留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静电喷雾法一步制备自显影Fe3O4@壳聚糖载药栓塞微球

黄超键 谢德明

黄超键, 谢德明. 静电喷雾法一步制备自显影Fe3O4@壳聚糖载药栓塞微球[J]. 复合材料学报, 2023, 40(12): 6766-6773. doi: 10.13801/j.cnki.fhclxb.20230323.002
引用本文: 黄超键, 谢德明. 静电喷雾法一步制备自显影Fe3O4@壳聚糖载药栓塞微球[J]. 复合材料学报, 2023, 40(12): 6766-6773. doi: 10.13801/j.cnki.fhclxb.20230323.002
HUANG Chaojian, XIE Deming. One-step preparation of self-imaging Fe3O4@chitosan drug-loaded embolic microspheres by electrostatic spraying[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6766-6773. doi: 10.13801/j.cnki.fhclxb.20230323.002
Citation: HUANG Chaojian, XIE Deming. One-step preparation of self-imaging Fe3O4@chitosan drug-loaded embolic microspheres by electrostatic spraying[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6766-6773. doi: 10.13801/j.cnki.fhclxb.20230323.002

静电喷雾法一步制备自显影Fe3O4@壳聚糖载药栓塞微球

doi: 10.13801/j.cnki.fhclxb.20230323.002
详细信息
    通讯作者:

    谢德明,博士,副教授,硕士生导师,研究方向为生物医学材料与组织工程 E-mail: bme2004@126.com

  • 中图分类号: R730.8;TB383.1;TB333

One-step preparation of self-imaging Fe3O4@chitosan drug-loaded embolic microspheres by electrostatic spraying

  • 摘要: 采用静电喷雾法一步制备包裹着Fe3O4纳米粒子的壳聚糖复合微球(Fe3O4@CS微球),实现Fe3O4纳米粒子与微球同时合成。还可以按需制备粒径范围为90~1000 μm的Fe3O4@CS微球,以满足不同部位血管的临床栓塞要求。SEM显示微球形貌均匀且粒径分布均一((94±3) μm),体外降解实验证明了微球具有生物可降解性,磁共振成像测试表明所制备的Fe3O4@CS微球具有良好的临床成像能力,血液、细胞相容性评估证实Fe3O4@CS微球具有良好的生物相容性。负载盐酸阿霉素(DOX)的载药微球显示出典型的药物缓释曲线,72 h内DOX的累计释放率为28.82%。结果表明,这一步可控制备的自显影栓塞剂在经导管动脉栓塞术(TACE)未来应用中展示了巨大的潜力。

     

  • 图  1  (a) Fe3O4@壳聚糖(CS)微球的SEM图像及粒径分布直方图;((b), (c)) 微球溶胀前后的光学显微镜图及粒径分布直方图

    Figure  1.  (a) SEM image and histogram of particle size distribution of Fe3O4@chitosan (CS) microspheres; ((b), (c)) Optical microscope images of Fe3O4@CS microspheres before and after swelling and particle size distribution histograms

    图  2  不同参数对Fe3O4@CS微球直径的影响:(a) 电压;(b) 针头大小;(c) 注射速度

    Figure  2.  Effect of different parameters on Fe3O4@CS microsphere diameter: (a) Voltage; (b) Needle size; (c) Injection speed

    图  3  Fe3O4@CS微球的XRD图谱

    Figure  3.  XRD patterns of Fe3O4@CS microsphere

    NPs—Nanoparticles

    图  4  Fe3O4@CS微球截面SEM-EDX图像

    Figure  4.  SEM-EDX images of Fe3O4@CS microsphere cross-section

    图  5  Fe3O4@CS微球的体外降解图

    Figure  5.  In vitro degradation diagram of Fe3O4@CS microspheres

    图  6  (a) Fe3O4@CS微球在磁场存在下的迁移图;(b) Fe3O4@CS微球的磁滞曲线图;(c) Fe3O4@CS微球体外模型的T2加权核磁共振成像(MRI)图像

    Figure  6.  (a) Migration diagram of Fe3O4@CS microspheres in the presence of a magnetic field; (b) Hysteresis curve diagram of Fe3O4@CS microspheres; (c) T2-weighted magnetic resonance imaging (MRI) images of Fe3O4@CS microspheres in a vitro model

    图  7  不同浓度Fe3O4@CS微球的溶血率(插图1、2、3、4、5为阳性对照、阴性对照、1、5、20 mg/mL微球)

