Synthesis of copper nanowires and its application in flexible electronic devices
-
摘要:
目的 本文通过查阅近几年来相关文献,总结了纳米铜线常用的制备工艺、纯化手段、抗氧化方法和性能之间的密切联系,为本领域的研究者快速了解纳米铜线的尺寸形貌、电学性能、应用现状及面临的挑战提供便捷的窗口,并启发出新的思路或研究方向。 方法 运用分析、比较、整理、归纳等方法,系统介绍了近几年纳米铜线常用的制备方法和纯化手段,并从纳米铜线的尺寸形貌、产率和纯度等方面分析了其各自的优缺点;针对纳米铜线易氧化的问题,列举了常用的包覆材料和包覆工艺;总结了纳米铜线在柔性电子器件的应用领域及其效果。 结果 从所参考的文献来看:① 纳米铜线常用的制备方法主要包括模板法、气相沉积法、静电纺丝技术和化学液相法。根据模板自身不同的特点,模板法可以分为软模板法和硬模板法,利用硬模板法合成的纳米铜线的分散性好,按照所需的大小选择合适的模板尺寸,大小均一,但结构单一,模板难去除、价格昂贵、产率低。利用软模板制备纳米材料时,模板形态多样,不需要复杂的设备,但结构稳定性差,导致模板效率不高。气相沉积法根据气相中间产物的形成过程的差异,分为物理气相沉积法和化学气相沉积法,物理沉积法得到的纳米线结晶度较高,但形貌难以控制,并且反应条件较苛刻,能耗高,而化学气相沉积法合成纳米材料具有操作方便、工艺简单、生产成本低等优点,但产物的成分复杂、易团聚、直径分布不均匀。静电纺丝技术制备纳米铜线具有设备简单、操作方便,纺丝便宜,制备周期短,纳米铜线的形貌和尺寸可控,高长径比等优点,但是需要高温去除静电纺丝溶液中的聚合物,对衬底要求较高,因此不适用于不耐高温的柔性基底。利用化学液相法制备纳米铜线时,能够通过优化反应条件调控纳米铜线的生长速率和形貌,成本较低、制备简单,接近工业化生产,适用于大规模生产,成为当前制备纳米铜线主流的方法。② 针对纳米铜线制备过程形成其他形状的副产物及在空气中氧化,导致基于纳米铜线的电子器件功能降低的问题。通过水-疏水有机溶剂体系、摇动—旋转技术,能够有效地将纳米线和纳米颗粒分离开,获得高纯度的纳米线。另外,利用冰醋酸、热退火以及激光烧结等方法,可以去除纳米铜线表面的有机物和氧化物,提高纳米铜线基柔性电子器件的导电率和透射率。③ 为了降低纳米铜线在空气中的腐蚀倾向,提高其应用价值,在纳米铜线表面沉积金、银、镍等惰性金属,包覆石墨烯、石墨烯衍生物和碳纳米管等碳基材料以及聚吡咯、聚多巴胺、聚二甲基硅氧烷等有机聚合物,能够有效减少其与氧气接触,改善纳米铜线的抗氧化性和抗腐蚀性。④ 纳米铜线及其复合材料与纸基、聚氨酯、聚对苯二甲酸乙二酯等柔性基底组装成柔性电子器件,其良好的导电性和透光性成为柔性透明电极、能量存储/转化和柔性传感器等领域理想的选择。 结论 纳米铜线的高导电性、优异的光电特性、耐屈挠性和低成本等优点,有望成为一维纳米银线或纳米金线的替代品,应用于柔性电子领域。随着高产率、绿色环保和低成本制备工艺的开发以及抗氧化处理技术的日益成熟,纳米铜线及其柔性电子器件将会具有更广阔的应用前景。 Abstract: Copper nanowires not only have excellent electrical conductivity comparable to silver, but also have good light transmittance and flexural resistance due to the size effect at the nanoscale. In addition, it is far cheaper than gold and silver, hence it is an ideal electrode material for preparing flexible electronic devices. The synthesis methods of copper nanowires were systematically reviewed, such as template method, vapor deposition method, electrospinning technology, and chemical liquid phase method. Purification technologies based on water-hydrophobic organic solvent system and acid treatment for copper nanowires were introduced. Various cladding materials with core-shell structure and corresponding cladding technologies used to improve the oxidation resistance and stability of copper nanowires were listed, including inert metals, carbon-based materials, and organic polymer materials. The application status of flexible electronic devices integrating high-quality copper nanowires (or their composites) with flexible substrates (paper-based, polyurethane, and polyethylene terephthalate, etc.) in the fields of flexible transparent electrodes, energy storage/conversion, and flexible sensors were concluded. Finally, the challenges faced in practical application were prospected. -
图 1 采用水热法制得纳米铜线(CuNWs) (a)及微观形貌((b)~(d))[37];(e) 反应前的溶液照片;(f) 在80°C生长1 h后的溶液照片[38];((g)~(j))Xia等制备的CuNWs微观形貌[41]
Figure 1. Copper nanowires (CuNWs) obtained by hydrothermal method (a) and its micromorphologies ((b)-(d))[37]; (e) Photographs of the solution before reaction for synthesizing CuNWs; (f) Photographs of the solution after reaction for 1 h at 80°C[38]; ((g)-(j)) Morphology of CuNWs prepared by Xia et al[41]
图 3 ((a)~(c)) Cu@Au NWs的形貌;(d) 电生理传感器的示意图;((e), (f)) 安装在目标皮肤上的EMG和ECG传感器的实物照片;((g), (h)) CuNWs氧化前后传感器采集到的EMG、ECG信号变化[64]
Figure 3. ((a)-(c)) Microstructure of Cu@Au NWs; (d) Schematic of the electrophysiology sensor; ((e), (f)) EMG and ECG sensor mounted on the target skin; ((g), (h)) EMG, ECG signal change collected using Cu NWs-based sensor before and after the oxidation[64]
图 4 (a) RCC电极的制造工艺示意图;(b) RCC电极的柔性透明电容触摸板的结构;((c)~(g)) RCC电极电容式触摸传感器的性能测试:(c) “ON”和“OFF”触摸信号;(d) 连续触摸和相应的信号输出;连续触摸力在不同弯曲半径条件下产生的输出触摸信号:(e)平面;(f) 15 mm;(g) 5 mm[94]
