型材料, 2021, 49:11-15. doi: 10.19817/j.cnki.issn1006-3536.2021.11.003

    LIAO Zijian, TONG Zhouyu, ZHONG Guolin, et al. Research progress of nanofiber absorbing materials prepared by electrospinning[J]. New Chemical Materials,2021,49:11-15(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2021.11.003
    [31] SUN Q, SHI X, WANG X, et al. Ethanol vapor phase reduced electrospun CuO NWs networks as transparent electrodes in perovskite solar cells[J]. Organic Electronics,2019,75(C):105428.
    [32] 翟艳玉. 电纺掩模制备CuNWs TE及其在钙钛矿太阳能电池中的应用[D]. 太原: 太原理工大学, 2021.

    ZHAI Yanyu. Preparation of CuNWs TE by electrospinning mask and its application in perovskite solar cells[D]. Taiyuan: Taiyuan University of Technology, 2021(in Chinese).
    [33] KIM S, LEE H, KIM D, et al. Transparent conductive films of copper nanofiber network fabricated by electrospinning[J]. Journal of Nanomaterials,2015,2015:518589.
    [34] WOO H, KIM S, YOON S, et al. Highly flexible and transparent film heater with electrospun copper conductive network via junction-free structure[J]. Journal of Alloys and Compounds,2021,886:161191. doi: 10.1016/j.jallcom.2021.161191
    [35] TSAI C Y, MULLINS M J, CHANG C S, et al. Highly conductive polypropylene nanocomposites containing copper nanowire[J]. Journal of Applied Polymer Science, 2023, 140(11): e53615
    [36] YU S, LIU Z, ZHAO L, et al. High-performance flexible transparent conductive tape based on copper nanowires[J]. Optical Materials,2021,119:111301.
    [37] CHANG Y, LYE M L, ZENG H C. Large-scale synthesis of high-quality ultralong copper nanowires[J]. Langmuir,2005,21(9):3746-3748. doi: 10.1021/la050220w
    [38] RATHMELL A R, BERGIN S M, HUA Y L, et al. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films[J]. Advanced Materials, 2010, 22(32): 3558-3563.
    [39] MAJI N C, CHAKRABORTY J. Gram-scale green synthesis of copper nanowire powder for nanofluid applications[J]. ACS Sustainable Chemistry & Engineering,2019,7(14):12376-12388.
    [40] BAGCHI B, SALVADORES F C, BHATTI M, et al. Copper nanowire embedded hypromellose: An antibacterial nanocomposite film[J]. Journal of Colloid and Interface Science,2022,608:30-39. doi: 10.1016/j.jcis.2021.09.130
    [41] JIN M, HE G, ZHANG H, et al. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent[J]. Angewandte Chemie International Edition,2011,50(45):10748-10752.
    [42] LUO M, ZHOU M, ROBSON R D S, et al. Pentatwinned Cu nanowires with ultrathin diameters below 20 nm and their use as templates for the synthesis of Au-based nanotubes[J]. ChemNanoMat,2016,3(3):190-195.
    [43] SHI Y, LI H, CHEN L, et al. Obtaining ultra-long copper nanowires via a hydrothermal process[J]. Science and Technology of Advanced Materials,2005,6(7):761-765. doi: 10.1016/j.stam.2005.06.008
    [44] KUMAR D V, KIM I, ZHONG Z, et al. Cu(II)-alkyl amine complex mediated hydrothermal synthesis of Cu nanowires: Exploring the dual role of alkyl amines[J]. Physical Chemistry Chemical Physics,2014,16(40):22107-22115. doi: 10.1039/C4CP03880K
    [45] ZHANG T, HSIEH W Y, DANESHVAR F, et al. Copper(I)-alkylamine mediated synthesis of copper nanowires[J]. Nanoscale,2020,12(33):17437-17449. doi: 10.1039/D0NR04778C
    [46] JASON N N, SHEN W, CHENG W. Copper nanowires as conductive ink for low-cost draw-on electronics[J]. ACS Applied Materials & Interfaces,2015,7(30):16760-16766.
