留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MnO2/Ti3C2TX复合剂对水中U (VI)的吸附性能与机制

周国霖 谢水波 胡恋

周国霖, 谢水波, 胡恋. MnO2/Ti3C2TX复合剂对水中U (VI)的吸附性能与机制[J]. 复合材料学报, 2024, 42(0): 1-12.
引用本文: 周国霖, 谢水波, 胡恋. MnO2/Ti3C2TX复合剂对水中U (VI)的吸附性能与机制[J]. 复合材料学报, 2024, 42(0): 1-12.
ZHOU guolin, XIE shuibo, HU lian. Adsorption performance and mechanism of MnO2/Ti3C2TX composite towards U(VI) in water[J]. Acta Materiae Compositae Sinica.
Citation: ZHOU guolin, XIE shuibo, HU lian. Adsorption performance and mechanism of MnO2/Ti3C2TX composite towards U(VI) in water[J]. Acta Materiae Compositae Sinica.

MnO2/Ti3C2TX复合剂对水中U (VI)的吸附性能与机制

基金项目: 国家自然科学基金(11475080);湖南省自然科学基金(2021JJ30579)
详细信息
    通讯作者:

    谢水波,博士,教授,博士生导师,研究方向为水处理理论与技术、环境模拟与污染控制 E-mail:xiesbmr@263.net

  • 中图分类号: TQ424;X703;TB332

Adsorption performance and mechanism of MnO2/Ti3C2TX composite towards U(VI) in water

Funds: National Natural Science Foundation of China (No.11475080); General program of Hunan Natural Science Foundation (No.2021JJ30579)
  • 摘要: 针对Ti3C2TX纳米片层易堆叠和吸附位点少的不足,采用水热法制备了MnO2/Ti3C2TX复合剂。通过单因素试验探讨铀的初始浓度、投加量、pH值、时间和共存离子对其吸附U(VI)的影响,利用现代表征手段分析MnO2/Ti3C2TX的表面性质及吸附U(VI)的作用机制。试验结果表明:在U(VI)初始浓度5 mg·L−1、MnO2/Ti3C2TX投加量为0.1 g·L−1、温度303 K、pH值为6时,30 s内U(VI)浓度降至0.41 mg·L−1,30 min后吸附达到平衡,其对U(VI)的吸附率达99.15%,吸附容量为49.58 mg·g−1。经过5次循环后,MnO2/Ti3C2TX对U(VI)的吸附效率仍保持在96.3%,具有良好的可再生利用性。整个吸附过程为自发吸热过程,符合拟二级动力学模型和Freundlich等温线模型。BET分析表明MnO2/Ti3C2TX的比表面积达318.3 m2·g−1,较Ti3C2TX高55.9倍。FTIR和XPS分析表明MnO2/Ti3C2TX对U(VI)吸附主要是表面含氧基团与铀的配位络合。

     

  • 图  2  MnO2/Ti3C2TX的N2吸附-解吸等温线和孔径分布图

    Figure  2.  N2 adsorption-desorption isothermal curves of MnO2/Ti3C2Tx with inserted BJH pore size distribution

    图  3  Ti3AlC2、Ti3C2、MnO2和MnO2/ Ti3C2TX的XRD光谱图

    Figure  3.  XRD spectra of Ti3AlC2,Ti3C2,MnO2 and MnO2/ Ti3C2TX

    图  4  Ti3C2TX、MnO2、MnO2/ Ti3C2Tx和MnO2/ Ti3C2TX吸附铀后的FTIR光谱图

    Figure  4.  FTIR spectra of Ti3C2TX, MnO2, MnO2/ Ti3C2TX and MnO2/ Ti3C2TX adsorbed uranium

    图  5  MnO2/ Ti3C2TX吸附U(VI)前后XPS全谱图(a)、U 4 f光谱图(b)、Mn 2 p光谱图(c)、Mn 3 s光谱图(d)、O 1 s光谱图(e)

    Figure  5.  MnO2/ Ti3C2TX and MnO2/ Ti3C2Tx-U (a) full spectrum,(b) U 4 f spectrum,(c) Mn 2 p spectrum,(d) Mn 3 s spectrum,(e) O 1 s spectrum

    图  6  MnO2/Ti3C2TX不同质量比对U(VI)的吸附效果对比

    Figure  6.  Comparison of adsorption effects of MnO2/Ti3C2TX with different mass ratios on U (VI)