    Figure  7.  Hemolysis rate of various Fe3O4@CS microsphere contents (Insets 1, 2, 3, 4 and 5 were positive controls, negative controls, 1 mg/mL, 5 mg/mL and 20 mg/mL microspheres, respectively)

    图  8  不同浓度Fe3O4@CS微球对人脐静脉内皮细胞(HUVEC)的细胞毒性

    Figure  8.  cytotoxicity of various Fe3O4@CS microsphere concentrations on human umbilical vein endothelial cell (HUVEC) cells

    图  9  (a) 载药Fe3O4@CS微球的荧光成像图;(b) 载药Fe3O4@CS微球的载药率;(c) 载药Fe3O4@CS微球的药物体外释放;(d) 载药Fe3O4@CS微球孵育HepG2细胞24 h和48 h的细胞活力;(e) HepG2癌细胞的活/死染色荧光成像测定

    Figure  9.  (a) Fluorescence imaging of drug-loaded Fe3O4@CS microspheres; (b) Drug-loading capacities; (c) Drug release in vitro of drug-loaded Fe3O4@CS microspheres; (d) Cell viability of HepG2 cells incubating with drug-loaded Fe3O4@CS microspheres at 24 h and 48 h; (e) Live/dead staining fluorescence imaging assay of HepG2 cancer cells

    DOX—Doxorubicin hydrochloride; AM—Calcein-AM; PI—Propidium iodide; Q—Diffusion flux; R2—Correlation coefficient

  • [1] ZHAO X T, HUANG W Q, LI X F, et al. One-step preparation of photoclick method for embolic microsphere synthesis and assessment for transcatheter arterial embolization[J]. European Journal of Pharmaceutics and Biopharmaceutics,2021,166:94-102. doi: 10.1016/j.ejpb.2021.06.002
    [2] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians,2021,71(3):209-249. doi: 10.3322/caac.21660
    [3] CHOI H, CHOI B, YU B, et al. On-demand degradable embolic microspheres for immediate restoration of blood flow during image-guided embolization procedures[J]. Biomaterials,2021,265:120408. doi: 10.1016/j.biomaterials.2020.120408
    [4] LIU L, LIANG X X, XU X X, et al. Magnetic mesoporous embolic microspheres in transcatheter arterial chemoembolization for liver cancer[J]. Acta Biomaterialia,2021,130:374-384. doi: 10.1016/j.actbio.2021.05.031
    [5] HSU M Y, HUANG Y T, WENG C J, et al. Preparation and in vitro/in vivo evaluation of doxorubicin-loaded poly [lactic-co-glycol acid] microspheres using electrospray method for sustained drug delivery and potential intratumoral injection[J]. Colloids and Surfaces B: Biointerfaces,2020,190:110937. doi: 10.1016/j.colsurfb.2020.110937
    [6] YI Z H, SUN Z C, SHEN Y, et al. The sodium hyaluronate microspheres fabricated by solution drying for transcatheter arterial embolization[J]. Journal of Materials Chemistry B,2022,10(21):4105-4114. doi: 10.1039/D2TB00413E
    [7] LENG F, LEI S, LUO B, et al. Size-tunable and biodegradable thrombin-functionalized carboxymethyl chitin microspheres for endovascular embolization[J]. Carbohydrate Polymers,2022,286:119274. doi: 10.1016/j.carbpol.2022.119274
    [8] CHEN M J, SHU G F, LYU X L, et al. HIF-2α-targeted interventional chemoembolization multifunctional microspheres for effective elimination of hepatocellular carcinoma[J]. Biomaterials,2022,284:121512. doi: 10.1016/j.biomaterials.2022.121512
    [9] LIU K L, JIN Z C, HU X L, et al. A biodegradable multifunctional porous microsphere composed of carrageenan for promoting imageable trans-arterial chemoembolization[J]. International Journal of Biological Macromolecules,2020,142:866-878. doi: 10.1016/j.ijbiomac.2019.10.026
    [10] LI J J, WANG J H, LI J Y, et al. Fabrication of Fe3O4@PVA microspheres by one-step electrospray for magnetic resonance imaging during transcatheter arterial embolization[J]. Acta Biomaterialia,2021,131:532-543. doi: 10.1016/j.actbio.2021.07.006
    [11] DOUCET J, KIRI L, O’CONNELL K, et al. Advances in degradable embolic microspheres: A state of the art review[J]. Journal of Functional Biomaterials,2018,9(1):14. doi: 10.3390/jfb9010014
    [12] FUCHS K, DURAN R, DENYS A, et al. Drug-eluting embolic microspheres for local drug delivery—State of the art[J]. Journal of Controlled Release,2017,262:127-138. doi: 10.1016/j.jconrel.2017.07.016
    [13] WEI C X, WU C W, JIN X, et al. CT/MR detectable magnetic microspheres for self-regulating temperature hyperthermia and transcatheter arterial chemoembolization[J]. Acta Biomaterialia,2022,153:453-464. doi: 10.1016/j.actbio.2022.09.054
    [14] LI X H, JI X F, CHEN K, et al. Immobilized thrombin on X-ray radiopaque polyvinyl alcohol/chitosan embolic microspheres for precise localization and topical blood coagulation[J]. Bioactive Materials,2021,6(7):2105-2119. doi: 10.1016/j.bioactmat.2020.12.013
    [15] JIA G, VAN VALKENBURGH J, CHEN A Z, et al. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma[J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology,2022,14(2):e1749.
    [16] D’ABADIE P, HESSE M, LOUPPE A, et al. Microspheres used in liver radioembolization: From conception to clinical effects[J]. Molecules,2021,26(13):3966. doi: 10.3390/molecules26133966
    [17] TALAIE R, TORKIAN P, AMILI O, et al. Particle distribution in embolotherapy, how do they get there? A critical review of the factors affecting arterial distribution of embolic particles[J]. Annals of Biomedical Engineering,2022,50(8):885-897. doi: 10.1007/s10439-022-02965-6
    [18] KALANTARI K, AFIFI A M, JAHANGIRIAN H, et al. Biomedical applications of chitosan electrospun nanofibers as a green polymer—Review[J]. Carbohydrate Polymers,2019,207:588-600. doi: 10.1016/j.carbpol.2018.12.011
    [19] 许浩, 魏延, 徐双梦, 等. 基于壳聚糖/β-甘油磷酸钠(CS/β-GP)温敏型水凝胶的细胞表面壳化及对癌细胞行为的影响研究[J]. 功能材料, 2021, 52(5):5121-5126.

