留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnFe2O4@Ag纳米复合材料的制备及其抑菌性能

张艳艳 房宇 张萌萌 张滢 吴鹏 魏艳妮 刘晓琴 刘嘉华 丁佳睿 谭玉婷 郭少波

张艳艳, 房宇, 张萌萌, 等. ZnFe2O4@Ag纳米复合材料的制备及其抑菌性能[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 张艳艳, 房宇, 张萌萌, 等. ZnFe2O4@Ag纳米复合材料的制备及其抑菌性能[J]. 复合材料学报, 2024, 42(0): 1-13.
ZHANG Yanyan, FANG Yu, ZHANG Mengmeng, et al. Preparation and antibacterial properties of ZnFe2O4@Ag nanocomposites[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Yanyan, FANG Yu, ZHANG Mengmeng, et al. Preparation and antibacterial properties of ZnFe2O4@Ag nanocomposites[J]. Acta Materiae Compositae Sinica.

ZnFe2O4@Ag纳米复合材料的制备及其抑菌性能

基金项目: 陕西省教育厅专项科研计划项目(19JK0050).
详细信息
    通讯作者:

    房宇,讲师,研究方向为中药药理、天然药物提取和微生物检测 E-mail: www.fyan@163.com

    郭少波,副教授,研究方向为抑菌材料 E-mail:545366954@qq.com

  • 中图分类号: O614; TB333

Preparation and antibacterial properties of ZnFe2O4@Ag nanocomposites

Funds: Special Scientific Research Project of Shaanxi Provincial Education Department (19JK0050)
  • 摘要: 由于传统抗生素和抗菌剂的过度使用,导致大量耐药菌滋生,对社会公共安全和人类健康产生严重威胁。因此,迫切需要开发新一代的抗菌材料来应对耐药菌危害。本研究以三氯化铁(FeCl3)、氯化锌(ZnCl2)和醋酸钠(NaOAc)为原料,采用“一锅法”合成磁性ZnFe2O4纳米微球,并把平均粒径尺寸为8.8 nm的银纳米颗粒(Ag NPs)吸附到ZnFe2O4表面,制备得到ZnFe2O4@Ag磁性纳米复合材料。该材料可有效防止Ag NPs的团聚,同时小粒径的纳米银可大幅度提升复合材料的抑菌活性,且Zn和Fe元素的引入可提升生物相容性。利用TEM、XPS、XRD、UV-Vis、FT-IR以及VSM等对复合材料进行系统表征。以革兰氏阴性菌大肠杆菌(E. coli)、革兰氏阳性金黄色葡萄球菌(S. aureus)为测试菌,研究复合材料的抑菌活性和抑菌机制。实验结果表明,ZnFe2O4@Ag在浓度为200 μg/mL时,60 min内对E. coliS. aureus的抑菌活性可达到99.9%,抑菌机制显示,ZnFe2O4@Ag破坏细菌细胞壁与细胞膜,使得细菌内容物以及离子泄露,从而使细菌渗透压失衡,导致细菌死亡。同时该复合材料的生物相容性较Ag NPs也大幅度提升。

     

  • 图  1  ZnFe2O4 @Ag纳米复合材料的制备流程图

    Figure  1.  Preparation process diagram of ZnFe2O4@Ag nanocomposite material.

    图  2  ZnFe2O4(a)、ZnFe2O4@Ag(b)的透射电镜图像及粒径分布图;ZnFe2O4@Ag的EDS面扫图(c-i)

    Figure  2.  Transmission electron microscopy images and particle size distribution of ZnFe2O4 (a) and ZnFe2O4@Ag (b); EDS surface sweeps of ZnFe2O4@Ag (c-i)

    图  3  ZnFe2O4、ZnFe2O4@Ag纳米复合材料XPS(a-e)、VSM(f)、UV-Vis(g)、XRD(h)表征、毒理性(i)及ROS(j,k)检测实验结果

    Figure  3.  ZnFe2O4, ZnFe2O4@Ag nanocomposites XPS (a-e), VSM (f), UV-Vis (g), XRD (h) characterization, toxicity (i) and ROS(j,k) detection experimental results

    图  4  不同材料对E. coliS. aureus的滤纸片扩散照片

    Figure  4.  Photographs of diffusion of different materials on filter paper sheets of E. coli, S. aureus

    图  5  ZnFe2O4@Ag纳米复合材料菌落计数分布图及具体抑菌率数据

    Figure  5.  Colony count distribution diagram and specific antibacterial rate data for ZnFe2O4@Ag nanocomposite

    图  6  ZnFe2O4@Ag纳米复合材料Zeta电位(a) 及离子泄露(b、c、d)实验结果

    Figure  6.  The following figures present the experimental results of the zeta potential (a) and ion leakage (b, c, d) of ZnFe2O4@Ag nanocomposites.

