留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静电喷雾法一步制备自显影Fe3O4@壳聚糖载药栓塞微球

黄超键 谢德明

黄超键, 谢德明. 静电喷雾法一步制备自显影Fe3O4@壳聚糖载药栓塞微球[J]. 复合材料学报, 2023, 41(0): 1-9
引用本文: 黄超键, 谢德明. 静电喷雾法一步制备自显影Fe3O4@壳聚糖载药栓塞微球[J]. 复合材料学报, 2023, 41(0): 1-9
Chaojian HUANG, Deming XIE. One-step preparation of self-imaging Fe3O4@chitosan drug-loaded embolic microspheres by electrostatic spraying[J]. Acta Materiae Compositae Sinica.
Citation: Chaojian HUANG, Deming XIE. One-step preparation of self-imaging Fe3O4@chitosan drug-loaded embolic microspheres by electrostatic spraying[J]. Acta Materiae Compositae Sinica.

静电喷雾法一步制备自显影Fe3O4@壳聚糖载药栓塞微球

详细信息
    通讯作者:

    谢德明,博士,副教授,硕士生导师,研究方向为生物医学材料与组织工程 E-mail: bme2004@126.com

  • 中图分类号: R730.8

One-step preparation of self-imaging Fe3O4@chitosan drug-loaded embolic microspheres by electrostatic spraying

  • 摘要: 经导管动脉栓塞术(TACE)是晚期肝细胞癌首选的治疗方案,目前栓塞剂的研究热点主要围绕着降低手术操作难度和提高TACE治疗效果,自显影栓塞剂可以在TACE术时精确反馈所在位置和手术后疗效监测,但自显影栓塞剂制备工艺繁杂,往往需多步合成。另外,目前大多的研究都集中在小尺寸(<300 µm)微球的制备,而临床实践中广泛使用的栓塞微球的直径范围为75至900 µm,并且传统的微球成型工艺制备微球粒径分布较大(±100 μm),还需进一步分筛后使用。因此,有必要开发一种简便的方法来制备尺寸范围大,粒径均匀可控的自显影栓塞微球。采用静电喷雾法实现了造影剂Fe3O4NPs与壳聚糖微球同时合成,Fe3O4NPs被均匀地包裹在微球中。通过改变电喷雾参数,实现直径范围90至1000 μm粒径均匀微球的按需制备,制备的Fe3O4@CS微球具备临床磁共振成像、可降解和药物负载能力。(a)Fe3O4@CS微球的SEM图像,(b)Fe3O4@CS微球的磁共振成像图,(c)载药Fe3O4@CS微球的荧光成像图。

     

  • 图  1  (a)Fe3O4@壳聚糖(CS)微球的SEM图像,(b)(c)分别为微球溶胀前后的光学显微镜图及粒径分布直方图

    Figure  1.  (a) SEM images of Fe3O4@Chitosan (CS) microspheres, (b) and(c) The optical microscope images of microspheres before and after swelling, and particle size distribution histograms.

    图  2  不同参数对Fe3O4@CS微球直径的影响:(a)电压;(b)针头大小;(c)注射速度

    Figure  2.  Effect of different parameters on Fe3O4@CS microsphere diameter: (a) Voltage; (b) Needle size; (c) Injection speed

    图  3  Fe3O4@CS微球的XRD图(蓝线参考JCPDS数据库Fe3O4NPs的XRD谱图)

    Figure  3.  The XRD patterns of Fe3O4NPs (the blue line referring to the JCPDS database);

    图  4  Fe3O4@CS微球截面SEM-EDX图

    Figure  4.  SEM-EDX image of Fe3O4@CS microsphere cross-section.

    图  5  Fe3O4@CS微球的体外降解图

    Figure  5.  In vitro degradation diagram of Fe3O4@CS microspheres

    图  6  (a)Fe3O4@CS微球在磁场存在下的迁移图;(b)Fe3O4@CS微球的磁滞曲线图;(c)Fe3O4@CS微球体外模型的T2加权MRI图像

    Figure  6.  (a) Migration diagram of Fe3O4@CS microspheres in the presence of a magnetic field; (b) Hysteresis curve diagram of Fe3O4@CS microspheres; (c) T2-weighted MRI images of Fe3O4@CS microspheres in a vitro model.