Figure 4. (a) Schematic of the fabrication process for the RCC electrode; (b) Structure of flexible transparent capacitive touch plate based on RCC electrode, performance tests of the RCC-electrode-based capacitive touch sensor; (c) “ON” and “OFF” touch signal; (d) A successive touch and corresponding signal output; Successive touch forces generate different output touch signals at the different bending radius conditions: (e) Flat; (f) 15 mm; (g) 5 mm[94]
图 5 (a) Cu RGO NWs仿生棘突微结构压阻传感器的制造过程;(b) Cu RGO NWs仿生棘突微结构压阻传感器的工作机制,表皮仿生Cu RGO NW-SMPS用于实时监测人体运动和微妙生理信号的信号反馈:(c)手腕弯曲;(d)二头肌屈曲;(e)颈部扭转;(f)颈动脉搏动;(g)咽喉吞咽;(h)手指按压;(i)快速敲击;(j)手指弯曲;(k)膝盖弯曲-释放循环;(l)行走[113]
Figure 5. (a) Schematics of the epidermis-bioinspired Cu RGO NW-SMPS; (b) Mechanism revelation of the bioinspired spinosum microstructured piezoresistive sensor with Cu RGONWs, wearable applications of the epidermis-bioinspired Cu RGONW-SMPS for real-time monitoring of human motions and subtle physiological signals feedback in the form of current change: (c) Wrist bending; (d) Bicep flexion; (e) Neck torsion; (f) Carotid artery pulse; (g) Throat swallowing; (h) Finger pressing; (i) Quick tapping; (j) Finger bending; (k) Knee bending-release cycle; (l) Walking[113]
表 1 化学液相法制备的纳米铜线的尺寸
Table 1. Dimension of copper nanowires fabricated by chemical liquid phase method
Number Solvent Cu source Reductant Capping agent Diameter
/nmLength
/μmReference 1 H2O CuCl2 L-AA ODA 35 100 [10] 2 H2O CuCl2 C6H12O6 HDA 25-35 50-60 [46] 3 H2O CuCl2 C6H12O6 OLA/
OA65 70 [44] 4 NaOH(aq) Cu(NO3)2 N2H4 EDA 35 200 [47] 5 H2O CuCl2 C6H12O6 DDA 18 200 [48] 6 H2O Cu(OH)2 C6H12O6 DETA 37 17 [49] 7 H2O CuCl2 ODA ODA 30-100 Several millimeters [42] 8 EG Cu(NO3)2 – PVP/
CTAC60 40 [50] 9 OLA/
C18H36CuCl2,
Cu(acac)2OLA OLA 30-35 35-45 [51] 10 H2O CuCl2 C6H12O6/
KBrODA 20-40 Hundreds of micrometers [52] Notes: L-AA—L-ascorbic acid; ODA—Octadecylamine; HDA—Hexadecylamine; OLA—Oleylamine; OA—Oleic acid; PVP—Polyvinylpyrrolidone; CTAC—Cetyltrimethylammonium chloride; EG—Ethylene glycol; EDA—Ethylenediamine; DDA—Dodecylamine; C18H36—Octotene; DETA—Diethylenetriamine; N2H4—Hydrazine hydrate; Cu(acac)2—Copper(Ⅱ) acetylpyruvate. -
[1] WANG J L, HASSAN M, LIU J W, et al. Nanowire assemblies for flexible electronic devices: Recent advances and perspectives[J]. Advanced Science, 2018, 30(48): 1803430-1803459. [2] HASSAN M, ABBAS G, LI N, et al. Significance of flexible substrates for wearable and implantable devices: Recent advances and perspectives[J]. Advanced Materials Technologies,2021,7(3):2100773-2100816. [3] FENG Y, ZHU J. Copper nanomaterials and assemblies for soft electronics[J]. Science China Materials,2019,62(11):1679-1708. doi: 10.1007/s40843-019-9468-5 [4] PIERRE C, UZABAKIRIHO, ZHAO G. Recent progress in flexible pressure sensors based electronic skin[J]. Advanced Engineering Materials,2021,23(5):2001187. doi: 10.1002/adem.202001187 [5] LI W, SUN Q, LI L, et al. The rise of conductive copper inks: Challenges and perspectives[J]. Applied Materials Today,2020,18:100451. doi: 10.1016/j.apmt.2019.100451 [6] LI Z, CHANG S, KHUJE S, et al. Recent advancement of emerging nano copper-based printable flexible hybrid electronics[J]. ACS Nano,2021,15(4):6211-6232. doi: 10.1021/acsnano.1c02209 [7] 方鲲, 彭睿, 李玫, 等. 先进柔性电子材料及应用进展[J]. 先进柔性电子材料及应用进展, 2022, 2022(1):55-58.FANG Kun, PENG Rui, LI Mei, et al. Advanced flexible electronic materials and application progress[J]. New Material Industry,2022,2022(1):55-58(in Chinese). [8] 李晓燕, 张智慧, 姚继明. 基于印刷技术制备柔性微型电容器的研究进展[J]. 