    [47] YE S, RATHMELL A R, STEWART I E, et al. A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films[J]. Chemical Communications,2014,50(20):2562-2564. doi: 10.1039/C3CC48561G
    [48] LI Y, FAN Z, YUAN X, et al. Dodecylamine-mediated synthesis and growth mechanism of copper nanowires with an aspect ratio of over 10000[J]. Materials Letters,2020,274:128029. doi: 10.1016/j.matlet.2020.128029
    [49] LIN T, TAM S K, HU X, et al. A new route for fast synthesis of copper nanowires and application on flexible transparent conductive films[J]. Journal of Nanoparticle Research,2021,23(5):121. doi: 10.1007/s11051-021-05239-9
    [50] JHON L, HUAMAN C, URUSHIZAKI I, et al. Large-scale Cu nanowire synthesis by PVP-ethylene glycol route[J]. Journal of Nanomaterials,2018,2018:1698357.
    [51] DESHMUKH R, CALVO M, SCHRECK M, et al. Synthesis, spray deposition, and hot-press transfer of copper nanowires for flexible transparent electrodes[J]. ACS Applied Materials & Interfaces,2018,10(24):20748-20754.
    [52] OHIIENKO O, OH Y J. Preparation of narrow copper nanowires with less oxidized surface for flexible and transparent electrodes under octadecylamine[J]. Materials Chemistry and Physics,2020,246:122783. doi: 10.1016/j.matchemphys.2020.122783
    [53] QIAN F, LAN P C, OLSON T, et al. Multiphase separation of copper nanowires[J]. Chemical Communications,2016,52(78):11627-11630. doi: 10.1039/C6CC06228H
    [54] ZHAO S, HAN F, LI J, et al. Advancements in copper nanowires: Synthesis, purification, assemblies, surface modification, and applications[J]. Small,2018,14(26):1800047−1800076. doi: 10.1002/smll.201800047
    [55] KANG C, YANG S, TAN M, et al. Purification of copper nanowires to prepare flexible transparent conductive films with high performance[J]. ACS Applied Nano Materials,2018,1(7):3155-3163. doi: 10.1021/acsanm.8b00326
    [56] FU Q Q, LI Y D, LI H H, et al. In situ seed-mediated high-yield synthesis of copper nanowires on large scale[J]. Langmuir,2019,35(12):4364-4369. doi: 10.1021/acs.langmuir.9b00042
    [57] HAN S, HONG S, YEO J, et al. Nanorecycling: Monolithic integration of copper and copper oxide nanowire ntwork electrode through selective reversible photothermochemical reduction[J]. Advanced Materials,2015,27(41):6397-6403. doi: 10.1002/adma.201503244
    [58] ZENG X, PAN P, QI H, et al. Preparation of copper nanowires and thermal oxidation behaviour in dry oxygen[J]. Surface Innovations,2022,10(3):200-208. doi: 10.1680/jsuin.21.00033
    [59] DING S, JIU J, GAO Y, et al. One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices[J]. ACS Applied Materials & Interfaces,2016,8(9):6190-6199. doi: 10.1021/acsami.5b10802
    [60] NGUYEN-HUNG T, DUC-ANH N, THANH-HUNG D, et al. Fast and simple fabrication of flexible and transparent electrode based on patterned copper nanowires by mechanical lithography transfer[J]. Thin Solid Films, 2019, 285: 26-33.
    [61] LONNE Q, ENDRINO J, HUANG Z. UV treatment of flexible copper nanowire mesh films for transparent conductor applications[J]. Nanoscale Research Letters,2017,12(1):577. doi: 10.1186/s11671-017-2343-y
    [62] ZHANG H, WANG S, TIAN Y, et al. High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes[J]. Nano Materials Science,2020,2(2):164-171. doi: 10.1016/j.nanoms.2019.09.007
    [63] TANG Y, RUAN H, HUANG Z, et al. Fabrication of high-quality copper nanowires flexible transparent conductive electrodes with enhanced mechanical and chemical stability[J]. Nanotechnology,2018,29(45):455706. doi: 10.1088/1361-6528/aade1e
    [64] KIM D, BANG J, WON P, et al. Biocompatible cost-effective electrophysiological monitoring with oxidation-free Cu-Au core-shell nanowire[J]. Advanced Materials Technologies,2020,5(12):2000661. doi: 10.1002/admt.202000661
    [65] YANG J, YU F, CHEN A, et al. Synthesis and application of silver and copper nanowires in high transparent solar cells[J]. Advanced Powder Materials,2022,1(4):100045. doi: 10.1016/j.apmate.2022.100045
    [66] LEE S, WERN C, YI S. Novel fabrication of silver-coated copper nanowires with organic compound solution[J]. Materials, 2022, 15(3): 1135.