    图  7  (a)不同pH值下U(VI)形态分布图,8 (b)不同pH值下MnO2/Ti3C2TX对U(VI)吸附的影响Fig. 8(a) U(VI) morphology distribution curve at different pH values,8(b) The effect of MnO2/Ti3C2TX on the adsorption performance of U(VI) at different pH values

    图  8  投加量对MnO2/Ti3C2TX吸附U(VI)的影响

    Figure  8.  The influence of different MnO2/Ti3C2TX dosage on the adsorption of U(VI)

    图  9  共存离子对 MnO2/Ti3C2TX吸附U(VI)的影响

    Figure  9.  The effect of coexisting ions on the adsorption of U (VI) by MnO2/Ti3C2TX

    图  10  (a)吸附时间对MnO2/Ti3C2TX吸附不同浓度 U(VI)的影响; (b)拟一级动力学模型拟合曲线;(c)拟二级动力学模型拟合曲线;(d)颗粒内扩散模型拟合曲线

    Figure  10.  (a) Effect of adsorption time on MnO2/Ti3C2TX adsorption of different concentrations of U (VI); (b) the fitting curve of pseudo-first-order kinetic model; (c) the fitting curve of quasi-second-order kinetic model; (d) the fitting curve of intra-particle diffusion model

    qt−Adsorption capacity at t time; qe−Equilibrium adsorption capacity; t−Adsorption time

    图  11  (a)不同温度下MnO2/Ti3C2TX对U(VI)的吸附等温线;Langmuir和Freundlich吸附等温模型的拟合:(b)293 K,(c)303 K,(d)313 KFig 12(a) Adsorption isotherms of MnO2/Ti3C2TX for U(VI) at different temperatures. Langmuir and Freundlich fitting curves of MnO2/Ti3C2TX adsorption of U(VI):(b)293 K, (c)303 K, (d)313 K

    图  12  MnO2/Ti3C2TX吸附铀的lnKdT−1线性拟合

    Figure  12.  Linear fitting of lnKd vs T−1 for MnO2/Ti3C2TX adsorption of U(VI)

    图  13  循环次数对MnO2/Ti3C2TX吸附U(VI)的影响

    Figure  13.  Effect of cycle times on MnO2/Ti3C2TX adsorption of U(VI)

    表  1  MnO2/ Ti3C2Tx与其他吸附剂比表面积对比

    Table  1.   Comparison of BET surface area between MnO2/ Ti3C2Tx and other adsorbents

    Adsorbent BET surface
    area/(m2·g−1)
    Pore size/
    nm
    References
    Ti3C2Tx 5.6 18.1 Zeng etal[17]
    (2021)
    MnO2/TiO2 73.2 5.7 Ma etal[18]
    (2019)
    LDHs-Ti3C2Tx 49.2 7.4 Gu etal[19]
    (2022)
    MnO2/ Ti3C2Tx 318.3 6.6 This work
    Notes: LDHs-Layered double hydroxides
    下载: 导出CSV

    表  2  MnO2/Ti3C2TX吸附U(VI)的动力学模型参数

    Table  2.   Kinetic model parameters of uranium adsorption by MnO2/Ti3C2TX

    C0/(mg·L−1)qe.exp/(mg·g−1)Pseudo- first Kinetics modelPseudo- second Kinetics model
    K1qe.calR2K2qe.calR2
    549.7920.0851.9230.6870.02049.7511
    1099.1120.0998.5750.8930.01099.0101
    15146.8250.06424.0160.9720.007147.0590.999
    Notes: qe is the adsorption capacity at equilibrium time; K1 and K2 are reaction rate constants of pseudo-first-order and pseudo-second-order equations, respectively; R2 is the correlation coefficient.
    下载: 导出CSV

    表  3  MnO2/Ti3C2TX吸附等温线模型的相关参数

    Table  3.   Relevant parameters of MnO2/Ti3C2TX adsorption isotherm model

    T/KLangmuirFreundlich
    qmax/(mg·g−1)bR2KFnR2
    293372.8010.8530.933162.3143.0580.994
    303380.4141.1570.941176.7163.1390.994
    313434.8370.7170.936196.9773.1450.992
    Notes: qmax is Adsorption capacity per unit mass of the adsorbent; b is Langmuir coefficient related to the affinity of binding site; KF , n-Constants that are related to the adsorption capacity and the adsorption intensity, respectively.
    下载: 导出CSV