纺织学报, 2022, 43(12):197-202, 212. doi: 10.13475/j.fzxb.20210203707LI Xiaoyan, ZHANG Zhihui, YAO Jiming. Research progress on fabrication of flexible microcapacitors based on printing technology[J]. Journal of Textile Science,2022,43(12):197-202, 212(in Chinese). doi: 10.13475/j.fzxb.20210203707 [9] DANG R, SONG L, DONG W, et al. Synthesis and self-assembly of large-area Cu nanosheets and their application as an aqueous conductive ink on flexible electronics[J]. ACS Applied Materials & Interfaces,2014,6(1):622-629. [10] WANG Y, LIU P, ZENG B, et al. Facile synthesis of ultralong and thin copper nanowires and its application to high-performance plexible transparent conductive electrodes[J]. Nanoscale Research Letters,2018,13(1):78. doi: 10.1186/s11671-018-2486-5 [11] 崔铮, 邱松, 陈征, 等. 印刷电子学材料、技术及其应用[M]. 北京: 高等教育出版社, 2012.CUI Zheng, QIU Song, CHEN Zheng, et al. Printing electronics-materials, technologies and applications[M]. Beijing: High education press, 2012(in Chinese). [12] 高琪, 阚彩侠, 李俊龙, 等. 铜纳米线的液相制备及其表面修饰研究进展[J]. 物理化学学报, 2016, 32:1604-1622. doi: 10.3866/PKU.WHXB201604182GAO Qi, KAN Caixia, LI Junlong, et al. Pregress in liquid-phase preparation and surface modification of copper nanowires[J]. Acta Physico Chimica Sinica,2016,32:1604-1622(in Chinese). doi: 10.3866/PKU.WHXB201604182 [13] AZIZ A, ZHANG T, LIN Y H, et al. 1D copper nanowires for flexible printable electronics and high ampacity wires[J]. Nanoscale,2017,9(35):13104-13111. doi: 10.1039/C7NR02478A [14] XU L, YANG Y, HU Z W, et al. Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid[J]. ACS Nano,2016,10(3):3823-3834. doi: 10.1021/acsnano.6b00704 [15] LI W, YANG Y, ZHANG B, et al. Highly densified Cu wirings fabricated from air-stable Cu complex ink with high conductivity, enhanced oxidation resistance, and flexibi-lity[J]. Advanced Materials Interfaces,2018,5(19):1800798. doi: 10.1002/admi.201800798 [16] PARK H J, JO Y, CHO M K, et al. Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: Flash-light-sintered, kinetically-controlled microstructure[J]. Nanoscale,2018,10(11):5047-5053. doi: 10.1039/C8NR00200B [17] FAN G, YU L, DONGA L. Template-assisted synthesis and catalytic property of copper nanowires[J]. ECS Transactions,2013,53(34):29-34. doi: 10.1149/05334.0029ecst [18] CHOI H, PARK S H. Seedless growth of free-standing copper nanowires by chemical vapor deposition[J]. Journal of the American Chemical Society,2004,126(20):6248-6249. doi: 10.1021/ja049217+ [19] 石晓磊. 电纺Cu NWs透明电极在钙钛矿太阳能电池中的应用[D]. 太原: 太原理工大学, 2019.SHI Xiaolei. Application of electrospun CuNWs transparent electrode in perovskite solar cells[D]. Taiyuan: Taiyuan University of Technology, 2021(in Chinese). [20] XU J, ZHU X, XIA S, et al. Au-catalyzed ultrathin copper nanowires[J]. Journal of Materials Chemistry A,2022,10(48):25431-25436. doi: 10.1039/D2TA07668C [21] 范国威. 模板法制备铜纳米线及其催化生长纳米碳纤维的研究[D]. 青岛: 青岛科技大学, 2014.FAN Guowei. Preparation of copper nanowires by template method and catalytic growth of carbon nanofibers[D]. Qingdao: Qingdao University of Science and Technology, 2014(in Chinese). [22] 宋文进. 软模板法制备基于Cu₂O的复合光催化剂及其性能研究[D]. 沈阳: 沈阳工业大学, 2022.SONG Wenjin. Preparation and properties of composite photocatalysts based on Cu2O by soft template method[D]. Shenyang: Shenyang University of Technology, 2022(in Chinese) [23] ZHANG H, WANG Y, GAO X, et al. High reproducibility and sensitivity of bifacial copper nanowire array for detection of glucose[J]. Progress in Natural Science: Materials International,2017,27(3):311-315. doi: 10.1016/j.pnsc.2017.04.008 [24] 慕霞霞, 陈虎魁, 蒋红丽, 等. 模板法制备纳米金属氧化物材料现状及发展趋势[J]. 化工新型材料, 2020, 48:39-43. doi: 10.19817/j.cnki.issn1006-3536.2020.11.009MU Xiaxia, CHEN Hukui, JIANG Hongli, et al. Status and development of nanostructured metal oxide by templated synthesis[J]. New Chemical materials,2020,48:39-43(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2020.11.009 [25] LI C, JIANG B, WANG Z, et al. First synthesis of continuous mesoporous copper films with uniformly sized pores by electrochemical soft templating[J]. Angewandte Chemie International Edition,2016,55(41):12746-12750. doi: 10.1002/anie.201606031 [26] 王然龙. 