留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印聚吡咯纳米管/聚二甲基硅氧烷应变传感复合材料的制备与性能

孙纪烨 吴志 夏李波 单熠莲 李光勇 金育安 杜建科 张明华

孙纪烨, 吴志, 夏李波, 等. 3D打印聚吡咯纳米管/聚二甲基硅氧烷应变传感复合材料的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-13.
引用本文: 孙纪烨, 吴志, 夏李波, 等. 3D打印聚吡咯纳米管/聚二甲基硅氧烷应变传感复合材料的制备与性能[J]. 复合材料学报, 2024, 42(0): 1-13.
SUN Jiye, WU Zhi, XIA Libo, et al. Preparation and properties of 3D printed polypyrrole nanotube/polydimethylsiloxane composite strain sensing composites[J]. Acta Materiae Compositae Sinica.
Citation: SUN Jiye, WU Zhi, XIA Libo, et al. Preparation and properties of 3D printed polypyrrole nanotube/polydimethylsiloxane composite strain sensing composites[J]. Acta Materiae Compositae Sinica.

3D打印聚吡咯纳米管/聚二甲基硅氧烷应变传感复合材料的制备与性能

基金项目: 国家自然科学基金项目 (11972199);浙江省自然科学基金重点项目 (LZ22A020001);宁波市重点研发项目(2022Z210)
详细信息
    通讯作者:

    杜建科,博士,教授,研究方向为功能材料力学 E-mail: dujianke@nbu.edu.cn

    张明华,博士,教授,博士生导师,研究方向为智能材料与器件力学 E-mail:zhangminghua@nbu.edu.cn

Preparation and properties of 3D printed polypyrrole nanotube/polydimethylsiloxane composite strain sensing composites

Funds: National Natural Science Foundation of China (11972199); Key Project of Zhejiang Natural Science Foundation (LZ22A020001); Major Research and Development Plan Project of Ningbo (2022Z210)
  • 摘要: 柔性电阻式应变传感器作为柔性传感器中重要的一类,具有柔性好、结构简单、数据读取便捷等优点,在多个领域中已有广泛应用。现有研究中,用于填充型应变传感器复合材料的导电填料多以金属导电粉末和碳系导电粉末为主,较少有单独使用导电聚合物的报道。本文以甲基橙(MO)为掺杂剂,无水三氯化铁(FeCl3)为氧化剂,通过化学氧化法聚合制得聚吡咯(PPy)纳米管,电导率高达121.70 S·cm−1。以PPy纳米管为导电填料和增稠剂,聚二甲基硅氧烷(PDMS)为基体,通过机械共混制成打印墨水,利用直写式3D打印机和智能流变仪表征墨水的可打印性和流变性能;利用扫描电子显微镜(SEM)、智能拉伸机、数字万用表、差示扫描量热仪(DSC)等仪器对3D打印固化后的试样进行表征和性能测试,研究PPy纳米管的浓度对PPy/PDMS复合材料微观形貌、电学性能、力学性能、差热性能、动态热力学性能和应变传感性能的影响。结果表明,PPy纳米管浓度达到7~9wt%时,墨水具有良好的打印能力。其中7wt%的墨水在连续20层打印测试中表现出优异的打印性能,所打印哑铃型拉伸试样在单一拉伸测试中的抗拉强度和断裂伸长率可达3.02 MPa和178.64%,敏感因子(GF, Gauge Factor)高达36.14;在100次循环拉伸测试中具有较低的电阻信号峰值稳定系数(α,1.714)和肩峰比例(Psp,9.8%),在1000次循环拉伸测试中表现出较好的耐久性和稳定性。用该墨水所制备的人体皮肤传感贴片在对手指、手腕、手肘和膝盖关节的运动监测中具有良好的信号稳定性和可重复性,证明了3D打印PPy/PDMS复合材料在柔性电子、可穿戴设备和人体运动监测领域中具有一定的应用前景。

     

  • 图  1  聚吡咯纳米管(PPy-N)的制备流程

    Figure  1.  Preparation process of polypyrrole nanotubes (PPy-N)

    图  2  PPy-N/PDMS复合材料打印墨水的制备流程

    Figure  2.  Preparation process of the PPy-N/PDMS composite material printing ink

