Preparation of self-crystal electret poly(lactic acid) oriented nanofibers for efficiency filtration of particulate matters
-
摘要: 近年来,为有效减少工业化过程中产生的颗粒物(PMs)对人们的生命健康造成危害,传统不可降解过滤材料被广泛使用,造成了严重的环境负担。为此,本文通过高温结晶聚左旋乳酸(PLLA)和聚右旋乳酸(PDLA)的立构复合物,构筑具有高电活性的立构复合晶(SC),并将其分散于聚乳酸(PLA)溶液中,在单向拉伸和高压电场作用下制得自晶体驻极PLA取向纳纤膜。通过SC添加和单向机械拉伸来调控纤维形态、诱导C=O偶极子定向排列、促进电活性β相产生及增强界面极化,自晶体驻极PLA取向纳纤膜的表面电势及介电性能得到极大改善。此外,高的电活性赋予自晶体驻极PLA取向纳纤膜优异的PMs去除性能,即使在气流量为85 L/min时,对PM0.3滤除效率仍达97.83%,空气阻力可控制在293 Pa,显著优于纯PLA膜(96.48%,411 Pa)。本文提出的通过自晶体驻极与取向协同策略相结合来提高PLA纳纤电活性的策略,所制备的纳纤膜表现出优异的过滤性能,这为有效解决传统聚乳酸纤维膜在空气过滤领域的应用瓶颈问题提供了重要的参考。Abstract: In recent years, in order to effectively reduce the danger to people's life and health caused by particulate matters (PMs) generated during industrialization, traditional non-degradable filter materials have been widely used, resulting in a serious environmental burden. Therefore, the stereocomplex crystals (SCs) were generated between enantiomeric poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) with high electroactivity were constructed from the PLLA and PDLA blends by high-temperature crystallization. The SCs were used as electret dispersed in poly(lactic acid) (PLA) solution, and under the effect of strong unidirectional mechanical polarization and high-voltage E-field polarization to prepare self-crystal electret oriented nanofibrous membranes. By varying the addition amount of SC and the unidirectional mechanical drawing to modulate the morphology of PLA nanofibers, induce the alignment of C=O dipoles, promote the generation of electroactive β-phase, and increase the interfacial polarization, the surface potential and dielectric properties of the fabricated self-crystal electret PLA oriented nanofibers were greatly improved. In addition, the self-crystal electret PLA oriented nanofibrous membranes exhibited excellent particle removal performance under strong interfacial polarization. Even at an air flow rate of 85 L/min, the self-crystal electret nanofibrous membrane