铜纳米线透明导电薄膜的制备及性能研究[D]. 重庆: 重庆理工大学, 2016.WANG Ranlong. Preparation and properties of copper nanowire transparent conductive films[D]. Chongqing: Chongqing University of Technology, 2016(in Chinese). [27] QIN B, MA H, HOSSAIN M, et al. Substrates in the synthesis of two-dimensional materials via chemical vapor deposition[J]. Chemistry of Materials,2020,32(24):10321-10347. doi: 10.1021/acs.chemmater.0c03549 [28] 刘昆. 液相还原法制备铜纳米线及其在透明导电薄膜上的应用[D]. 深圳: 哈尔滨工业大学, 2018.LIU Kun. Synthesis of copper nanowires by liquid-phase reduction method and their application in transparent conductive films[D]. Shenzhen: Harbin Polytechnic Institute, 2018(in Chinese). [29] KIM C, GU W, BRICENO M, et al. Copper nanowires with a five-twinned structure grown by chemical vapor depo-sition[J]. Advanced Materials,2008,20(10):1859-1863. doi: 10.1002/adma.200701460 [30] 廖子健, 童周禹, 钟国麟, 等. 静电纺丝技术制备纳米纤维吸波材料的研究进展[J]. 化工新型材料, 2021, 49:11-15. doi: 10.19817/j.cnki.issn1006-3536.2021.11.003LIAO Zijian, TONG Zhouyu, ZHONG Guolin, et al. Research progress of nanofiber absorbing materials prepared by electrospinning[J]. New Chemical Materials,2021,49:11-15(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2021.11.003 [31] SUN Q, SHI X, WANG X, et al. Ethanol vapor phase reduced electrospun CuO NWs networks as transparent electrodes in perovskite solar cells[J]. Organic Electronics,2019,75(C):105428. [32] 翟艳玉. 电纺掩模制备Cu NWs TE及其在钙钛矿太阳能电池中的应用[D]. 太原: 太原理工大学, 2021.ZHAI Yanyu. Preparation of CuNWs TE by electrospinning mask and its application in perovskite solar cells[D]. Taiyuan: Taiyuan University of Technology, 2021(in Chinese). [33] KIM S, LEE H, KIM D, et al. Transparent conductive films of copper nanofiber network fabricated by electrospinning[J]. Journal of Nanomaterials,2015:2015. [34] WOO H, KIM S, YOON S, et al. Highly flexible and transparent film heater with electrospun copper conductive network via junction-free structure[J]. Journal of Alloys and Compounds,2021,886:161191. doi: 10.1016/j.jallcom.2021.161191 [35] TSAI C Y, MULLINS M J, CHANG C S, et al. Highly conductive polypropylene nanocomposites containing copper nanowire[J]. Journal of Applied Polymer Science, 2023, (e53615). [36] YU S, LIU Z, ZHAO L, et al. High-performance flexible transparent conductive tape based on copper nanowires[J]. Optical Materials,2021:119. [37] CHANG Y, LYE M L, ZENG H C. Large-scale synthesis of high-quality ultralong copper nanowires[J]. Langmuir,2005,21(9):3746-3748. doi: 10.1021/la050220w [38] RATHMELL A R, BERGIN S M, HUA Y L, et al. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films[J]. Advanced Materials, 2010, 22(32): 3558-3563. [39] MAJI N C, CHAKRABORTY J. Gram-scale green synthesis of copper nanowire powder for nanofluid applications[J]. ACS Sustainable Chemistry & Engineering,2019,7(14):12376-12388. [40] BAGCHI B, SALVADORES F C, BHATTI M, et al. Copper nanowire embedded hypromellose: An antibacterial nanocomposite film[J]. Journal of Colloid and Interface Science,2022,608:30-39. doi: 10.1016/j.jcis.2021.09.130 [41] JIN M, HE G, ZHANG H, et al. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent[J]. Angewandte Chemie International Edition,2011,50(45):10748-10752. [42] LUO M, ZHOU M, ROBSON R D S, et al. Pentatwinned Cu nanowires with ultrathin diameters below 20 nm and their use as templates for the synthesis of Au-based nanotubes[J]. ChemNanoMat,2016,3(3):190-195. [43] SHI Y, LI H, CHEN L, et al. Obtaining ultra-long copper nanowires via a hydrothermal process[J]. Science and Technology of Advanced Materials,2005,6(7):761-765. doi: 10.1016/j.stam.2005.06.008 [44] KUMAR D V, KIM I, ZHONG Z, et al. Cu(II)-alkyl amine complex mediated hydrothermal synthesis of Cu nanowires: Exploring the dual role of alkyl