留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交三向纤维增强纳米孔树脂基复合材料的力学特性及失效预测

李桐 钱震 陈紫轩 李亮 蔡宏祥 曹宇 张亚运 牛波 龙东辉

李桐, 钱震, 陈紫轩, 等. 正交三向纤维增强纳米孔树脂基复合材料的力学特性及失效预测[J]. 复合材料学报, 2023, 42(0): 1-19.
引用本文: 李桐, 钱震, 陈紫轩, 等. 正交三向纤维增强纳米孔树脂基复合材料的力学特性及失效预测[J]. 复合材料学报, 2023, 42(0): 1-19.
LI Tong, QIAN Zhen, CHEN Zixuan, et al. Mechanical properties and failure prediction of three-dimensional orthogonal fiber reinforced nanoporous resin composites[J]. Acta Materiae Compositae Sinica.
Citation: LI Tong, QIAN Zhen, CHEN Zixuan, et al. Mechanical properties and failure prediction of three-dimensional orthogonal fiber reinforced nanoporous resin composites[J]. Acta Materiae Compositae Sinica.

正交三向纤维增强纳米孔树脂基复合材料的力学特性及失效预测

基金项目: 国家自然科学基金 (22078100; 52102098)
详细信息
    通讯作者:

    龙东辉,教授,博士生导师,研究方向为热防护材料与技术 E-mail:longdh@ecust.edu.cn

  • 中图分类号: TB332

Mechanical properties and failure prediction of three-dimensional orthogonal fiber reinforced nanoporous resin composites

Funds: The National Natural Science Foundation of China (22078100; 52102098)
  • 摘要: 针对飞行器的极端防隔热承载需求,以正交三向石英纤维预制体为增强体、高强度纳米孔酚醛树脂为基体,制备出正交三向纤维增强纳米孔树脂基复合材料(3DIPC)。所制备的3DIPC具有中等密度(~1.46 g·cm−3)、较低的室温热导率(<0.30 W·(m·K)−1)和线烧蚀率(~0.15 mm·s−1)以及优异的力学性能(拉伸强度 >400 MPa,压缩强度 >390 MPa,弯曲强度 >300 MPa,层间剪切强度 >30 MPa)。通过调整不同方向纱线的细度,系统地研究了纤维预制体细观结构改变对3DIPC力学性能的影响。结果表明,增大Z纱的细度可以提高3DIPC的压缩模量和层间剪切强度,但会导致其拉伸性能与压缩强度的降低;增大经纱的细度可以提高材料经向的拉伸与弯曲性能,但纬向的拉伸与弯曲性能呈降低趋势。最后,基于3DIPC的实际形貌建立了包含表面与内部结构的细观有限元模型,并结合复合材料的渐进损伤模型,采用ABAQUS有限元软件模拟了3DIPC的拉伸失效行为。结果表明,3DIPC的损伤始于纱线中的基体处,并随应变的增加扩展至纯基体与纤维。3DIPC的经纬向拉伸失效分别是由经向和纬向纤维断裂主导的,且表面Z纱和表面纬纱的纤维断裂是造成3DIPC在纬向拉伸前期损伤的主要原因。

     

  • 图  1  (a) 正交三向纤维增强纳米孔酚醛树脂基复合材料(3DIPC)的实物图;(b) 3DIPC-241的Micro-CT三维微观结构图;3DIPC-241沿经向(c)、纬向(d)和厚度方向截面(e)的SEM图像;(f) 纱线截面SEM图像;(g) 树脂基体SEM图像;3DIPC的孔径分布图(h)和压汞曲线(i)

    Figure  1.  (a) Physical illustration of three-dimensional orthogonal fiber reinforced nanoporous phenolic resin composite (3DIPC); (b) 3 D microstructure of 3DIPC-241 from micro-CT scanning; SEM images of the section along the warp direction (c), weft direction (d) and thickness direction (e); (f) SEM image of the section of yarn; (g) SEM image of resin matrix; Pore-size distribution (h) and mercury injection curve (i) of 3DIPC

    图  2  3DIPC经向(a)和纬向(b)拉伸应力-应变曲线;3DIPC经向(c)和纬向(d)拉伸性能;3DIPC-241拉伸断裂形貌(e)和经向断口处的SEM图像(f)