reached a filtration efficiency of 97.83% for PM0.3, while the air resistance was controlled at 293 Pa, which was superior to that of the pure PLA membrane (96.48%, 411 Pa). The proposed strategy of increasing the polarization and electroactivity of PLA nanofibers by combining self-crystal electret and oriented strategy shows excellent filtration performance, which provides an important reference for effectively solving the bottleneck of the application of traditional PLA nanofibers in the field of air filtration.
-
目前,全世界因直接或间接损伤等意外事故造成骨折的情况屡见不鲜[1]。骨折恢复期较长,可采取内固定的治疗方式,通过植入钢板、螺钉等医疗用具将断裂处固定以促进骨愈合。当前用作骨折内固定的材料主要有金属材料和可吸收聚合物类材料[2-5]。其中,聚乳酸(Polylactic acid,PLA)的成本相对较低,且可生物降解、细胞相容性好,得到了广泛关注。
相对于金属材料,PLA在力学性能,如韧性等方面表现较差。然而,在骨愈合材料领域,对弯曲强度和剪切强度通常存在严格的要求[6]。陈倩等[7]通过接枝细菌纤维素对PLA改性,并用溶液浇筑法制备复合薄膜。结果显示,接枝物质量分数为0.6wt%时,断裂伸长率对比未改性提升了175%。而通过制备单向排列和随机分布的玻璃纤维(Glass fiber,GF)增强PLA复合螺钉,Felfel等[8]将纯PLA螺钉进行对比,发现弯曲强度提升近100%,剪切强度和刚度也有所增加。进一步的,Felfel等[9]发现,单向排列的GF/PLA复合材料的弯曲模量和抗压强度均优于随机排列分布。Leksakul等[10]选取了羟基磷灰石(Hydroxyapatite,HAp)和PLA制备了用于手腕骨折碎片板,其拉伸强度和弯曲强度分别可达到44.02 MPa和63.97 MPa,达到了人体手部骨骼的下限。
作为骨折内固定材料,要避免出现因降解过度从而导致愈合过程受到影响。如Hasan等[11]将短切GF和PLA制备复合材料,结果发现体外降解28天后弯曲强度下降了50%。在此基础上,Hasan等[12]利用偶联剂KH550对GF和PLA进行改性,制备单向纤维垫后热压成型的方式得到复合材料,在降解28天后,处理过的试样初始强度和弹性模量的损失率分别为42.8%和35.3%,未处理的试样则是降低了66%和48%。而Ekinci等[13]采取熔融长丝法制备了PLA单层薄膜,经过体外降解实验时发现,降解时间超过30天后,杨氏模量下降了21%,极限抗拉强度下降了22%。Ahmed等[14]通过对比是否热处理连续GF纤维,发现未经热处理工序制备的复合材料在去离子水中降解6周后质量损失为14%,热处理后质量损失为10%。本实验采取四步法三维五向编织工艺,将连续GF和PLA纤维复合制备成预制体,并通过偶联剂KH550对预制体进行改性,采取热压成型工艺制备复合材料。并进行质量损失率、吸水率、降解介质pH值测定、结晶度、力学性能、微观形貌的变化分析,以期对骨折内固定GF/PLA复合材料提供理论参考。
1. 实验原料及方法
1.1 原材料
聚乳酸纤维,直径为0.3 mm,密度为1.25 g/cm3,由南通新帝克单丝科技股份有限公司提供。玻璃纤维,线密度为130 tex,密度为2.4 g/cm3,由山东未来新材料有限公司提供。
1.2 实验方式与实验条件
1.2.1 预制体制备
本实验采取四步法三维五向编织方式制备预制体,三维五向结构由于轴纱的存在,相对于三维四向结构来说有着更优异的抗弯性及抗冲击性[15]。预制体具体尺寸为260 mm×15 mm×9 mm,花结长度(6±0.5) mm,编织角20°±3°。GF质量分数分别为30wt%、35wt%和40wt%。
1.2.2 预制体表面处理