    表  4  MnO2/Ti3C2TX吸附U(VI)性能与其他吸附剂对比

    Table  4.   Comparison of MnO2/Ti3C2TX adsorption performance for U (VI) with other adsorbents

    Adsorbent pH Temperature/K Equilibrium
    time/min
    Maximum adsorption
    capacity /(mg·g−1)
    References
    MnO2@BBC 5 298 240 97.40 Chen etal[33](2022)
    HPC/POSS-OH modified MXene 5 298 90 307.67 Zhao etal[34](2022)
    Chloroacetic acid modified Ti3C2TX 5 308 150 165.43 Xie etal[35](2022)
    γ-Fe2O3/CSS 6 298 120 214.1 Fan etal[36](2022)
    Ti3C2@FeS-PDA/PEI 6 298 240 88.5 Liu etal[37](2023)
    MnO2/ Ti3C2TX 6 303 30 380.41 This work
    Notes: MnO2@BBC-MnO2 modified bamboo-derived biochar composite;HPC/POSS-OH- hydroxypropyl cellulose (HPC) and polyhedral oligomeric silsesquioxane (POSS-OH);CSS-corn stalk starch; PDA/PEI-polydopamine and polyethyleneimine
    下载: 导出CSV

    表  5  MnO2/Ti3C2TX吸附U(VI)的热力学参数

    Table  5.   Thermodynamic parameters of uranium adsorption by MnO2/Ti3C2TX

    G0/(kJ·mol−1) H0/(kJ·mol−1) S0/(kJ·mol−1)
    293 K 303 K 313 K 21.073 119.551
    −14.014 −15.038 −16.406
    Notes: ΔG0 −Standard free energy change; ΔH0 −Standard enthalpy change; ΔS0 −Standard entropy change.
    下载: 导出CSV
  • [1] WANG S, WANG L, LI Z, et al. Highly efficient adsorption and immobilization of U(VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron[J/OL][J]. Journal of Hazardous Materials, 2021, 408: 124949. doi: 10.1016/j.jhazmat.2020.124949
    [2] CHAI W S, CHEUN J Y, KUMAR P S, et al. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application[J/OL][J]. Journal Of Cleaner Production, 2021, 296: 126589. doi: 10.1016/j.jclepro.2021.126589
    [3] SHETH Y, DHARASKAR S, CHAUDHARY V, et al. Prospects of titanium carbide-based MXene in heavy metal ion and radionuclide adsorption for wastewater remediation: A review[J/OL][J]. Chemosphere, 2022, 293: 133563. doi: 10.1016/j.chemosphere.2022.133563
    [4] DU Y, YU B, WEI L, et al. Efficient removal of Pb(II) by Ti3C2TX powder modified with a silane coupling agent[J/OL][J]. Journal of Materials Science, 2019, 54(20): 13283-13297. doi: 10.1007/s10853-019-03814-z
    [5] WANG L, TAO W, YUAN L, et al. Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment[J/OL][J]. Chemical Communications, 2017, 53(89): 12084-12087. doi: 10.1039/C7CC06740B
    [6] CHEN L, WAKEEL M, UL HAQ T, et al. Recent progress in environmental remediation, colloidal behavior and biological effects of MXene: a review[J/OL][J]. Environmental Science-Nano, 2022, 9(9): 3168-3205. doi: 10.1039/D2EN00340F
    [7] MENG C, GAO X, ZOU S, et al. Unraveling the adsorption behaviors of uranium and thorium on the hydroxylated titanium carbide MXene[J/OL][J]. Computational Materials Science, 2022, 210: 111460. doi: 10.1016/j.commatsci.2022.111460
    [8] LI M, KUANG S, DONG J, et al. Performance and mechanisms of Cr(VI) removal by nano-MnO2 with different lattices[J/OL][J]. Journal Of Molecular Structure, 2023, 1275: 134624. doi: 10.1016/j.molstruc.2022.134624
    [9] DING Y, XIAN Q, WANG E, et al. Mesoporous MnO2 /SBA-15 as a synergetic adsorbent for enhanced uranium adsorption[J/OL][J]. New Journal of Chemistry, 2020, 44(32): 13707-13715. doi: 10.1039/D0NJ02966A
    [10] KIM S, GHOLAMIRAD F, YU M, et al. Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2TX MXene[J/OL][J]. Chemical Engineering Journal, 2021, 406: 126789. doi: 10.1016/j.cej.2020.126789