    Figure  2.  Tensile stress-strain curves of 3DIPC in the warp (a) and weft (b) directions; Tensile properties of 3DIPC in the warp (c) and weft (d) directions; Fracture morphology (e) and its corresponding SEM image (f) of 3DIPC-241 under tensile loading in the warp direction

    图  3  (a) 3DIPC厚度方向压缩的应力-应变曲线;(b) 3DIPC的压缩性能;3DIPC-241的压缩破坏形貌(c)和剪切开裂处的SEM图像(d);3DIPC-241中树脂基体压缩前(e)和压缩后(f)的高倍率SEM图像

    Figure  3.  (a) Compressive stress-strain curves of 3DIPC in the thickness direction; (b) Compressive properties of 3DIPC; The compressive failure morphology (c) and SEM image of the shear cracking in 3DIPC-241 (d); High magnification SEM images of the resin matrix in 3DIPC-241 before (e) and after (f) compression

    图  4  3DIPC经向(a)和纬向(b)弯曲应力-应变曲线;3DIPC经向(c)和纬向(d)的弯曲性能;(e) 3DIPC弯曲过程受力示意图;(f) 3DIPC-241弯曲破坏形貌

    Figure  4.  Bending stress-strain curves of 3DIPC in the warp (a) and weft (b) directions; Bending properties of 3DIPC in the warp (c) and weft (d) directions; (e) Force diagram for the bending process of 3DIPC; (f) Bending failure morphology of 3DIPC-241

    图  5  3DIPC经向(a)和纬向(b)层间剪切应力-位移曲线;3DIPC-241经向层间剪切破坏形貌(c)和断面处SEM图像(d)

    Figure  5.  Interlaminar shear stress-displacement curves of 3DIPC in the warp (a) and weft (b) directions; The interlaminar shear failure morphology (c) and SEM image (d) of the fracture surface of 3DIPC-241 in the warp direction

    图  6  (a) 3DIPC纱线等效截面;(b) 3DIPC细观结构示意图;(c) 模型几何结构示意图;(d) 3DIPC基于体素网格的有限元模型

    Figure  6.  (a) Equivalent cross-section size of yarn of 3DIPC; (b) Schematic diagram of the mecro-scale structure of 3DIPC; (c) Schematic diagram of the geometric structure of model; (d) Finite element model based on voxel mesh of 3DIPC

    图  7  3DIPC-241经向(a)和纬向(b)拉伸应力-应变曲线

    Figure  7.  Tensile stress-strain curves of 3DIPC-241 in warp (a) and weft (b) direction

    图  8  3DIPC-241经向拉伸应力分布

    Figure  8.  Stress distribution of 3DIPC-241 under tensile loading in warp direction

    图  9  3DIPC-241纬向拉伸应力分布

    Figure  9.  Stress distribution of 3DIPC-241 under tensile loading in weft direction

    图  10  3DIPC-241经向(a)和纬向(b)拉伸过程平均损伤变量演变

    Figure  10.  Evolution of average damage variable of 3DIPC-241 under tensile loading in warp (a) and weft (b) direction

    $ {d}_{\mathrm{m}} $,$ {d}_{\mathrm{f},\mathrm{L}} $ and $ {d}_{\mathrm{m},\mathrm{T}} $ represent pure matrix damage, fiber damage in yarn and matrix damage in yarn, respectively

    图  11  3DIPC-241经向拉伸渐进损伤过程

    Figure  11.  Progressive damage process of 3DIPC-241 under tensile loading in warp direction

    图  12  3DIPC-241纬向拉伸渐进损伤过程

    Figure  12.  Progressive damage process of 3DIPC-241 under tensile loading in weft direction

    表  1  正交三向石英纤维预制体的织造参数

    Table  1.   Weaving parameters of three-dimensional orthogonal quartz fiber preforms