    图  7  ZnFe2O4@Ag纳米复合材料的PI染色(a、b)及细胞质物质泄露(c、d)实验结果

    Figure  7.  Experimental results of PI staining (a, b) and cytoplasmic content leakage (c, d) of ZnFe2O4@Ag nanoparticle composite material

    图  8  ZnFe2O4 @Ag纳米复合材料抑菌机制图

    Figure  8.  Diagram of antibacterial mechanism of ZnFe2O4@Ag nanocomposite

    表  1  溶剂、Ag NPs、ZnFe2O4、ZnFe2O4@Ag对E. coliS. aureus的抑菌圈尺寸

    Table  1.   Solvent, Ag NPs, ZnFe2O4, and ZnFe2O4@Ag on E. coli, S. aureus Circle of Inhibition Size

    Bacterial Concentration/ (μg·mL-1) inhibition zones/cm(±0.05)
    H2O Ag ZnFe2O4 ZnFe2O4@Ag
    E. coli 50 0.6 0.65 0.6 0.8
    100 0.6 0.75 0.6 1.0
    200 0.6 1.0 0.6 1.4
    400 0.6 1.3 0.6 1.7
    S. aureus 50 0.6 0.6 0.6 0.7
    100 0.6 0.7 0.6 1.0
    200 0.6 0.9 0.6 1.2
    400 0.6 1.1 0.6 1.5
    下载: 导出CSV
  • [1] CAMELENA F, LIBERGE M, REZZOUG I, et al. In vitro activity of apramycin against 16S-RMTase-producing Gram-negative isolates[J]. Journal of Global Antimicrobial Resistance, 2023, 33: 21-25. doi: 10.1016/j.jgar.2023.02.005
    [2] BOZZI CN, LUCACCIONI L, PIETRELLA E, et al. Common morbidities and main intestinal microbial groups in very preterm neonates: a pilot study[J]. Antibiotics, 2022, 11(2): 237. doi: 10.3390/antibiotics11020237
    [3] DO PC, ASSEFA YA, BATIKAWAI SM, et al. Strengthening antimicrobial resistance surveillance systems: a scoping review[J]. BMC Infectious Diseases, 2023, 23: 593. doi: 10.1186/s12879-023-08585-2
    [4] 梅洁, 李彬欣, 朱仁广, 等. 纳米银的制备及抑菌性能研究[J]. 化学研究与应用, 2023, 35(4): 961-967. doi: 10.3969/j.issn.1004-1656.2023.04.032

    MEI J, LI B X, ZHU R G, et al. Preparation and antibacterial properties of nanosilver[J]. Chemical Research and Application, 2023, 35(4): 961-967(in Chinese). doi: 10.3969/j.issn.1004-1656.2023.04.032
    [5] KAUSHAL A, KHURANA I, YADAV P, et al. Advances in therapeutic applications of silver nanoparticles[J]. Chemico-Biological Interactions, 2023, 382: 110590. doi: 10.1016/j.cbi.2023.110590
    [6] 倪方方, 王博林, 宋腾蛟, 等. 纳米银颗粒的毒性效应及作用机制研究进展[J]. 中国药理学通报, 2016, 32(5): 593-598. doi: 10.3969/j.issn.1001-1978.2016.05.001

