One-step preparation of self-imaging Fe3O4@chitosan drug-loaded embolic microspheres by electrostatic spraying
-
摘要:
经导管动脉栓塞术(TACE)是晚期肝细胞癌首选的治疗方案,目前栓塞剂的研究热点主要围绕着降低手术操作难度和提高TACE治疗效果,自显影栓塞剂可以在TACE术时精确反馈所在位置和手术后疗效监测,但自显影栓塞剂制备工艺繁杂,往往需多步合成。另外,目前大多的研究都集中在小尺寸(<300 µm)微球的制备,而临床实践中广泛使用的栓塞微球的直径范围为75至900 µm,并且传统的微球成型工艺制备微球粒径分布较大(±100 μm),还需进一步分筛后使用。因此,有必要开发一种简便的方法来制备尺寸范围大,粒径均匀可控的自显影栓塞微球。采用静电喷雾法实现了造影剂Fe3O4NPs与壳聚糖微球同时合成,Fe3O4NPs被均匀地包裹在微球中。通过改变电喷雾参数,实现直径范围90至1000 μm粒径均匀微球的按需制备,制备的Fe3O4@CS微球具备临床磁共振成像、可降解和药物负载能力。 (a)Fe3O4@CS微球的SEM图像,(b)Fe3O4@CS微球的磁共振成像图,(c)载药Fe3O4@CS微球的荧光成像图。 Abstract: Chitosan composite microspheres encapsulating Fe3O4 nanoparticles (Fe3O4@CS microspheres) were prepared in one step by the electrostatic spraying, enabling simultaneous synthesis of Fe3O4 nanoparticles and microspheres. Additionally, Fe3O4@CS microspheres with particle sizes ranging from 90 to 1000 μm could be prepared on demand to meet the clinical embolization requirements of different blood vessels. SEM images showed that the microspheres were homogeneous in shape and uniform in size distribution (94±3 μm), In vitro degradation experiments proved that the microspheres are biodegradable, Magnetic resonance imaging showed that the prepared Fe3O4@CS microspheres have excellent clinical imaging capabilities. Moreover, blood and cytocompatibility assessments confirmed the good biocompatibility of Fe3O4@CS microspheres. The drug-loaded microspheres loaded with DOX showed a typical drug sustained release curve, and the cumulative release rate of DOX was 28.82% within 72 hours. These results demonstrated that one-step controllable preparation of self-imaging embolic agents showed great potential for future applications in transcatheter arterial embolization (TACE). -
图 9 (a)载药Fe3O4@CS微球的荧光成像图;(b)载药Fe3O4@CS微球的载药率;(c)载药Fe3O4@CS微球的药物体外释放;(d)载药Fe3O4@CS微球对癌细胞杀伤力评价;(e)HepG2癌细胞的活/死染色荧光成像测定。
Figure 9. (a) Fluorescence imaging of drug-loaded Fe3O4@CS microspheres; (b) Drug-loading capacities, and (c) drug release in vitro of drug-loaded Fe3O4@CS microspheres; (d) The cell viability of HepG2 cells incubating with drug-loaded Fe3O4@CS microspheres at 24 h and 48 h; (e) Live/dead staining fluorescence imaging assay of HepG2 cancer cells.
-
[1] ZHAO X, HUANG W, LI X, et al. One-step preparation of photoclick method for embolic microsphere synthesis and assessment for transcatheter arterial embolization[J]. European Journal of Pharmaceutics and Biopharmaceutics,2021,166:94-102. doi: 10.1016/j.ejpb.2021.06.002 [2] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660 [3] CHOI H, CHOI B, YU B, et al. On-demand degradable embolic microspheres for immediate restoration of blood flow during image-guided embolization procedures[J]. Biomaterials,2021,265:120408. doi: 10.1016/j.biomaterials.2020.120408 [4] LIU L, LIANG X, Xu X, et al. Magnetic mesoporous embolic microspheres in transcatheter arterial chemoembolization for liver cancer[J]. Acta Biomaterialia,2021,130:374-384. doi: 10.1016/j.actbio.2021.05.031 [5] HSU M Y, HUANG Y T, WENG C J, et al. Preparation and in vitro/in vivo evaluation of doxorubicin-loaded poly [lactic-co-glycol acid] microspheres using electrospray method for sustained drug delivery and potential intratumoral injection[J]. Colloids and Surfaces B:Biointerfaces,2020,190:110937. doi: 10.1016/j.colsurfb.2020.110937 [6] YI Z, SUN Z, SHEN Y, et al. The sodium hyaluronate microspheres fabricated by solution drying for transcatheter arterial embolization[J]. Journal of Materials Chemistry B,2022,10(21):4105-4114. doi: 10.1039/D2TB00413E [7] LENG F, LEI S, LUO B, et al. Size-tunable and biodegradable thrombin-functionalized carboxymethyl chitin microspheres for endovascular embolization[J]. Carbohydrate Polymers,2022,286:119274. doi: 10.1016/j.carbpol.2022.119274 [8] CHEN M, SHU G, LV X, et al. HIF-2α-targeted interventional chemoembolization multifunctional microspheres for effective elimination of hepatocellular carcinoma[J]. Biomaterials,2022,284:121512. doi: 10.1016/j.biomaterials.2022.121512 [9] KUNLIANG L, ZHICHENG J, XIAOLONG H, et al. A biodegradable multifunctional porous microsphere composed of carrageenan for promoting