amines[J]. Physical Chemistry Chemical Physics,2014,16(40):22107-22115. doi: 10.1039/C4CP03880K [45] ZHANG T, HSIEH W Y, DANESHVAR F, et al. Copper(I)-alkylamine mediated synthesis of copper nanowires[J]. Nanoscale,2020,12(33):17437-17449. doi: 10.1039/D0NR04778C [46] JASON N N, SHEN W, CHENG W. Copper nanowires as conductive ink for low-cost draw-on electronics[J]. ACS Applied Materials & Interfaces,2015,7(30):16760-16766. [47] YE S, RATHMELL A R, STEWART I E, et al. A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films[J]. Chemical Communications,2014,50(20):2562-2564. doi: 10.1039/C3CC48561G [48] LI Y, FAN Z, YUAN X, et al. Dodecylamine-mediated synthesis and growth mechanism of copper nanowires with an aspect ratio of over 10000[J]. Materials Letters,2020,274:128029. doi: 10.1016/j.matlet.2020.128029 [49] LIN T, TAM S K, HU X, et al. A new route for fast synthesis of copper nanowires and application on flexible transparent conductive films[J]. Journal of Nanoparticle Research,2021,23(5):121. doi: 10.1007/s11051-021-05239-9 [50] L J, HUAMAN C, URUSHIZAKI I, et al. Large-scale Cu nanowire synthesis by PVP-ethylene glycol route[J]. Journal of Nanomaterials,2018,2018:1698357. [51] DESHMUKH R, CALVO M, SCHRECK M, et al. Synthesis, spray deposition, and hot-press transfer of copper nanowires for flexible transparent electrodes[J]. ACS Applied Materials & Interfaces,2018,10(24):20748-20754. [52] OHIIENKO O, OH Y J. Preparation of narrow copper nanowires with less oxidized surface for flexible and transparent electrodes under octadecylamine[J]. Materials Chemistry and Physics,2020,246:122783. doi: 10.1016/j.matchemphys.2020.122783 [53] QIAN F, LAN P C, OLSON T, et al. Multiphase separation of copper nanowires[J]. Chemical Communications,2016,52(78):11627-11630. doi: 10.1039/C6CC06228H [54] ZHAO S, HAN F, LI J, et al. Advancements in copper nanowires: Synthesis, purification, assemblies, surface modification, and applications[J]. Small,2018,14(26):1800047. doi: 10.1002/smll.201800047 [55] KANG C, YANG S, TAN M, et al. Purification of copper nanowires to prepare flexible transparent conductive films with high performance[J]. ACS Applied Nano Materials,2018,1(7):3155-3163. doi: 10.1021/acsanm.8b00326 [56] FU Q Q, LI Y D, LI H H, et al. In situ seed-mediated high-yield synthesis of copper nanowires on large scale[J]. Langmuir,2019,35(12):4364-4369. doi: 10.1021/acs.langmuir.9b00042 [57] HAN S, HONG S, YEO J, et al. Nanorecycling: Monolithic integration of copper and copper oxide nanowire ntwork electrode through selective reversible photothermochemical reduction[J]. Advanced Materials,2015,27(41):6397-6403. doi: 10.1002/adma.201503244 [58] ZENG X, PAN P, QI H, et al. Preparation of copper nanowires and thermal oxidation behaviour in dry oxygen[J]. Surface Innovations,2022,10(3):200-208. doi: 10.1680/jsuin.21.00033 [59] DING S, JIU J, GAO Y, et al. One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices[J]. ACS Applied Materials & Interfaces,2016,8(9):6190-6199. doi: 10.1021/acsami.5b10802 [60] NGUYEN-HUNG T, DUC-ANH N, THANH-HUNG D, et al. Fast and simple fabrication of flexible and transparent electrode based on patterned copper nanowires by mechanical lithography transfer[J]. Thin Solid Films, 2019, 285: 26-33. [61] LONNE Q, ENDRINO J, HUANG Z. UV treatment of flexible copper nanowire mesh films for transparent conductor applications[J]. Nanoscale Research Letters,2017,12(1):577. doi: 10.1186/s11671-017-2343-y [62] ZHANG H, WANG S, TIAN Y, et al. High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes[J]. Nano Materials Science,2020,2(2):164-171. doi: 10.1016/j.nanoms.2019.09.007 [63] TANG Y, RUAN H, HUANG Z, et al. Fabrication of high-quality copper nanowires flexible transparent