    XU Hao, WEI Yan, XU Shuangmeng, et al. Cell surface shellization with chitosan/β-glycerol phosphate sodium (CS/β-GP) temperature-sensitive hydrogel and its effect on cancer cell behavior[J]. Journal of Functional Materials,2021,52(5):5121-5126(in Chinese).
    [20] REN S, SONG L, TIAN Y, et al. Emodin-conjugated PEGylation of Fe3O4 nanoparticles for FI/MRI dual-modal imaging and therapy in pancreatic cancer[J]. International Journal of Nanomedicine,2022,17:711-712. doi: 10.2147/IJN.S361728
    [21] 王旭东, 吴鹏, 金淑萍, 等. 原位共沉淀法制备载药Fe3O4/壳聚糖磁性复合微球及其体外药物释放行为[J]. 复合材料学报, 2014, 31(1):158-165. doi: 10.3969/j.issn.1000-3851.2014.01.023

    WANG Xudong, WU Peng, JIN Shuping, et al. Preparation of Fe3O4/chitosan magnetic composite particle loading drug by co-precipitation in situ and its release behavior in vitro[J]. Acta Materiae Compositae Sinica,2014,31(1):158-165(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.023
    [22] XIE W S, GUO Z H, GAO F, et al. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics[J]. Theranostics,2018,8(12):3284. doi: 10.7150/thno.25220
    [23] MA X H, WANG S A, HU L B, et al. Imaging characteristics of USPIO nanoparticles (<5 nm) as MR contrast agent in vitro and in the liver of rats[J]. Contrast Media & Molecular Imaging, 2019, 2019: 3687537.
    [24] PÉREZ-LÓPEZ A, MARTÍN-SABROSO C, GÓMEZ-LÁZARO L, et al. Embolization therapy with microspheres for the treatment of liver cancer: State-of-the-art of clinical translation[J]. Acta Biomaterialia,2022,149:1-15. doi: 10.1016/j.actbio.2022.07.019
    [25] CAINE M, CARUGO D, ZHANG X, et al. Review of the development of methods for characterization of microspheres for use in embolotherapy: Translating bench to cathlab[J]. Advanced Healthcare Materials,2017,6(9):1601291. doi: 10.1002/adhm.201601291
  • 加载中
图(9)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  400
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 修回日期:  2023-03-15
  • 录用日期:  2023-03-17
  • 网络出版日期:  2023-03-24
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回