    Fiber preformWarp density/
    (yarns·cm−1)
    Fineness of warp yarn/texWeft density/
    (yarns·cm−1)
    Fineness of weft yarn/texFineness of z yarn/texFiber content/vol%Fiber content in different directions/vol%
    WarpWeftZ
    24110195*26195*4195*150.319.5025.535.32
    24210195*26.1195*4195*250.416.8822.6610.81
    3519195*35195*5195*150.022.7923.213.99
    3319195*37195*3195*150.023.9320.485.58
    下载: 导出CSV

    表  2  正交三向纤维增强纳米孔酚醛树脂基复合材料(3DIPC)的基础物理性能

    Table  2.   Basic physical properties of three-dimensional orthogonal fiber reinforced nanoporous phenolic resin composites (3DIPC)

    SampleBulk density/
    (g·cm−3)
    Thermal conductivity/
    (W·(m·K)−1)
    Linear ablation rate/
    (mm·s−1)
    Porosity/
    %
    Most
    probable
    pore/nm
    3DIPC-2411.460.2400.14720.720.0
    3DIPC-2421.470.2890.15020.021.1
    3DIPC-3511.470.2450.15521.123.4
    3DIPC-3311.460.2430.15021.021.1
    下载: 导出CSV

    表  3  3DIPC的层间剪切性能

    Table  3.   The interlaminar shear properties of 3DIPC

    Sample Warp direction Weft direction
    Strength/MPa Strength/MPa
    3DIPC-241 37.7±0.70 37.4±0.81
    3DIPC-242 38.4±0.28 43.2±1.14
    3DIPC-351 29.9±0.78 32.8±1.33
    3DIPC-331 30.6±0.63 34.5±0.48
    下载: 导出CSV

    表  4  纱线等效横截面尺寸

    Table  4.   Equivalent cross-section size of yarn

    Width of warp yarn WP/mmHeight of warp yarn hP/mmWidth of warp yarn WF/mmHeight of inner-weft yarn hIF/mmHeight of surface-weft yarn hSF/mmWidth of warp yarn WZ/mmWidth of warp yarn hZ/mm
    0.70.371.30.480.610.30.37
    下载: 导出CSV

    表  5  纳米孔树脂基体和石英纤维的力学性能

    Table  5.   Mechanical properties of nanoporous resin matrix and quartz fiber

    MaterialYoung’s modulus $ {E} $/MPaPoisson's ratio $ \mu $Shear modulus $ {G} $/MPaTensile strength $ {{X}}_{\text{t}} $/MPaCompressive strength $ {{X}}_{\text{c}} $/MPaShear strength $ {{X}}_{\text{s}} $/MPa
    Nanoporous resin matrix10550.339710.331.98.4
    Quartz fiber780000.223196760001700740
    下载: 导出CSV

    表  6  纱线的力学性能

    Table  6.   Mechanical properties of yarn

    $ {{E}}_{\text{11}} $/MPa$ {{E}}_{\text{22}} $/MPa$ {{E}}_{\text{33}} $/MPa$ {{G}}_{\text{12}} $/MPa$ {{G}}_{\text{13}} $/MPa$ {{G}}_{\text{23}} $/MPa$ {\mu }_{\text{12}} $$ {\mu }_{\text{13}} $
    54916.56040.46040.42283.12283.12283.10.2530.253
    $ {{\mu }}_{\text{23}} $$ {{F}}_{\text{1t}} $/MPa$ {{F}}_{\text{1c}} $/MPa$ {{F}}_{\text{2t}} $/MPa$ {{F}}_{\text{2c}} $/MPa$ {{F}}_{\text{ls}} $/MPa$ {{F}}_{\text{ts}} $/MPa
    0.3224224.41196.96.9035.9016.9516.95
    Notes: $ {{E}}_{\text{11}} $, $ {{E}}_{\text{22}} $, $ {{E}}_{\text{33}} $-Elastic modulus in directions 1, 2 and 3; $ {{G}}_{\text{12}} $, $ {{G}}_{\text{13}} $, $ {{G}}_{\text{23}} $-Shear modulus in directions 12, 13 and 23; $ {\mu }_{\text{12}} $, $ {\mu}_{\text{13}} $ and $ {\mu}_{\text{2}\text{3}} $-Poisson’s ratio in directions 12, 13 and 23; $ {{F}}_{\text{1 t}} $ and $ {{F}}_{\text{1 c}} $-Tensile and compressive strength in direction 1; $ {{F}}_{\text{2 t}} $ and $ {\text{F}}_{\text{2 c}} $-Tensile and compressive strength in direction 2; $ {{F}}_{\text{ls}} $ and $ {{F}}_{\text{ts}} $-Shear strength in direction 12 and 23.
    下载: 导出CSV