    [67] ZHANG H, WANG S, TIAN Y H, et al. Electrodeposition fabrication of Cu@Ni core shell nanowire network for highly stable transparent conductive films[J]. Chemical Engineering Journal,2020,390:124495. doi: 10.1016/j.cej.2020.124495
    [68] YE D M, LI G Z, WANG G G, et al. One-pot synthesis of copper nanowire decorated by reduced graphene oxide with excellent oxidation resistance and stability[J]. Applied Surface Science,2019,467-468:158-167. doi: 10.1016/j.apsusc.2018.10.136
    [69] TONG X, HU H, ZHAO X, et al. In situ carbon coating for enhanced chemical stability of copper nanowires[J]. International Journal of Minerals, Metallurgy and Materials,2022,29(3):557-562. doi: 10.1007/s12613-021-2343-x
    [70] CHU C R, LEE C, KOO J, et al. Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability[J]. Nano Research,2016,9(7):2162-2173. doi: 10.1007/s12274-016-1105-y
    [71] LIU K, LI Y, ZHANG H, et al. Synthesis of the polypyrrole encapsulated copper nanowires with excellent oxidation resistance and temporal stability[J]. Applied Surface Science,2018,439:226-231. doi: 10.1016/j.apsusc.2018.01.020
    [72] YE S, STEWART I E, CHEN Z, et al. How copper nanowires grow and how to control their properties[J]. Accounts of Chemical Research,2016,49(3):442-451. doi: 10.1021/acs.accounts.5b00506
    [73] TOMOTOSHI D, OOGAMI R, KAWASAKI H. Highly conductive, flexible, and oxidation-resistant Cu-Ni electrodes produced from hybrid inks at low temperatures[J]. ACS Applied Materials & Interfaces,2021,13(17):20906-20915.
    [74] CHEN J Y, CHEN J, LI Y, et al. Enhanced oxidation-resistant Cu-Ni core-shell nanowires: Controllable one-pot synthesis and solution processing to transparent flexible heaters[J]. Nanoscale,2015,7(40):16874-16879. doi: 10.1039/C5NR04930J
    [75] KUSNIN N, YUSOF N A, MUTALIB N A A, et al. Enhanced electrochemical conductivity of surface-coated gold nanoparticles/copper nanowires onto screen-printed gold electrode[J]. Coatings,2022,12(5):622. doi: 10.3390/coatings12050622
    [76] NIU Z, CUI F, YU Y, et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors[J]. Journal of the American Chemical Society,2017,139(21):7348-7354. doi: 10.1021/jacs.7b02884
    [77] CATENACCI M J, REYES C, CRUZ M A, et al. Stretchable conductive composites from Cu-Ag nanowire felt[J]. ACS Nano,2018,12(4):3689-3698. doi: 10.1021/acsnano.8b00887
    [78] NAVIK R, DING X, HUIJUN T, et al. Facile synthesis of highly oxidation stable nanosilver-coated copper nanowires for transparent flexible electrodes[J]. Industrial & Engineering Chemistry Research,2020,60(1):263-272.