    图  3  哑铃型拉伸试样尺寸

    Figure  3.  Dimensions of dumbbell-shaped tensile specimens

    图  4  不同PPy-N浓度墨水的光学图像和打印效果图

    Figure  4.  Optical images and printing results of inks with different PPy-N concentrations

    图  5  不同PPy-N浓度墨水随剪切速率变化的黏度曲线

    Figure  5.  Viscosity curves of inks with different PPy-N concentrations as a function of shear rate

    图  6  不同PPy-N浓度墨水随角频率变化的储能模量曲线

    Figure  6.  Storage modulus curves of inks with different PPy-N concentrations as a function of angular frequency

    图  7  不同PPy-N浓度墨水的剪切屈服强度

    Figure  7.  Shear yield strength of inks with different PPy-N concentrations

    图  8  3D打印墨水打印20层矩形结构的顺序快照

    Figure  8.  Sequential snapshots of printing a rectangular structure with 20 layers using 3D printing ink

    图  9  未添加MO制备得到的PPy-B(a)、添加MO制备得到的PPy-N(b)、PPy-N在透射电子显微镜下的微观形貌(c)和PPy-N在打印墨水中的分布示意图(d)

    Figure  9.  PPy-B prepared without MO(a), PPy-N prepared with MO(b), Microstructure of PPy-N under transmission electron microscope(c) and Schematic diagram of the distribution of PPy-N in printing ink(d).

    图  10  PPy-B和PPy-N粉末样品平均电导率对比图

    Figure  10.  Comparison of average electrical conductivity of PPy-B and PPY-N powder samples

    图  11  PP7 (a)、PP8 (b)和PP9 (c)试样中PPy-N的分散情况和PPy-N在PDMS中微观形貌(d)的SEM图像

    Figure  11.  SEM images of PP7(a), PP8(b), and PP9(c) samples, and the microscopic morphology of PPy-N in PDMS(d).

    图  12  PPy-N/PDMS复合材料电导率曲线

    Figure  12.  Electrical conductivity curve of PPy-N/PDMS composites

    图  13  力电性能测试仪器连接示意图(a)和打印的哑铃型拉伸试样及涂有导电银浆的试样(b)

    Figure  13.  Schematic diagram of the piezoelectric performance testing instrument connection (a) and Printed dumbbell-shaped tensile specimen and specimen coated with conductive silver paste (b)

    图  14  PP7、PP8和PP9试样拉伸应力应变曲线

    Figure  14.  Tensile stress-strain curves for PP7, PP8 and PP9 samples

    图  15  PP7、PP8和PP9试样在0~80%应变范围内的相对电阻变化曲线

    Figure  15.  The relative resistance changes curve of PP7, PP8 and PP9 samples in the strain range of 0~80%

    图  16  PP7、PP8和PP9试样热流随温度变化的DSC曲线

    Figure  16.  DSC curves of heat flow with temperature for PP7, PP8 and PP9 samples

    图  17  PP7、PP8和PP9试样储能模量随温度变化的DMA曲线

    Figure  17.  DMA curves of storage modulus with temperature for PP7, PP8 and PP9 samples

    图  18  PP7、PP8和PP9试样损耗因子随温度变化的DMA曲线

    Figure  18.  DMA curves of loss factor with temperature for PP7, PP8 and PP9 samples

    图  19  PP7、PP8和PP9试样100次循环拉伸应变传感信号结果

    Figure  19.  Results of 100 cycles of tensile strain sensing signal for PP7, PP8 and PP9 samples

    图  20  PP7试样100次循环拉伸肩峰放大图

    Figure  20.  Magnification of acromion for 100 cycles of tensile strain for PP7 samples

    图  21  PP7试样1000次循环拉伸/释放传感信号结果

    Figure  21.  Results of 1000 cycles of strain sensing signals for PP7 sample

    图  22  PP7试样皮肤传感贴片监测手指(a)、手腕(b)、手肘(c)、膝盖(d)关节弯曲的电信号

    Figure  22.  Electrical signals monitoring finger flexion(a), wrist flexion(b), elbow flexion(c), and knee flexion(d) for the PP7 specimen skin sensing patch

    表  1  聚吡咯纳米管/聚二甲基硅氧烷(PPy-N/PDMS)复合材料配方

    Table  1.   Formulation of polypyrrole nanotube/polydimethylsiloxane (PPy-N/PDMS) composite material