    图  7  不同浓度Fe3O4@CS微球的溶血率(插图1,2,3,4,5为阳性对照、阴性对照、1、5、20 mg/mL微球)

    Figure  7.  Hemolysis rate of various Fe3O4@CS microsphere contents (insets 1, 2, 3, 4, and 5 were positive controls, negative controls, 1 mg/mL, 5 mg/mL, and 20 mg/mL microspheres, respectively)

    图  8  不同浓度Fe3O4@CS微球对HUVEC细胞的细胞毒性

    Figure  8.  cytotoxicity of various Fe3O4@CS microsphere concentrations on HUVEC cells.

    图  9  (a)载药Fe3O4@CS微球的荧光成像图;(b)载药Fe3O4@CS微球的载药率;(c)载药Fe3O4@CS微球的药物体外释放;(d)载药Fe3O4@CS微球对癌细胞杀伤力评价;(e)HepG2癌细胞的活/死染色荧光成像测定。

    Figure  9.  (a) Fluorescence imaging of drug-loaded Fe3O4@CS microspheres; (b) Drug-loading capacities, and (c) drug release in vitro of drug-loaded Fe3O4@CS microspheres; (d) The cell viability of HepG2 cells incubating with drug-loaded Fe3O4@CS microspheres at 24 h and 48 h; (e) Live/dead staining fluorescence imaging assay of HepG2 cancer cells.

  • [1] ZHAO X, HUANG W, LI X, et al. One-step preparation of photoclick method for embolic microsphere synthesis and assessment for transcatheter arterial embolization[J]. European Journal of Pharmaceutics and Biopharmaceutics,2021,166:94-102. doi: 10.1016/j.ejpb.2021.06.002
    [2] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660
    [3] CHOI H, CHOI B, YU B, et al. On-demand degradable embolic microspheres for immediate restoration of blood flow during image-guided embolization procedures[J]. Biomaterials,2021,265:120408. doi: 10.1016/j.biomaterials.2020.120408
    [4] LIU L, LIANG X, Xu X, et al. Magnetic mesoporous embolic microspheres in transcatheter arterial chemoembolization for liver cancer[J]. Acta Biomaterialia,2021,130:374-384. doi: 10.1016/j.actbio.2021.05.031
    [5] HSU M Y, HUANG Y T, WENG C J, et al. Preparation and in vitro/in vivo evaluation of doxorubicin-loaded poly [lactic-co-glycol acid] microspheres using electrospray method for sustained drug delivery and potential intratumoral injection[J]. Colloids and Surfaces B:Biointerfaces,2020,190:110937. doi: 10.1016/j.colsurfb.2020.110937
    [6] YI Z, SUN Z, SHEN Y, et al. The sodium hyaluronate microspheres fabricated by solution drying for transcatheter arterial embolization[J]. Journal of Materials Chemistry B,2022,10(21):4105-4114. doi: 10.1039/D2TB00413E
    [7] LENG F, LEI S, LUO B, et al. Size-tunable and biodegradable thrombin-functionalized carboxymethyl chitin microspheres for endovascular embolization[J]. Carbohydrate Polymers,2022,286:119274. doi: 10.1016/j.carbpol.2022.119274
    [8] CHEN M, SHU G, LV X, et al. HIF-2α-targeted interventional chemoembolization multifunctional microspheres for effective elimination of hepatocellular carcinoma[J]. Biomaterials,2022,284:121512. doi: 10.1016/j.biomaterials.2022.121512
    [9] KUNLIANG L, ZHICHENG J, XIAOLONG H, et al. A biodegradable multifunctional porous microsphere composed of carrageenan for promoting imageable trans-arterial chemoembolization[J]. International journal of biological macromolecules,2020,142:866-878. doi: 10.1016/j.ijbiomac.2019.10.026
    [10] LI J, WANG J, LI J, et al. Fabrication of Fe3O4@ PVA microspheres by one-step electrospray for magnetic resonance imaging during transcatheter arterial embolization[J]. Acta Biomaterialia,2021,131:532-543. doi: 10.1016/j.actbio.2021.07.006
    [11] DOUCETJ, KIRI L, O’CONNELL K, et al. Advances in degradable embolic microspheres: a state of the art review[J]. Journal of functional biomaterials,2018,9(1):14. doi: 10.3390/jfb9010014
    [12] FUCHS K, DURAN R, DENYS A, et al. Drug-eluting embolic microspheres for local drug delivery–State of the art[J]. Journal of controlled release,2017,262:127-138. doi: 10.1016/j.jconrel.2017.07.016
    [13] WEI C, WU C, JIN X, et al. CT/MR detectable magnetic microspheres for self-regulating temperature hyperthermia and transcatheter arterial chemoembolization[J]. Acta Biomaterialia,2022,153:453-464. doi: 10.1016/j.actbio.2022.09.054
    [14] LI X, JI X, CHEN K, et al. Immobilized thrombin on X-ray radiopaque polyvinyl alcohol/chitosan embolic microspheres for precise localization and topical blood coagulation[J]. Bioactive Materials,2021,6(7):2105-2119. doi: 10.1016/j.bioactmat.2020.12.013
    [15] JIA G, VAN Valkenburgh J, CHEN A Z, et al. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma[J]. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology,2022,14(2):e1749.
    [16] D’ABADIE P, HESSE M, LOUPPE A, et al. Microspheres used in liver radioembolization: from conception to clinical effects[J]. Molecules,2021,26(13):3966. doi: 10.3390/molecules26133966
    [17] TALAIE R, TORKIAN P, AMILI O, et al. Particle distribution in embolotherapy, how do they get there? A critical review of the factors affecting arterial distribution of embolic particles[J]. Annals of biomedical engineering,2022,50(8):885-897. doi: 10.1007/s10439-022-02965-6
    [18] KALANTAR K, AFIFI A M, JAHANGIRIAN H, et al. Biomedical applications of chitosan electrospun nanofibers as a green polymer–Review[J]. Carbohydrate polymers,2019,207:588-600. doi: 10.1016/j.carbpol.2018.12.011
    [19] 许浩, 魏延, 徐双梦, 苏慧, 李涵琴, 黄棣, 王楷群, 胡银春. 基于壳聚糖/β-甘油磷酸钠(CS/β-GP)温敏型水凝胶的细胞表面壳化及对癌细胞行为的影响研究[J]. 功能材料, 2021, 52(5):5121-5126.