    [79] AHN Y, JEONG Y, LEE D, et al. Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes[J]. ACS Nano,2015,9(3):3125-3133. doi: 10.1021/acsnano.5b00053
    [80] ZHANG L, YANG R, CHEN K, et al. The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability[J]. Materials Letters,2017,207:62-65. doi: 10.1016/j.matlet.2017.07.048
    [81] TUGBA C B, VAPAAVUORI J, BASARIR F. Transparent conductive electrode based on LBL deposition of graphene oxide and copper nanowires[J]. Materials Letters,2022,311:131632. doi: 10.1016/j.matlet.2021.131632
    [82] LIN Y T, HUANG D W, HUANG P F, et al. A green approach for high oxidation resistance, flexible transparent conductive films based on reduced graphene oxide and copper nanowires[J]. Nanoscale Research Letters,2022,17(1):79. doi: 10.1186/s11671-022-03716-1
    [83] NAVIK R, XIAO D, GAI Y, et al. One-pot synthesis of copper nanowire-graphene composite with excellent stability and electrical performance for flexible electrodes[J]. Applied Surface Science,2020,527:146694. doi: 10.1016/j.apsusc.2020.146694
    [84] NAVIK R, DING X, HUIJUN T, et al. Fabrication of copper nanowire and hydroxylated graphene hybrid with high conductivity and excellent stability[J]. Applied Materials Today,2020,19:100619. doi: 10.1016/j.apmt.2020.100619
    [85] DANESHVAR F, TAGLIAFERRI S, CHEN H, et al. Ultralong electrospun copper-carbon nanotube composite fibers for transparent conductive electrodes with high operational stability[J]. ACS Applied Electronic Materials,2020,2(9):2692-2698. doi: 10.1021/acsaelm.0c00466
    [86] YAN K Y, XUE Q Z, XIA D, et al. The core/shell composite nanowires produced by self-scrolling carbon nanotubes onto copper nanowires[J]. ACS Nano,2009,3(8):2235-2240. doi: 10.1021/nn9005818
    [87] XIA X, CHAO D, QI X, et al. Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties[J]. Nano Letters,2013,13(9):4562-4568. doi: 10.1021/nl402741j
    [88] LIU Y, LIU Z, LU N, et al. Facile synthesis of polypyrrole coated copper nanowires: A new concept to engineered core-shell structures[J]. Chemical Communications,2012,48(20):2621-2623. doi: 10.1039/c2cc16961d
    [89] YUAN H, WANG Y, LI T, et al. Highly thermal conductive and electrically insulating polymer composites based on polydopamine-coated copper nanowire[J]. Composites Science and Technology,2018,164:153-159. doi: 10.1016/j.compscitech.2018.05.046
    [90] LI G Z, CAI Y W, WANG G G, et al. Performance enhancement of transparent and flexible triboelectric nanogenerator based on one-dimensionally hybridized copper/polydimethylsiloxane film[J]. Nano Energy,2022,99:107423. doi: 10.1016/j.nanoen.2022.107423
    [91] LIU W, WANG Y, DONG L, et al. Preparation of copper nanowires conductive films by using cuprous oxide nanowire as template[J]. IOP Conference Series: Earth and Environmental Science,2020,446(2):022027. doi: 10.1088/1755-1315/446/2/022027
    [92] XIANG Q, NAVIK R, TAN H, et al. Synthesis of oxidation-resistance copper nanowires-formate for high-performance transparent conductive electrodes[J]. Journal of Alloys and Compounds,2022,914:165265. doi: 10.1016/j.jallcom.2022.165265
    [93] GAO Z, CHUNKI Y, LIU Y, et al. Stretchable transparent conductive elastomer for skin-integrated[J]. Journal of Materials Chemistry C,2020,8(43):15105-15111. doi: 10.1039/D0TC02913K
    [94] KIM D, KWON J, JUNG J, et al. A transparent and flexible capacitive-force touch pad from high-aspect-ratio copper nanowires with enhanced oxidation resistance for applications in wearable electronics[J]. Small Methods,2018,2(7):1800077. doi: 10.1002/smtd.201800077
    [95] JEONG G, KOO D, SEO J, et al. Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer[J]. Nano Letters,2020,20(5):3718-3727. doi: 10.1021/acs.nanolett.0c00663
    [96] YU S, LI J, ZHAO L, et al. Folding-insensitive, flexible transparent conductive electrodes based on copper nanowires[J]. Solar Energy Materials and Solar Cells,2021,231:111323. doi: 10.1016/j.solmat.2021.111323
    [97] WANG J, ZHANG Z, WANG S, et al. Superstable copper nanowire network electrodes by single-crystal graphene covering and their applications in flexible nanogenerator and light-emitting diode[J]. Nano Energy,2020,71:104638. doi: 10.1016/j.nanoen.2020.104638
    [98] SORAM B S, THANGJAM I S, DAI J Y, et al. Flexible transparent supercapacitor with core-shell Cu@Ni@NiCoS nanofibers network electrode[J]. Chemical Engineering Journal,2020,395:125019.