    表  7  纱线的断裂能参数

    Table  7.   Fracture energy parameters of yarn

    $ {{G}}_{\text{t}}^{\text{f}} $/(J·mm−2) $ {{G}}_{\text{c}}^{\text{f}} $/(J·mm−2) $ {{G}}_{\text{t}}^{\text{m}} $/(J·mm−2) $ {{G}}_{\text{c}}^{\text{m}} $/(J·mm−2)
    80 80 1 1
    Notes: $ {{G}}_{\text{t}}^{\text{f}} $, $ {{G}}_{\text{c}}^{\text{f}} $-Fracture energy of fiber in tensile and compression; $ {{G}}_{\text{t}}^{\text{m}} $,$ {{G}}_{\text{c}}^{\text{m}} $-Fracture energy of matrix in tensile and compression
    下载: 导出CSV

    表  8  3DIPC-241试验与模拟力学性能对比

    Table  8.   Comparison of mechanical properties between 3DIPC-241 experimental and simulated results

    Tensile modulus/GPaTensile strength/MPaElongation at break/%
    Warp directionWeft directionWarp directionWeft directionWarp directionWeft direction
    Testing16.520.9415.3433.43.403.08
    Simulating16.923.2454.2426.73.222.76
    Error/%2.4211.09.37−1.55−5.29−10.4
    下载: 导出CSV
  • [1] 杜晨慧. 高超声速飞行器综合热管理及关键技术研究进展[J]. 装备环境工程, 2023, 20(1): 43-51.

    DU Chenhui. Research progress on integrated thermal management and key technology of hypersonic vehicles[J]. Equipment Environmental Engineering, 2023, 20(1): 43-51(in Chinese).
    [2] 蒋凌澜, 陈阳. 树脂基复合材料在航天飞行器气动热防护上的应用研究[J]. 玻璃钢/复合材料, 2014, (7): 78-84.

    JIANG Linglan, CHEN Yang. The application research of resin-based composites for aero-dynamic thermal protection system[J]. Fiber Reinforced Plastics/Composites, 2014, (7): 78-84(in Chinese).
    [3] 欧俊, 黄民忠, 黄瑶, 等. 基于DLP技术打印制备聚合物转化陶瓷基复合材料的研究[J]. 陶瓷学报, 2023, 44(1): 154-162.

    OU Jun, HUANG Minzhong, HUANG Yao, et al. Digital light processing-based fabrication of polymer-derived ceramic matrix composites[J]. Journal of Ceramics, 2023, 44(1): 154-162(in Chinese).
    [4] ELLERBY D, VENKATAPATHY E, GAGE P, et al. Heatshield for extreme entry environment technology (HEEET) thermal protection system (TPS)[C]//Materials Science & Technology Conference and Exhibition. Portland, 2019: 1359-1366.
    [5] Saleh M N, Soutis C. Recent advancements in mechanical characterisation of 3D woven composites[J]. Mechanics of Advanced Materials and Modern Processes, 2017, 3(1): 1-17. doi: 10.1186/s40759-016-0016-7
    [6] 李涛涛. 碳/芳纶混杂正交三向复合材料拉伸疲劳性能实验研究[D]. 天津工业大学, 2016.

    LI Taotao. Experimental study on the tensile fatigue performance of carbon/aramid hybrid orthotropic three-way composites[D]. Tianjin University of Technology, 2016(in Chinese).
    [7] Fan W, Yuan L, D'Souza N, et al. Enhanced mechanical and radar absorbing properties of carbon/glass fiber hybrid composites with unique 3D orthogonal structure[J]. Polymer Testing, 2018, 69: 71-79. doi: 10.1016/j.polymertesting.2018.05.007
    [8] Yang X, Sun Y, Li D, et al. Evaluation of multi-directional compression behaviors and failure of three-dimensional orthogonal woven composites via liquid nitrogen temperature[J]. Composites Communications, 2023: 101626.
    [9] 邓奇林, 杨敏, 姚彧敏, 等. 三向正交预制体织造参数对C/C复合材料性能的影响[J]. 材料工程, 2022, 50(5): 139-146.