    NI F F, WANG B L, SONG T G, et al. Progress in the study of toxic effects and mechanism of action of silver nanoparticles[J]. Chinese Bulletin of Pharmacology, 2016, 32(5): 593-598(in Chinese). doi: 10.3969/j.issn.1001-1978.2016.05.001
    [7] XIE X, SUN T C, XUE J, et al. Ag nanoparticles cluster with Ph-triggered reassembly in targeting antimicrobial applications[J]. Advanced Functional Materials, 2020, 30(17): 2000511. doi: 10.1002/adfm.202000511
    [8] FANG Q, XU K, ZHANG J, et al. Hybrid Polydopamine/Ag Shell-Encapsulated Magnetic Fe3O4 Nanosphere with High Antibacterial Activity[J]. Materials, 2020, 13(17): 3872. doi: 10.3390/ma13173872
    [9] TIE JX, ZHANG M, SHEN CL, et al. Preparation of Ce/ferroferric oxide/food waste-derived biochar for aqueous Cr(VI) adsorption[J]. Journal of Chemical Technology and Biotechnology, 2023, 98(1): 168-178. doi: 10.1002/jctb.7232
    [10] LIN, Y, ZHI, H, LIU, S, et al. Green synthesis, characterization and application on the proanthocyanidins-functionalized Fe3O4@Ag nanoparticles[J]. Chemical Papers, 2023, 77: 2115-2124. doi: 10.1007/s11696-022-02614-1
    [11] Cui J, Wu D, Li Z, et al. Mesoporous Ag/ZnO hybrid cages derived from ZIF-8 for enhanced photocatalytic and antibacterial activities[J]. Ceramics International, 2021, 47(11): 15759-15770. doi: 10.1016/j.ceramint.2021.02.148
    [12] Ma M, Zhao M, Ji R, et al. Adjusting the Dose of Ag-Ion Implantation on TiN-Ag-Modified SLA-Ti Creates Different Micronanostructures: Implications on Bacteriostasis, Biocompatibility, and Osteogenesis in Dental Implants[J]. ACS omega, 2023, 8(42): 39269-39278. doi: 10.1021/acsomega.3c04769
    [13] JI XH, HAN YY, WU YH, et al. Synthesis of nano-Fe3O4/ZnO composites with enhanced antibacterial properties and plant growth promotion via one-pot reaction[J]. Environmental Science and Pollution Research, 2023, 30: 87016-87027. doi: 10.1007/s11356-023-28534-5
    [14] 郝慧敏, 王黎明, 沈勇, 等. 基于热沉淀法制备的空心结构ZnFe2O4吸波性能研究[J]. 功能材料, 2021, 52(10): 10150-10156. (in Chinese doi: 10.3969/j.issn.1001-9731.2021.10.022

    HAO H H, WANG L M, SHEN Y, et al. Study on the wave-absorbing properties of hollow-structured ZnFe2O4 prepared based on thermal precipitation[J]. Functional Materials, 2021, 52(10): 10150-10156. doi: 10.3969/j.issn.1001-9731.2021.10.022
    [15] SHI J, ZHENG J, LIANG B, et al. Silver-decorated amino-modified Fe3O4@SiO2@mTiO2 core-shell nanocomposites with catalytic and antimicrobial bifunctional activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 668: 131402-131415. doi: 10.1016/j.colsurfa.2023.131402
    [16] 史娟, 梁犇, 宋凤敏, 等. ZnFe2O4@PDA@Ag纳米复合材料的制备及其抑菌性[J]. 复合材料学报, 2023, 40(12): 6774-6788.

    SHI J, LIANG B, SONG F M, et al. Preparation of ZnFe2O4@PDA@Ag nanocomposites and their bacteriostatic properties[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6774-6788(in Chinese).
    [17] 徐晓玲. 氧化锌抗菌及降解有机污染物活性研究[D]. 西南交通大学, 2012.

    XU X L. Study on the antibacterial and degradation activity of zinc oxide on organic pollutants [D]. Southwest Jiaotong University, 2012. (in Chinese)
    [18] PU J, ZHANG Z H, ZHANG H J, et al. Efficacy of Bactericides Against Potato Common Scab Caused by Streptomyces in Yunnan, China[J]. American Journal of Potato Research, 2022, 99: 326-335. doi: 10.1007/s12230-022-09883-2
    [19] WU X W, ZHAO X L, WANG X, et al. Bioaccessibility of polypropylene microfiber-associated tetracycline and ciprofloxacin in simulated human gastrointestinal fluids[J]. Environment International, 2023, 179: 108193. doi: 10.1016/j.envint.2023.108193
    [20] OUDIH SB, TAHTAT D, KHODJA AN, et al. Chitosan nanoparticles with controlled size and zeta potential[J]. Polymer Engineering and Science, 2023, 63(3): 1011-1021. doi: 10.1002/pen.26261
    [21] VAN AT, THEINER, S, BOLEA, FE. et al. Inductively coupled plasma mass spectrometry[J]. Nature Reviews Methods Primers, 2023, 52(3): 52.
    [22] TAO S, YANG T, YIN Y, Mitochondrial reactive oxygen species promote mitochondrial damage in high glucose- induced dysfunction and apoptosis of human dental pulp cells[J]. Journal of Dental Sciences, 2023, (19)1: 292-302.
    [23] 刘振兴. ZnFe2O4纳米光催化剂制备方法研究进展[J]. 化学工程师, 2023, 37(4): 62-66.