conductive electrodes with enhanced mechanical and chemical stability[J]. Nanotechnology,2018,29(45):455706. doi: 10.1088/1361-6528/aade1e [64] KIM D, BANG J, WON P, et al. Biocompatible cost-effective electrophysiological monitoring with oxidation-free Cu-Au core-shell nanowire[J]. Advanced Materials Technologies,2020,5(12):2000661. doi: 10.1002/admt.202000661 [65] YANG J, YU F, CHEN A, et al. Synthesis and application of silver and copper nanowires in high transparent solar cells[J]. Advanced Powder Materials,2022,1(4):100045. doi: 10.1016/j.apmate.2022.100045 [66] LEE S, WERN C, YI S. Novel fabrication of silver-coated copper nanowires with organic compound solution[J]. Materials, 2022, 15(3): 1135. [67] ZHANG H, WANG S, TIAN Y H, et al. Electrodeposition fabrication of Cu@Ni core shell nanowire network for highly stable transparent conductive films[J]. Chemical Engineering Journal,2020,390:124495. doi: 10.1016/j.cej.2020.124495 [68] YE D M, LI G Z, WANG G G, et al. One-pot synthesis of copper nanowire decorated by reduced graphene oxide with excellent oxidation resistance and stability[J]. Applied Surface Science,2019,467-468:158-167. doi: 10.1016/j.apsusc.2018.10.136 [69] TONG X, HU H, ZHAO X, et al. In situ carbon coating for enhanced chemical stability of copper nanowires[J]. International Journal of Minerals, Metallurgy and Materials,2022,29(3):557-562. doi: 10.1007/s12613-021-2343-x [70] CHU C R, LEE C, KOO J, et al. Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability[J]. Nano Research,2016,9(7):2162-2173. doi: 10.1007/s12274-016-1105-y [71] LIU K, LI Y, ZHANG H, et al. Synthesis of the polypyrrole encapsulated copper nanowires with excellent oxidation resistance and temporal stability[J]. Applied Surface Science,2018,439:226-231. doi: 10.1016/j.apsusc.2018.01.020 [72] YE S, STEWART I E, CHEN Z, et al. How copper nanowires grow and how to control their properties[J]. Accounts of Chemical Research,2016,49(3):442-451. doi: 10.1021/acs.accounts.5b00506 [73] TOMOTOSHI D, OOGAMI R, KAWASAKI H. Highly conductive, flexible, and oxidation-resistant Cu-Ni electrodes produced from hybrid inks at low temperatures[J]. ACS Applied Materials & Interfaces,2021,13(17):20906-20915. [74] CHEN J, CHEN J, LI Y, et al. Enhanced oxidation-resistant Cu-Ni core-shell nanowires: Controllable one-pot synthesis and solution processing to transparent flexible heaters[J]. Nanoscale,2015,7(40):16874-16879. doi: 10.1039/C5NR04930J [75] KUSNIN N, YUSOF N A, MUTALIB N A A, et al. Enhanced electrochemical conductivity of surface-coated gold nanoparticles/copper nanowires onto screen-printed gold electrode[J]. Coatings,2022,12(5):622. doi: 10.3390/coatings12050622 [76] NIU Z, CUI F, YU Y, et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors[J]. Journal of the American Chemical Society,2017,139(21):7348-7354. doi: 10.1021/jacs.7b02884 [77] CATENACCI M J, REYES C, CRUZ M A, et al. Stretchable conductive composites from Cu-Ag nanowire felt[J]. ACS Nano,2018,12(4):3689-3698. doi: 10.1021/acsnano.8b00887 [78] NAVIK R, DING X, HUIJUN T, et al. Facile synthesis of highly oxidation stable nanosilver-coated copper nanowires for transparent flexible electrodes[J]. Industrial & Engineering Chemistry Research,2020,60(1):263-272. [79] AHN Y, JEONG Y, LEE D, et al. Copper nanowire-graphene core-shell nanostructure for highly stable transparent conducting electrodes[J]. ACS Nano,2015,9(3):3125-3133. doi: 10.1021/acsnano.5b00053 [80] ZHANG L, YANG R, CHEN K, et al. The fabrication of Cu nanowire/graphene/Al doped ZnO transparent conductive film on PET substrate with high flexibility and air stability[J]. Materials Letters,2017,207:62-65. doi: 10.1016/j.matlet.2017.07.048 [81] TUGBA C B, VAPAAVUORI J, BASARIR F. Transparent