    DENG Qilin, YANG Min, YAO Yumin, et al. Effect of three-directional orthogonal preform weaving parameters on properties of C/C composites[J]. Journal of Materials Engineering, 2022, 50(5): 139-146(in Chinese).
    [10] 钱逸星, 杨振宇, 卢子兴. 纺织复合材料力学性能数值模拟方法研究进展[J]. 航空制造技术, 2022, 65(16): 135-151.

    QIAN Yixing, YANG Zhenyu, LU Zixing. Research progress on numerical simulation of mechanical properties of textile composites[J]. Aeronautical Manufacturing Technology, 2022, 65(16): 135-151(in Chinese).
    [11] ZHENG T, GUO L, Benedictus R, et al. Micromechanics-based multiscale progressive failure simulation of 3D woven composites under compressive loading with minimal material parameters[J]. Composites Science and Technology, 2022, 219: 109227. doi: 10.1016/j.compscitech.2021.109227
    [12] YANG X, AI J, ZHU H, et al. Multi-directional compression behaviors and failure mechanisms of 3D orthogonal woven composites: Parametric modeling and strength prediction[J]. Materials & Design, 2022, 222: 111108.
    [13] JIA X, XIA Z, GU B. Micro/meso-scale damage analysis of three-dimensional orthogonal woven composites based on sub-repeating unit cells[J]. The Journal of Strain Analysis for Engineering Design, 2012, 47(5): 313-328. doi: 10.1177/0309324712444671
    [14] 国防科学技术工业委员会. 烧蚀材料烧蚀试验方法: GJB 323A-96[S]. 1996.

    The Commission of Science, Technology and Industry for National Defense of the PRC. Test methods for ablation for ablators: GJB 323A-96[S]. 1996 (in Chinese).
    [15] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447-2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastic composites-Determination of tensile Properties: GB/T 1447-2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [16] 中国国家标准化管理委员会. 纤维增强塑料压缩性能试验方法: GB/T 1448-2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastic composites-Determination of compressive properties: GB/T 1448-2005[S]. Beijing: Standards Press of China, 2005 (in Chinese).
    [17] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449-2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastic composites-Determination of flexural properties: GB/T 1449-2005[S]. Beijing: Standards Press of China, 2005 (in Chinese).
    [18] 中国国家标准化管理委员会. 纤维增强塑料层间剪切强度试验方法: GB/T 1450.1-2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People’s Republic of China. Fiber-reinforced plastic composites-Determination of interlaminar shear strength: GB/T 1450.1-2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
    [19] NIU Z, LI G, MA X, et al. Synergetic effect of O-POSS and T-POSS to enhance ablative resistant of phenolic-based silica fiber composites via strong interphase strength and ceramic formation[J]. Composites Part A:Applied Science and Manufacturing, 2022, 155: 106855. doi: 10.1016/j.compositesa.2022.106855
    [20] LI L, LI Y, HUAN D, et al. Z-pin effect on interlaminar mechanical and ablation performance of quartz-phenolic composites[J]. Polymer Composites, 2022, 43(5): 3228-3241. doi: 10.1002/pc.26613
    [21] 李云宽, 丁仁兴, 于淼. 模压石英/酚醛复合材料的力学和热物理性能[J]. 宇航材料工艺, 2013, 43(4): 49-51.

    LI Yunkuan, DING Renxing, YU Miao. Thermal and mechanical properties of moulded quartz phenolic composites[J]. Aerospace Materials & Technology, 2022, 43(4): 49-51(in Chinese).
    [22] 杨广超, 张鹏飞, 张凌峰, 等. ZrC和ZrB2对Csf/SiC-BN-(ZrC, ZrB2)复合材料组织及力学性能的影响[J]. 陶瓷学报, 2022, 43(04): 684-691.