    [99] HE F, LI K, CONG S, et al. Design and synthesis of N-doped carbon skeleton assembled by carbon nanotubes and graphene as a high-performance electrode material for supercapacitors[J]. ACS Applied Energy Materials,2021,4(8):7731-7742. doi: 10.1021/acsaem.1c01094
    [100] YAO M, JI X, OU X, et al. Self-standing ultrathin NiCo2S4@carbon nanotubes and carbon nanotubes hybrid films as battery-type electrodes for advanced flexible supercapacitors[J]. Journal of Power Sources,2022,543:231829. doi: 10.1016/j.jpowsour.2022.231829
    [101] SINGH S B, KSHETRI T, SINGH T I, et al. Embedded PEDOT:PSS/AgNFs network flexible transparent electrode for solid-state supercapacitor[J]. Chemical Engineering Journal,2019,359:197-207. doi: 10.1016/j.cej.2018.11.160
    [102] ZHAO D, ZHANG Q, CHEN W, et al. Highly flexible and conductive cellulose-mediated PEDOT:PSS/MWCNT composite films for supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2017,9(15):13213-13222.
    [103] LIU X, LI D, CHEN X, et al. Highly transparent and flexible all-solid-state supercapacitors based on ultralong silver nanowire conductive networks[J]. ACS Applied Materials & Interfaces,2018,10(38):32536-32542.
    [104] LEE D, BANG G, BYUN M, et al. Highly flexible, transparent and conductive ultrathin silver film heaters for wearable electronics applications[J]. Thin Solid Films,2020,697:137835. doi: 10.1016/j.tsf.2020.137835
    [105] LIN X, LIN J, ZENG C, et al. Copper nanowires and copper foam multifunctional bridges in zeolitic imidazolate framework-derived anode material for superior lithium storage[J]. Journal of Colloid and Interface Science, 2020, 565: 156-166.
    [106] ZHAO H X, LIU Y L, WANG G G, et al. Self-supported binder-free hybrid electrodes of Cu@CuO nanowires/carbon nanotubes for supercapacitors with ultrahigh areal-capacitance[J]. Energy Technology,2020,9(1):2000744.
    [107] SHANG H, ZUO Z, LI L, et al. Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes[J]. Angewandte Chemie International Edition,2018,57(3):774-778. doi: 10.1002/anie.201711366
    [108] ZHANG W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources,2011,196(1):13-24. doi: 10.1016/j.jpowsour.2010.07.020
    [109] CHEN K T, CHANG W C, YANG H J, et al. Free standing Si (Ge) nanowire/Cu nanowire composites as lithium ion battery anodes[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,104:54-64. doi: 10.1016/j.jtice.2019.07.014
    [110] ZHANG L F, ZHANG L C, XIE Z, et al. Cu&Si core-shell nanowire thin film as high-performance anode materials for lithium ion batteries[J]. Applied Sciences,2021,11(10):4521. doi: 10.3390/app11104521
    [111] TIGAN D, GENLIK S P, IMER B, et al. Core/shell copper nanowire networks for transparent thin film heaters[J]. Nanotechnology,2019,30(32):325202. doi: 10.1088/1361-6528/ab19c6
    [112] XU X, WANG R, NIE P, et al. Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor[J]. ACS Applied Materials & Interfaces,2017,9(16):14273-14280.
    [113] ZHU Y, HARTEL M C, YU N, et al. Epidermis-inspired wearable piezoresistive pressure sensors using reduced graphene oxide self-wrapped copper nanowire networks[J]. Small Methods,2022,6(1):2100900. doi: 10.1002/smtd.202100900
    [114] SONG Z, LIU Z, ZHAO L, et al. Biodegradable and flexible capacitive pressure sensor for electronic skins[J]. Orga-nic Electronics,2022,106:106539. doi: 10.1016/j.orgel.2022.106539
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1581
  • HTML全文浏览量:  364
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-05
  • 修回日期:  2023-01-30
  • 录用日期:  2023-02-16
  • 网络出版日期:  2023-02-28
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回