conductive electrode based on LBL deposition of graphene oxide and copper nanowires[J]. Materials Letters,2022,311:131632. doi: 10.1016/j.matlet.2021.131632 [82] LIN Y T, HUANG D W, HUANG P F, et al. A green approach for high oxidation resistance, flexible transparent conductive films based on reduced graphene oxide and copper nanowires[J]. Nanoscale Research Letters,2022,17(1):79. doi: 10.1186/s11671-022-03716-1 [83] NAVIK R, XIAO D, GAI Y, et al. One-pot synthesis of copper nanowire-graphene composite with excellent stability and electrical performance for flexible electrodes[J]. Applied Surface Science,2020,527:146694. doi: 10.1016/j.apsusc.2020.146694 [84] NAVIK R, DING X, HUIJUN T, et al. Fabrication of copper nanowire and hydroxylated graphene hybrid with high conductivity and excellent stability[J]. Applied Materials Today,2020,19:100619. doi: 10.1016/j.apmt.2020.100619 [85] DANESHVAR F, TAGLIAFERRI S, CHEN H, et al. Ultralong electrospun copper-carbon nanotube composite fibers for transparent conductive electrodes with high operational stability[J]. ACS Applied Electronic Materials,2020,2(9):2692-2698. doi: 10.1021/acsaelm.0c00466 [86] YAN K Y, XUE Q Z, XIA D, et al. The core/shell composite nanowires produced by self-scrolling carbon nanotubes onto copper nanowires[J]. ACS Nano,2009,3(8):2235-2240. doi: 10.1021/nn9005818 [87] XIA X, CHAO D, QI X, et al. Controllable growth of conducting polymers shell for constructing high-quality organic/inorganic core/shell nanostructures and their optical-electrochemical properties[J]. Nano Letters,2013,13(9):4562-4568. doi: 10.1021/nl402741j [88] LIU Y, LIU Z, LU N, et al. Facile synthesis of polypyrrole coated copper nanowires: A new concept to engineered core-shell structures[J]. Chemical Communications,2012,48(20):2621-2623. doi: 10.1039/c2cc16961d [89] YUAN H, WANG Y, LI T, et al. Highly thermal conductive and electrically insulating polymer composites based on polydopamine-coated copper nanowire[J]. Composites Science and Technology,2018,164:153-159. doi: 10.1016/j.compscitech.2018.05.046 [90] LI G Z, CAI Y W, WANG G G, et al. Performance enhancement of transparent and flexible triboelectric nanogenerator based on one-dimensionally hybridized copper/polydimethylsiloxane film[J]. Nano Energy,2022,99:107423. doi: 10.1016/j.nanoen.2022.107423 [91] LIU W, WANG Y, DONG L, et al. Preparation of copper nanowires conductive films by using cuprous oxide nanowire as template[J]. IOP Conference Series: Earth and Environmental Science,2020,446(2):022027. doi: 10.1088/1755-1315/446/2/022027 [92] XIANG Q, NAVIK R, TAN H, et al. Synthesis of oxidation-resistance copper nanowires-formate for high-performance transparent conductive electrodes[J]. Journal of Alloys and Compounds,2022,914:165265. doi: 10.1016/j.jallcom.2022.165265 [93] GAO Z, CHUNKI Y, LIU Y, et al. Stretchable transparent conductive elastomer for skin-integrated[J]. Journal of Materials Chemistry C,2020,8(43):15105-15111. doi: 10.1039/D0TC02913K [94] KIM D, KWON J, JUNG J, et al. A transparent and flexible capacitive-force touch pad from high-aspect-ratio copper nanowires with enhanced oxidation resistance for applications in wearable electronics[J]. Small Methods,2018,2(7):1800077. doi: 10.1002/smtd.201800077 [95] JEONG G, KOO D, SEO J, et al. Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer[J]. Nano Letters,2020,20(5):3718-3727. doi: 10.1021/acs.nanolett.0c00663 [96] YU S, LI J, ZHAO L, et al. Folding-insensitive, flexible transparent conductive electrodes based on copper nanowires[J]. Solar Energy Materials and Solar Cells,2021,231:111323. doi: 10.1016/j.solmat.2021.111323 [97] WANG J, ZHANG Z, WANG S, et al. Superstable copper nanowire network electrodes by single-crystal graphene covering and their applications in flexible nanogenerator and light-emitting diode[J]. Nano Energy,2020,71:104638. doi: 10.1016/j.nanoen.2020.104638 [98] SORAM B S, THANGJAM I S, DAI J Y, et al. Flexible transparent supercapacitor with core-shell Cu@Ni@NiCoS nanofibers network electrode[J]. Chemical Engineering Journal,2020:395. [99] HE F, LI K, CONG S, et al. Design and synthesis of N-doped carbon skeleton assembled by carbon nanotubes and graphene as a high-performance electrode material for supercapacitors[J]. ACS Applied Energy Materials,2021,4(8):7731-7742. doi: 10.1021/acsaem.1c01094 [100] YAO M, JI X, OU X, et al. Self-standing ultrathin NiCo2S4@carbon nanotubes and carbon nanotubes hybrid films as battery-type electrodes for advanced flexible supercapacitors[J]. Journal of Power Sources,2022,543:231829. doi: 10.1016/j.jpowsour.2022.231829 [101] SINGH S B, KSHETRI T, SINGH T I, et al. Embedded PEDOT: PSS/AgNFs network flexible transparent electrode for solid-state supercapacitor[J]. Chemical Engineering Journal,2019,359:197-207. doi: 10.1016/j.cej.2018.11.160 [102] ZHAO D, ZHANG Q, CHEN W, et al. Highly flexible and conductive cellulose-mediated PEDOT: PSS/MWCNT composite films for supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2017,9(15):13213-13222. [103] LIU X, LI D, CHEN X, et al. Highly transparent and flexible all-solid-state supercapacitors based on ultralong silver nanowire conductive networks[J]. ACS Applied Materials & Interfaces,2018,10(38):32536-32542. [104] LEE D, BANG G, BYUN M, et al. Highly flexible, transparent and conductive ultrathin silver film heaters for wearable electronics applications[J]. Thin Solid Films,2020,697:137835. doi: 10.1016/j.tsf.2020.137835 [105] LIN X, LIN J, ZENG C, et al. Copper nanowires and copper foam multifunctional bridges in zeolitic imidazolate framework-derived anode material for superior lithium storage[J]. Journal of Colloid and Interface Science, 2020, 565: 156-166. [106] ZHAO H X, LIU Y L, WANG G G, et al. Self-supported binder-free hybrid electrodes of Cu@CuO nanowires/carbon nanotubes for supercapacitors with ultrahigh areal-capacitance[J]. Energy Technology,2020,9(1):2000744. [107] SHANG H, ZUO Z, LI L, et al. Ultrathin graphdiyne nanosheets grown in situ on copper nanowires and their performance as lithium-ion battery anodes[J]. Angewandte Chemie International Edition,2018,57(3):774-778. doi: 10.1002/anie.201711366 [108] ZHANG W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries[J]. Journal of Power Sources,2011,196(1):13-24. doi: 10.1016/j.jpowsour.2010.07.020 [109] CHEN K T, CHANG W C, YANG H J, et al. Free standing Si (Ge) nanowire/Cu nanowire composites as lithium ion battery anodes[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,104:54-64. doi: 10.1016/j.jtice.2019.07.014 [110] ZHANG L, ZHANG L, XIE Z, et al. Cu&Si core-shell nanowire thin film as high-performance anode materials for lithium ion batteries[J]. Applied Sciences,2021,11(10):4521. doi: 10.3390/app11104521 [111] TIGAN D, GENLIK S P, IMER B, et al. Core/shell copper nanowire networks for transparent thin film heaters[J]. Nanotechnology,2019,30(32):325202. doi: 10.1088/1361-6528/ab19c6 [112] XU X, WANG R, NIE P, et al. Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor[J]. ACS Applied Materials & Interfaces,2017,9(16):14273-14280. [113] ZHU Y, HARTEL M C, YU N, et al. Epidermis-inspired wearable piezoresistive pressure sensors using reduced graphene oxide self-wrapped copper nanowire networks[J]. Small Methods,2022,6(1):2100900. doi: 10.1002/smtd.202100900 [114] SONG Z, LIU Z, ZHAO L, et al. Biodegradable and flexible capacitive pressure sensor for electronic skins[J]. Orga-nic Electronics,2022,106:106539. doi: 10.1016/j.orgel.2022.106539 -