    InksPDMS/gPPy-N/gCuring agent /g
    PP5100.51
    PP6100.61
    PP7100.71
    PP8100.81
    PP9100.91
    PP10101.01
    下载: 导出CSV

    表  2  DSC测试中PP7、PP8和PP9试样的玻璃化转变温度($ {T}_{\mathrm{g}} $)以及熔融峰值温度$ ({T}_{\mathrm{m}}) $

    Table  2.   The glass transition temperature ( $ {T}_{\mathrm{g}}) $ and peak melting temperature $ \left({T}_{\mathrm{m}}\right) $ of PP7, PP8 and PP9 samples in DSC test

    Samples $ {\mathit{T}}_{\mathbf{g}} $/℃ $ {\mathit{T}}_{\mathbf{m}} $/℃
    PP7 −122.4 −46.2
    PP8 −121.6 −45.5
    PP9 −121 −42.2
    下载: 导出CSV
  • [1] LUO Y, ABIDIAN M R, AHN J H, et al. Technology roadmap for flexible sensors[J]. ACS nano, 2023, 17(6): 5211-5295. doi: 10.1021/acsnano.2c12606
    [2] 张明艳, 杨振华, 吴子剑, 等. 新型三明治结构聚二甲基硅氧烷/聚偏氟乙烯-纳米Ag线/聚二甲基硅氧烷柔性应变传感器的制备与性能[J]. 复合材料学报, 2020, 37(05): 1024-1032.

    ZHANG M Y, YANG Z H, WU Z J, et al. Fabrication and properties of Novel Sandwich Structure polydimethylsiloxane/polyvinylidene flouro-nano-Ag wire/Polydimethylsiloxane flexible strain sensor[J]. Journal of Composite Materials, 2019, 37(05): 1024-1032(in Chinese).
    [3] LU Y, YANG G, SHEN Y, et al. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics[J]. Nano-Micro Letters, 2022, 14(1): 150. doi: 10.1007/s40820-022-00895-5
    [4] ZHANG Z F, YANG Y X, ZHU S L, et al. Factors that influence the performance of hydrogen detectors based on single-wall carbon nanotubes[J]. New Carbon Materials, 2023, 38(5): 825-836. doi: 10.1016/S1872-5805(23)60749-8
    [5] 潘朝莹, 马建中, 张文博, 等. 柔性导电高分子复合材料在应变传感器中的应用[J]. 化学进展, 2020, 32(10): 1592-1607.

    PAN C Y, MA J Z, ZHANG W B, et al. Application of flexible conductive polymer composites to strain sensors[J]. Advances in Chemistry, 2019, 32(10): 1592-1607 (in Chinese).
    [6] CHOI Y S, HSUEH Y Y, KOO J, et al. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration[J]. Nature communications, 2020, 11(1): 5990. doi: 10.1038/s41467-020-19660-6
    [7] CHAO M, WANG Y, MA D, et al. Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing[J]. Nano Energy, 2020, 78: 105187. doi: 10.1016/j.nanoen.2020.105187
    [8] 张蕾, 李博, 高阳. 压阻式柔性应变传感器研究进展[J]. 材料导报, 2022, 36(19): 48-58. doi: 10.11896/cldb.20120243