    LIU Z X. Progress in the preparation method of ZnFe2O4 nanophotocatalyst[J]. Chemical Engineer, 2023, 37(4): 62-66(in Chinese).
    [24] WANG L, SAGAGUCHI T, OKUHATA T, et al. Electron and phonon dynamics in hexagonal Pd nanosheets and Ag/Pd/Ag sandwich nanoplates[J]. ACS Nano, 2017, 11(2): 1180-1188. doi: 10.1021/acsnano.6b07082
    [25] SUN SG, ZHANG XY, Wu YP, et al. Synthesis of ZnFe2O4@MnO2 multilevel nanosheets structure and its electrochemical properties as positive electrodes for asymmetric supercapacitors[J]. Chemistry Select, 2019, 4(17): 5168-5177.
    [26] Mottley C, Connor H D, Mason R P. [17O] oxygen hyperfine structure for the hydroxyl and superoxide radical adducts of the spin traps DMPO, PBN and 4-POBN[J]. Biochemical and biophysical research communications, 1986, 141(2): 622-628. doi: 10.1016/S0006-291X(86)80218-2
    [27] FANG Y, HONG C Q, CHEN F R, et al. Green synthesis of nano silver by tea extract with high antimicrobial activity[J]. Inorganic Chemistry Communications, 2021, 132: 108808. doi: 10.1016/j.inoche.2021.108808
    [28] CHEN TW, RAJAJI U, Chen SM, et al. A novel nanocomposite with superior electrocatalytic activity: a magnetic property based ZnFe2O4 nanocubes embellished with reduced graphene oxide by facile ultrasonic approach[J]. Ultrasonics Sonochemistry, 2019, 57: 116-124. doi: 10.1016/j.ultsonch.2019.05.007
    [29] HOVHANNISYAN Z, TIMOTINA M, MANOYAN J, et al. Ribes nigrum L. Extract-Mediated Green Synthesis and Antibacterial Action Mechanisms of Silver Nanoparticles[J]. Antibiotics, 2022, 11(10): 1415. doi: 10.3390/antibiotics11101415
    [30] MALGORZATA O R, WALDEMAR P, AGNIESZKAO S. Tetracyclines-an important therapeutic tool for dermatologists[J]. International Journal of Environmental Research and Public Health, 2022, 19(12): 7246. doi: 10.3390/ijerph19127246
    [31] FRANCO D, CALABRESE G, CONOCI S, et al. Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application[J]. Microorganisms, 2022, 10(9): 1778. doi: 10.3390/microorganisms10091778
    [32] WOOLSTON B M. , STEPHANOPOULOS G. Engineering E. coli to grow on methanol[J]. Joule, 2020, 4(10): 2070-2072. doi: 10.1016/j.joule.2020.09.019
    [33] XU X, LI Y L, WANG L X, et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application[J]. Biomaterials, 2019, 212: 98-114. doi: 10.1016/j.biomaterials.2019.05.014
    [34] ZHU B, LI Y, LIN Z, et al. Silver nanoparticles induce HePG-2 cells apoptosis through ROS-mediated signaling pathways[J]. Nanoscale research letters, 2016, 11: 1-8. doi: 10.1186/s11671-015-1209-4
    [35] PARMAR S, KAUR H, SINGH J, et al. Recent Advances in Green Synthesis of Ag NPs for Extenuating Antimicrobial Resistance[J]. Nanomaterials, 2022, 12(7): 1115. doi: 10.3390/nano12071115
  • 加载中
计量
  • 文章访问数:  44
  • HTML全文浏览量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-26
  • 修回日期:  2024-05-22
  • 录用日期:  2024-05-31
  • 网络出版日期:  2024-06-22

目录

    /

    返回文章
    返回