imageable trans-arterial chemoembolization[J]. International journal of biological macromolecules,2020,142:866-878. doi: 10.1016/j.ijbiomac.2019.10.026 [10] LI J, WANG J, LI J, et al. Fabrication of Fe3O4@ PVA microspheres by one-step electrospray for magnetic resonance imaging during transcatheter arterial embolization[J]. Acta Biomaterialia,2021,131:532-543. doi: 10.1016/j.actbio.2021.07.006 [11] DOUCETJ, KIRI L, O’CONNELL K, et al. Advances in degradable embolic microspheres: a state of the art review[J]. Journal of functional biomaterials,2018,9(1):14. doi: 10.3390/jfb9010014 [12] FUCHS K, DURAN R, DENYS A, et al. Drug-eluting embolic microspheres for local drug delivery–State of the art[J]. Journal of controlled release,2017,262:127-138. doi: 10.1016/j.jconrel.2017.07.016 [13] WEI C, WU C, JIN X, et al. CT/MR detectable magnetic microspheres for self-regulating temperature hyperthermia and transcatheter arterial chemoembolization[J]. Acta Biomaterialia,2022,153:453-464. doi: 10.1016/j.actbio.2022.09.054 [14] LI X, JI X, CHEN K, et al. Immobilized thrombin on X-ray radiopaque polyvinyl alcohol/chitosan embolic microspheres for precise localization and topical blood coagulation[J]. Bioactive Materials,2021,6(7):2105-2119. doi: 10.1016/j.bioactmat.2020.12.013 [15] JIA G, VAN Valkenburgh J, CHEN A Z, et al. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma[J]. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology,2022,14(2):e1749. [16] D’ABADIE P, HESSE M, LOUPPE A, et al. Microspheres used in liver radioembolization: from conception to clinical effects[J]. Molecules,2021,26(13):3966. doi: 10.3390/molecules26133966 [17] TALAIE R, TORKIAN P, AMILI O, et al. Particle distribution in embolotherapy, how do they get there? A critical review of the factors affecting arterial distribution of embolic particles[J]. Annals of biomedical engineering,2022,50(8):885-897. doi: 10.1007/s10439-022-02965-6 [18] KALANTAR K, AFIFI A M, JAHANGIRIAN H, et al. Biomedical applications of chitosan electrospun nanofibers as a green polymer–Review[J]. Carbohydrate polymers,2019,207:588-600. doi: 10.1016/j.carbpol.2018.12.011 [19] 许浩, 魏延, 徐双梦, 苏慧, 李涵琴, 黄棣, 王楷群, 胡银春. 基于壳聚糖/β-甘油磷酸钠(CS/β-GP)温敏型水凝胶的细胞表面壳化及对癌细胞行为的影响研究[J]. 功能材料, 2021, 52(5):5121-5126.XU Hao, WEI Yan, XU Shuangmeng, SU Hui, LI Hanqin, HUANG Di, WANG Kaiqun, HU Yinchun. Cell surfaceshellization with chitosan/β-glycerol phosphate sodium (CS/β-GP)temperature-sensitive hydrogel and its effect on cancer cell behavior[J]. Jorunal of Functional Materials,2021,52(5):5121-5126(in Chinese). [20] REN S, SONG L, TIAN Y, et al. Emodin-Conjugated PEGylation of Fe3O4 Nanoparticles for FI/MRI Dual-Modal Imaging and Therapy in Pancreatic Cancer[J]. International Journal of Nanomedicine,2022,17:711-712. doi: 10.2147/IJN.S361728 [21] 王旭东, 吴鹏, 金淑萍, 禹兴海, 岳国仁, 陈进. 原位共沉淀法制备载药Fe3O4/壳聚糖磁性复合微球及其体外药物释放行为[J]. 复合材料学报, 2014, 31(1):158-165. doi: 10.3969/j.issn.1000-3851.2014.01.023WANG Xudong, WU Peng, JIN Shuping, YU Xinghai, YUE Guoren, CHEN Jin. Preparation of Fe3O4 /chitosan magnetic composite particle loading drug by co-precipitation in situ and its release behavior in vitro[J]. Acta Materiae Compositae Sinica,2014,31(1):158-165(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.023 [22] XIE W, GUO Z, GAO F, et al. Shape-, size-and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics[J]. Theranostics,2018,8(12):3284. doi: 10.7150/thno.25220 [23] MA X, WANG S, HU L, et al. Imaging characteristics of USPIO nanoparticles (< 5 nm) as MR contrast agent in vitro and in the liver of rats[J]. Contrast Media & Molecular Imaging, 2019, 2019. [24] PEREZ-LOPEZ A, MARTIN-SABROSO C, GOMEZ-LAZARO L, et al. Embolization therapy with microspheres for the treatment of liver cancer: State-of-the-art of clinical translation[J]. Acta Biomaterialia,2022,149:1-15. doi: 10.1016/j.actbio.2022.07.019 [25] CAINE M, CARUGO D, ZHANG X, et al. Review of the development of methods for characterization of microspheres for use in embolotherapy: translating bench to cathlab[J]. Advanced Healthcare Materials,2017,6(9):1601291. doi: 10.1002/adhm.201601291 -

计量
- 文章访问数: 95
- HTML全文浏览量: 75
- 被引次数: 0