    ZHANG L, LI B, GAO Y. Research progress of piezoresistive flexible strain sensor[J]. Materials Review, 2022, 36(19): 48-58(in Chinese). doi: 10.11896/cldb.20120243
    [9] HOU Z, LU H, LI Y, et al. Direct ink writing of materials for electronics-related applications: a mini review[J]. Frontiers in Materials, 2021, 8: 647229. doi: 10.3389/fmats.2021.647229
    [10] CANO-VICENT A, TAMBUWALA M M, HASSAN S S, et al. Fused deposition modelling: Current status, methodology, applications and future prospects[J]. Additive manufacturing, 2021, 47: 102378. doi: 10.1016/j.addma.2021.102378
    [11] FANTINO E, ROPPOLO I, ZHANG D, et al. 3D printing/interfacial polymerization coupling for the fabrication of conductive hydrogel[J]. Macromolecular Materials and Engineering, 2018, 303(4): 1700356. doi: 10.1002/mame.201700356
    [12] IDRISS A I B, LI J, GUO Y, et al. Selective laser sintering parameter optimization of prosopis chilensis/polyethersulfone composite fabricated by AFS-360 SLS[J]. 3D Printing and Additive Manufacturing, 2023, 10(4): 697-710. doi: 10.1089/3dp.2021.0118
    [13] WAJAHAT M, LEE S, KIM J H, et al. Flexible strain sensors fabricated by meniscus-guided printing of carbon nanotube–polymer composites[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19999-20005.
    [14] CICHOSZ S, MASEK A, ZABORSKI M. Polymer-based sensors: A review[J]. Polymer testing, 2018, 67: 342-348. doi: 10.1016/j.polymertesting.2018.03.024
    [15] LIU X, GUO R, LIN Z, et al. Resistance-strain sensitive rubber composites filled by multiwalled carbon nanotubes for structuraldeformation monitoring[J]. Nanomaterials and Nanotechnology, 2021, 11: 18479804211011384.
    [16] KIM Y J, KIM D H, CHOI J S, et al. A multi-functional ammonia gas and strain sensor with 3D-printed thermoplastic polyurethane-polypyrrole composites[J]. Polymer, 2022, 240: 124490. doi: 10.1016/j.polymer.2021.124490
    [17] ALI M M, MADDIPATLA D, NARAKATHU B B, et al. Printed strain sensor based on silver nanowire/silver flake composite on flexible and stretchable TPU substrate[J]. Sensors and Actuators A: Physical, 2018, 274: 109-115. doi: 10.1016/j.sna.2018.03.003
    [18] YANG H, YUAN L, YAO X F, et al. Monotonic strain sensing behavior of self-assembled carbon nanotubes/graphene silicone rubber composites under cyclic loading[J]. Composites Science and Technology, 2020, 200: 108474. doi: 10.1016/j.compscitech.2020.108474
    [19] YUK H, LU B, LIN S, et al. 3D printing of conducting polymers[J]. Nature communications, 2020, 11(1): 1604 doi: 10.1038/s41467-020-15316-7
    [20] WEI D, ZHU J, LUO L, et al. Fabrication of poly (vinyl alcohol)–graphene oxide–polypyrrole composite hydrogel for elastic supercapacitors[J]. Journal of Materials Science, 2020, 55: 11779-11791. doi: 10.1007/s10853-020-04833-x
    [21] MUHAMMAD W, KIM S D. Highly stretchable PPy/PDMS strain sensors fabricated with multi-step oxygen plasma treatment[J]. Polymers, 2023, 15(7): 1714. doi: 10.3390/polym15071714
    [22] ZHANG L, SUI X, ZHAO L, et al. Nitrogen-doped carbon nanotubes for high-performance platinum-based catalysts in methanol oxidation reaction[J]. Carbon, 2016, 108561-567.
    [23] LI Y, BOBER P, TRCHOVÁ M, et al. Polypyrrole prepared in the presence of methyl orange and ethyl orange: nanotubes versus globules in conductivity enhancement[J]. Journal of Materials Chemistry C, 2017, 5(17): 4236-4245. doi: 10.1039/C7TC00206H
    [24] KOPECKÁ J, KOPECKÝ D, VRŇATA M, et al. Polypyrrole nanotubes: mechanism of formation[J]. RSC Advances, 2014, 4(4): 1551-1558. doi: 10.1039/C3RA45841E
    [25] STEJSKAL J, TRCHOVÁ M. Conducting polypyrrole nanotubes: a review[J]. Chemical Papers, 2018, 72(7): 1563-1595. doi: 10.1007/s11696-018-0394-x
    [26] CUI X, JIANG Y, XU Z, et al. Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability[J]. Composites Part B: Engineering, 2021, 211: 108641. doi: 10.1016/j.compositesb.2021.108641
    [27] WU Z, JIN Y, LI G, et al. Strain Sensing Behavior of 3D Printable and Wearable Conductive Polymer Composites Filled with Silane-Modified MWCNTs[J]. Macromolecular Rapid Communications, 2022, 43(4): 2100663. doi: 10.1002/marc.202100663
  • 加载中
计量
  • 文章访问数:  49
  • HTML全文浏览量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 修回日期:  2024-05-28
  • 录用日期:  2024-05-29
  • 网络出版日期:  2024-06-18

目录

    /

    返回文章
    返回