    [11] BI L, MA J, NIU Z, et al. Synthesis of β-cyclodextrin derivatives and their selective separation behaviors for U(VI) in solution[J/OL][J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 326(1): 719-736. doi: 10.1007/s10967-020-07343-x
    [12] MA J, ZHAO Q, ZHOU L, et al. Mutual effects of U(VI) and Eu(III) immobilization on interpenetrating 3-dimensional MnO2/graphene oxide composites[J/OL][J]. Science Of The Total Environment, 2019, 695: 133696. doi: 10.1016/j.scitotenv.2019.133696
    [13] ZHAO X, VASHISTH A, PREHN E, et al. Antioxidants Unlock Shelf-Stable Ti3C2TX (MXene) Nanosheet Dispersions[J/OL][J]. MATTER, 2019, 1(2): 513-526. doi: 10.1016/j.matt.2019.05.020
    [14] JIANG H, WANG Z, YANG Q, et al. A novel MnO2/Ti3C2TX MXene nanocomposite as high performance electrode materials for flexible supercapacitors[J/OL][J]. Electrochimica Acta, 2018, 290: 695-703. doi: 10.1016/j.electacta.2018.08.096
    [15] ZHOU Y, CHEN T, ZHANG J, et al. Amorphous MnO2 as Cathode Material for Sodium-ion Batteries[J/OL][J]. Chinese Journal Of Chemistry, 2017, 35(8): 1294-1298. doi: 10.1002/cjoc.201600915
    [16] WANG H, CUI H, SONG X, et al. Facile synthesis of heterojunction of MXenes/TiO2 nanoparticles towards enhanced hexavalent chromium removal[J/OL][J]. Journal of Colloid and Interface Science, 2020, 561: 46-57. doi: 10.1016/j.jcis.2019.11.120
    [17] ZENG X, WANG Y, HE X, et al. Enhanced removal of Cr(VI) by reductive sorption with surface-modified Ti3C2TX MXene nanocomposites[J/OL][J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106203. doi: 10.1016/j.jece.2021.106203
    [18] MA J, ZHAO Q, WEI D, et al. Simple construction of core- shell MnO2@ TiO2 with highly enhanced U( VI) adsorption performance and evaluated adsorption mechanism[J/OL][J]. Inorganic Chemistry Frontiers, 2019, 6(4): 1011-1021. doi: 10.1039/C8QI01379A
    [19] GU P, ZHANG S, MA R, et al. Layered double hydroxides nanosheets in-situ anchored on ultrathin MXenes for enhanced U(VI) and Eu(III) trapping: Excavating from selectivity to mechanism[J/OL][J]. Separation and Purification Technology, 2022, 288: 120641. doi: 10.1016/j.seppur.2022.120641
    [20] KHAN A R, HUSNAIN S M, SHAHZAD F, et al. Two-dimensional transition metal carbide (Ti3C2TX) as an efficient adsorbent to remove cesium (Cs+)[J/OL][J]. Dalton Transactions, 2019, 48(31): 11803-11812. doi: 10.1039/C9DT01965K
    [21] MAHMOOD M, RASHEED A, AYMAN I, et al. Synthesis of Ultrathin MnO2 Nanowire-Intercalated 2D-MXenes for High-Performance Hybrid Supercapacitors[J/OL][J]. Energy & Fuels, 2021, 35(4): 3469-3478.
    [22] KHAN A R, AWAN S K, HUSNAIN S M, et al. 3D flower like δ-MnO2/MXene Nano-hybrids for the removal of hexavalent Cr from wastewater[J/OL][J]. Ceramics International, 2021, 47(18): 25951-25958. doi: 10.1016/j.ceramint.2021.05.326
    [23] ZHANG Q, PENG Y, DENG F, et al. Porous Z-scheme MnO2/Mn-modified alkalinized g-C3N4 heterojunction with excellent Fenton-like photocatalytic activity for efficient degradation of pharmaceutical pollutants[J/OL][J]. Separation And Purification Technology, 2020, 246: 116890. doi: 10.1016/j.seppur.2020.116890
    [24] FANG R, FENG Q, HUANG H, et al. Effect of K+ ions on efficient room-temperature degradation of formaldehyde over MnO2 catalysts[J/OL][J]. Catalysis Today, 2019, 327: 154-160. doi: 10.1016/j.cattod.2018.05.019