    YANG Guangchao, ZHANG Pengfei, ZHANG Lingfeng, et al. Effects of ZrC and ZrB2 on microstructure and mechanical properties of Csf/SiC-BN-(ZrC, ZrB2) composites[J]. Journal of Ceramics, 2022, 43(04): 684-691(in Chinese).
    [23] CHENG H, FAN Z, HONG C, et al. Lightweight multiscale hybrid carbon-quartz fiber fabric reinforced phenolic-silica aerogel nanocomposite for high temperature thermal protection[J]. Composites Part A:Applied Science and Manufacturing, 2021, 143: 106313. doi: 10.1016/j.compositesa.2021.106313
    [24] 钱震, 张鸿宇, 张琪凯, 等. 高强度—中密度纳米孔树脂基防隔热复合材料的制备与性能[J]. 复合材料学报, 2023, 40(1): 83-95. doi: 10.13801/j.cnki.fhclxb.20211223.001

    QIAN Zhen, ZHANG Hongyu, ZHANG Qikai, et al. Preparation and properties of high strength-medium density nanoporous resin-based ablation/insulation integrated composites[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 83-95(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211223.001
    [25] 张倩倩. z向纱对三维正交复合材料细观结构和力学性能的影响[D]. 天津工业大学, 2013.

    ZHANG Qianqian. Effect of z-yarn on mesoscopic structure and mechanical properties of three-dimensional orthogonal composites[D]. Tianjin University of Technology, 2013(in Chinese).
    [26] GUO J, WEN W, ZHANG H, et al. Investigation of mechanical properties for 2.5D woven composites with different weft-layer-numbers by a triple-cell model system[J]. Journal of Industrial Textiles, 2020: 152808372095804.
    [27] LIN H, BROWN L P, LONG A C. Modelling and simulating textile structures using TexGen[J]. Advanced materials research, 2011, 331: 44-47. doi: 10.4028/www.scientific.net/AMR.331.44
    [28] XIA Z, ZHOU C, YONG Q, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International journal of solids and structures, 2006, 43(2): 266-278. doi: 10.1016/j.ijsolstr.2005.03.055
    [29] YU S, ZHANG D, QIAN K. Numerical analysis of macro-scale mechanical behaviors of 3D orthogonal woven composites using a voxel-based finite element model[J]. Applied Composite Materials, 2019, 26: 65-83. doi: 10.1007/s10443-018-9707-z
    [30] Chamis C C. Simplified composite micromechanics equations for hygral, thermal and mechanical properties[C]//Ann. Conf. of the Society of the Plastics Industry (SPI) Reinforced Plastics/Composites Inst. 1983.
    [31] 黄争鸣. 桥联理论研究的最新进展[J]. 应用数学和力学, 2015, 36(6): 563-581. doi: 10.3879/j.issn.1000-0887.2015.06.001

    HUANG Zhengming. Latest advancements of the bridging model theory[J]. Applied Mathematics and Mechanics, 2015, 36(6): 563-581(in Chinese). doi: 10.3879/j.issn.1000-0887.2015.06.001
    [32] HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of applied mechanics, 1980, 47(4): 329-334.
    [33] SHI D, LIU C, CHENG Z, et al. On the tensile behaviors of 2D twill woven SiO2f/SiO2 composites at ambient and elevated temperatures: Mesoscale analysis and in situ experimental investigation[J]. Ceramics International, 2021, 47(9): 12680-12694. doi: 10.1016/j.ceramint.2021.01.128
    [34] 张超, 许希武, 毛春见. 三维编织复合材料渐进损伤模拟及强度预测[J]. 复合材料学报, 2011, 28(2): 222-230. doi: 10.13801/j.cnki.fhclxb.2011.02.016

    ZHANG Chao, XU Xiwu, MAO Chunjian. Progressive damage simulation and strength prediction of 3D braided composites[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 222-230(in Chinese). doi: 10.13801/j.cnki.fhclxb.2011.02.016
  • 加载中
计量
  • 文章访问数:  248
  • HTML全文浏览量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-18
  • 修回日期:  2023-11-06
  • 录用日期:  2023-11-10
  • 网络出版日期:  2023-11-23

目录

    /

    返回文章
    返回