    XU Hao, WEI Yan, XU Shuangmeng, SU Hui, LI Hanqin, HUANG Di, WANG Kaiqun, HU Yinchun. Cell surfaceshellization with chitosan/β-glycerol phosphate sodium (CS/β-GP)temperature-sensitive hydrogel and its effect on cancer cell behavior[J]. Jorunal of Functional Materials,2021,52(5):5121-5126(in Chinese).
    [20] REN S, SONG L, TIAN Y, et al. Emodin-Conjugated PEGylation of Fe3O4 Nanoparticles for FI/MRI Dual-Modal Imaging and Therapy in Pancreatic Cancer[J]. International Journal of Nanomedicine,2022,17:711-712. doi: 10.2147/IJN.S361728
    [21] 王旭东, 吴鹏, 金淑萍, 禹兴海, 岳国仁, 陈进. 原位共沉淀法制备载药Fe3O4/壳聚糖磁性复合微球及其体外药物释放行为[J]. 复合材料学报, 2014, 31(1):158-165. doi: 10.3969/j.issn.1000-3851.2014.01.023

    WANG Xudong, WU Peng, JIN Shuping, YU Xinghai, YUE Guoren, CHEN Jin. Preparation of Fe3O4 /chitosan magnetic composite particle loading drug by co-precipitation in situ and its release behavior in vitro[J]. Acta Materiae Compositae Sinica,2014,31(1):158-165(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.023
    [22] XIE W, GUO Z, GAO F, et al. Shape-, size-and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics[J]. Theranostics,2018,8(12):3284. doi: 10.7150/thno.25220
    [23] MA X, WANG S, HU L, et al. Imaging characteristics of USPIO nanoparticles (< 5 nm) as MR contrast agent in vitro and in the liver of rats[J]. Contrast Media & Molecular Imaging, 2019, 2019.
    [24] PEREZ-LOPEZ A, MARTIN-SABROSO C, GOMEZ-LAZARO L, et al. Embolization therapy with microspheres for the treatment of liver cancer: State-of-the-art of clinical translation[J]. Acta Biomaterialia,2022,149:1-15. doi: 10.1016/j.actbio.2022.07.019
    [25] CAINE M, CARUGO D, ZHANG X, et al. Review of the development of methods for characterization of microspheres for use in embolotherapy: translating bench to cathlab[J]. Advanced Healthcare Materials,2017,6(9):1601291. doi: 10.1002/adhm.201601291
  • 加载中
计量
  • 文章访问数:  95
  • HTML全文浏览量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 修回日期:  2023-03-15
  • 录用日期:  2023-03-17
  • 网络出版日期:  2023-03-29

目录

    /

    返回文章
    返回