将硅烷偶联剂KH550 (分析纯,山东优索化工科技有限公司)分散在无水乙醇(分析纯,天津市汇杭化工科技有限公司)溶剂中,配制成体积分数为5vol%的溶液。再将GF质量分数为40wt%的预制体浸入溶液中进行表面处理,浸泡1.5 h后,放在烘箱中以40℃干燥处理15 h,得到5 mod试样(5 mod试样即KH550对GF质量分数40wt%的改性试样)。KH550可以提升PLA的力学性能,同时改善PLA基质与GF之间的界面,延缓磷酸盐缓冲溶液(Phosphate buffered saline,PBS)对复合材料的侵蚀,达到降低降解速率的目的[16]。
1.2.3 聚乳酸DSC测试条件
通过差示扫描量热仪(DSC200 F3,德国耐驰公司)对PLA的熔融温度及熔融行为进行热分析。实验条件:样品质量2 mg,在氮气流速50 mL/min氛围下,从0℃升温至230℃,升温速率为10℃/min。
1.2.4 复合材料制备
结合图1(a)所示PLA纤维的DSC曲线,通过四柱液压机(YRD32-200 T,山东鲁迪重工机械有限公司),采取图1(b)中所示实验条件,分别对1.2.1部分制备的预制体及1.2.2部分表面处理后的预制体进行热压复合。所用模具为自行设计,分上、中、下三模,整体密封良好,可将预制体完整包覆。
1.3 复合材料降解实验与性能表征
1.3.1 PBS缓冲液配制及降解实验条件
在37℃下进行体外降解实验,探究GF/PLA复合材料降解性能。称取(10±0.3) g BL601 A型PBS倒入2 L的容量瓶中,再注入超纯水至2 L,混合均匀后测量溶液pH值为7.2~7.4。根据国家医药行业标准YY/T 0474—2004[17],用作降解介质体积和实验对象质量,两者比例应大于30∶1,以保证实验对象可完全浸泡于介质中。实验用复合材料尺寸分别为80 mm×15 mm×4 mm、25 mm×8 mm×4 mm。实验条件为常温,取样时间设置为1、4、7、14、21和28天。
1.3.2 复合材料质量保持率及吸水率测试
复合材料吸水率W1和质量保持率W2见下式:
W1 = m2−m1m2×100% (1) W2 = m1−m3m1×100% (2) 其中:m1为降解实验前干燥处理的试样质量;m2为降解实验后的试样湿重;m3为降解实验后干燥质量。
1.3.3 PBS缓冲液pH值测试
降解实验结束后,用pH计测量降解介质的pH值。
1.3.4 复合材料DSC测试
通过差示扫描量热仪对复合材料进行结晶度测试,实验条件:样品质量10 mg,在氮气流速50 mL/min氛围下,从室温升至230℃,并持续5 min以消除热历史后,降温至0℃,最后升温至230℃。升温和降温速率均为10℃/min。结晶度计算见下式:
Xc=ΔHm−ΔHccλΔH0×100% (3) 其中:Xc为PLA的结晶度(%);ΔHm为PLA 的熔融焓(J/g);ΔHcc为PLA 的冷结晶焓(J/g);λ为PLA 的质量分数(wt%);ΔH0为 PLA完全结晶的熔融焓,其值为93.6 J/g。
1.3.5 复合材料弯曲性能测试
试样尺寸80 mm×15 mm×4 mm。降解实验结束后取出试样,并在40℃环境下干燥15 h。干燥后用万能材料试验机(AG-250 KNE,日本岛津公司)进行三点弯曲实验,标准采取GB/T 1449—2005[18],跨距为64 mm,加载速度2 mm/min。
1.3.6 复合材料剪切性能测试
试样尺寸为25 mm×8 mm×4 mm。降解实验结束后取出试样,并在40℃环境下干燥15 h。干燥后用万能材料试验机进行剪切实验,标准采取ASTM/D 2344—2016[19],跨距为16 mm,加载速度1 mm/min。
1.3.7 微观形貌观察
用冷场发射扫描电子显微镜(Regulus 8100,日本日立公司)观察不同降解时间下复合材料表面微观形貌变化情况。
2. 结果与讨论
2.1 复合材料质量保持率及吸水率分析
图2为GF/PLA复合材料质量保持率及吸水率。在降解初期,4种复合材料均降解缓慢,此时GF与PLA整体结合紧密,水分子难以侵蚀PLA基质。降解第4天,5 mod试样质量出现下降,吸水率迅速上升。此时水分子扩散至PLA的无定型区,破坏PLA中的酯键,使其发生断裂[20-21]。随着降解的持续,试样的质量保持率及吸水率曲线趋势平缓,直至无定型区降解完成,水分子从结晶区边缘向结晶区中心拓展,其速度慢于无定型区,最终降解达到稳定状态[22]。由于GF具有疏水性,当GF质量分数高时,复合材料降解难度增大。GF质量分数为30wt%,试样降解过程中质量损失明显,吸水率上升幅度较大,从而影响试样整体力学性能,对后期应用不利。
2.2 降解介质pH值分析