    [25] LIU Y, DENG H, LU Z, et al. The study of MnO2 with different crystalline structures for U(VI) elimination from aqueous solution[J/OL][J]. Journal of Molecular Liquids, 2021, 335: 116296. doi: 10.1016/j.molliq.2021.116296
    [26] XIA C, LUO Y, BIN X, et al. Rational design of flower-like MnO2/Ti3C2TX composite electrode for high performance supercapacitors[J/OL][J]. Nanotechnology, 2023, 34(25): 255602. doi: 10.1088/1361-6528/acc744
    [27] GUO Y, LIU X, XIE S, et al. 3D ZnO modified biochar-based hydrogels for removing U(VI) in aqueous solution[J/OL][J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 642: 128606. doi: 10.1016/j.colsurfa.2022.128606
    [28] ZHANG C, LI X, CHEN Z, et al. Synthesis of ordered mesoporous carbonaceous materials and their highly efficient capture of uranium from solutions[J/OL][J]. Science China-Chemistry, 2018, 61(3): 281-293. doi: 10.1007/s11426-017-9132-7
    [29] LI K, XIONG T, LIAO J, et al. Design of MXene/graphene oxide nanocomposites with micro-wrinkle structure for efficient separating of uranium(VI) from wastewater[J/OL][J]. Chemical Engineering Journal, 2022, 433: 134449. doi: 10.1016/j.cej.2021.134449
    [30] WANG H, WU F, WANG Z, et al. Ultra-fast and ultra-efficient removal of Cr (VI) by the aqueous solutions of monolayer MXene (Ti3C2TX). [J/OL]. Chemosphere, 2022, 308(Pt 3): 136573.
    [31] WANG D, XU Y, XIAO D, et al. Ultra-thin iron phosphate nanosheets for high efficient U(VI) adsorption[J/OL][J]. Journal of Hazardous Materials, 2019, 371: 83-93. doi: 10.1016/j.jhazmat.2019.02.091
    [32] LI S, WANG L, PENG J, et al. Efficient thorium(IV) removal by two-dimensional Ti2CTX MXene from aqueous solution[J/OL][J]. Chemical Engineering Journal, 2019, 366: 192-199. doi: 10.1016/j.cej.2019.02.056
    [33] CHEN X, WANG Y, LV J, et al. Simple one-pot synthesis of manganese dioxide modified bamboo-derived biochar composites for uranium(VI) removal[J/OL][J]. New Journal of Chemistry, 2022, 46(30): 14427-14438. doi: 10.1039/D2NJ02292C
    [34] ZHAO W, CHI H, ZHANG X, et al. Cellulose/silsesquioxane grafted Ti3C2TX MXene for synergistically enhanced adsorption of uranium[J/OL][J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2022, 650: 129610.
    [35] XIE L, YAN J, LIU Z, et al. Synthesis of a Two-Dimensional MXene Modified by Chloroacetic Acid and Its Adsorption of Uranium[J/OL][J]. Chemistryselect, 2022, 7(1): e202103583. doi: 10.1002/slct.202103583
    [36] 范甲, 胡世琴, 魏柏, 等. 磁性γ-Fe_2O_3/玉米秸秆淀粉的制备及其对废水中U(VI)吸附性能[J/OL][J]. 复合材料学报, 2022, 39(10): 4898-4907.

    Fan Jia, Hu ShiQin, Wei Bai, et al. Preparation of magnetic γ-Fe2O3/corn stalk starch and its adsorption performance for U(VI) in wastewater [J/OL][J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4898-4907. (in chinese
    [37] LIU F, WANG S, HU B. Electrostatic self-assembly of nanoscale FeS onto MXenes with enhanced reductive immobilization capability for U(VI) and Cr(VI)[J/OL][J]. Chemical Engineering Journal, 2023, 456: 141100. doi: 10.1016/j.cej.2022.141100
    [38] CHEN X, XIE S, WANG G, et al. The performance and mechanism of U(VI) removal from aqueous solutions by a metal-organic framework (DUT-69)[J/OL][J]. Journal Of Radioanalytical And Nuclear CHEMISTRY, 2021, 328(1): 181-194. doi: 10.1007/s10967-021-07645-8
  • 加载中
计量
  • 文章访问数:  170
  • HTML全文浏览量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-20
  • 修回日期:  2024-01-18
  • 录用日期:  2024-01-19
  • 网络出版日期:  2024-03-02

目录

    /

    返回文章
    返回