由于人体pH呈现弱碱性,作为骨愈合的医用材料,需要检测降解过程是否会影响pH值的变化[23-24]。图3为复合材料降解过程中pH值的变化过程,降解实验后,GF质量分数为30wt%、35wt%、40wt%时pH值分别下降至6.85、6.91、7.01。GF质量分数低时,PLA水解严重,造成pH值下降过多。PLA在水解时生成乳酸及其低聚物,这些产物在降解介质中电离生成H+,使pH值降低。5 mod试样pH值无较大变化,基本稳定在人体可接受的pH范围,改性后复合材料界面结合良好,PLA水解减少。其中KH550水解产生的OH−可与PLA水解产生的H+反应,使pH值略有下降[25]。
2.3 复合材料结晶度分析
图4为复合材料降解后结晶度的变化曲线,可见GF质量分数的增加促进了结晶度的提高。高分子结晶过程涉及大分子链缠结转变为亚稳态折叠链片晶的演变。而分子链结构简单且对称会促进复合材料结晶度的提高。GF作为异相成核剂,其表面形态和化学性质能够有效地吸引和定向PLA分子,提高结晶能力。同时,GF的存在还将促进PLA晶体的长大过程。GF作为一种高度有序结构的增强相,对晶体生长起到模板和导向作用。PLA分子在GF纤维表面有序排列,并沿着纤维方向形成更加完整且尺寸较大的晶体结构,这种有序的晶体生长过程对复合材料结晶度起到正向作用。KH550的引入进一步提升了结晶度。KH550的引入使GF和PLA的界面间形成更多的异相成核位点,促进了PLA分子在GF表面的有序排列。同时增大了GF的比表面积,有助于PLA晶体的生长过程,提高复合材料的结晶度[26-27]。
2.4 复合材料弯曲强度分析
人体骨愈合过程中复合材料受力复杂,需要增加材料的抗弯性,以应对各种情况下的力学需求。图5为复合材料弯曲强度变化曲线。降解实验后,GF质量分数为30wt%、35wt%、40wt%时弯曲强度分别下降了32.3%、28.13%、16.16%。由于纯PLA的弯曲强度和韧性相对较差,GF的引入可以显著改善成型后复合材料力学性能,同时缓解PLA的降解速度。5 mod试样弯曲强度下降22.9%,改性后的复合材料界面性能较好,在降解初期弯曲性能得到保持。随着降解过程进行,界面之间遭到不同程度破坏,PLA发生水解,复合材料基体遭到破坏,弯曲性能迅速下降。
2.5 复合材料短梁剪切性能分析
短梁剪切强度通常用来评估复合材料界面之间的黏结程度。图6为复合材料短梁剪切性能变化曲线。经过降解实验后,GF质量分数为30wt%、35wt%、40wt%时剪切强度分别下降了53.74%、51.1%、47.18%。可见GF质量分数的增加延缓了PLA降解速度。5 mod试样剪切强度下降了56.11%,初始状态剪切强度最佳。在降解第4天时剪切强度下降了22.9%,分析认为,改性使GF的疏水性下降,水分子进入界面结合处破坏GF/PLA结合程度,导致剪切性能下降[28]。
2.6 复合材料微观形貌分析
图7(a)为未进行降解实验时,GF质量分数为40wt%的SEM图像,可见GF表面光滑,PLA附着略少,纤维间隙较大。图7(b)为5 mod试样,偶联剂的引入使PLA较多的黏附在GF纤维表面,改善了界面性能,初始剪切强度优异。KH550中的乙氧基水解后生成羟基,与GF表面的羟基发生缩合反应,同时KH550另一侧的伯胺与PLA分子链充分缠结,促进了GF/PLA的黏附状态。
图8为试样降解第7天的SEM图像。可见,4种试样均出现了孔洞,但GF质量分数为30wt%的试样出现了细小的沟壑,GF质量分数为40wt%的试样孔洞较少,GF质量分数的增加抑制了PLA复合材料的降解。5 mod试样表面同样出现孔洞,与其力学性能变化曲线一致。图9为降解第14天的SEM图像。GF质量分数为30wt%和35wt%的试样均出现孔隙变深,孔径增加的现象,而GF质量分数40wt%的试样表面孔洞较少。5 mod试样表面出现沟壑形态。图10为降解第21天的SEM图像,此时复合材料的降解更明显,GF质量分数为30wt%的试样出现了PLA的鳞片层,由于GF质量分数低导致PLA水解严重,无法保持宏观形貌。GF质量分数40wt%的试样开始出现沟壑。5 mod试样水解严重,此时孔隙加深,裂痕增大。图11为降解第28天的SEM图像,此时4种试样均降解严重,GF质量分数为40wt%的试样裂痕较少,GF增加改善了复合材料的稳定性。而5 mod试样降解严重,裂痕现象明显。结合质量保持率及吸水率分析,水分子破坏了复合材料界面,导致力学性能大幅度降低。
3. 结 论
(1) 本文采取三维编织工艺制备了玻璃纤维(GF)/聚乳酸(PLA)混编预制体,其中GF质量分数分别为30wt%、35wt%和40wt%,并对GF质量分数为40wt%的预制体用偶联剂KH550进行改性。采用热压成型方式将预制体制备成复合材料。探究降解过程对复合材料质量保持率、吸水率、降解介质(磷酸缓冲盐溶液(PBS)) pH值、结晶度、弯曲强度和剪切强度影响及微观形貌分析。
(2) 较高的GF质量分数在复合材料中,表现出较低的质量损失,这表明GF对PLA的降解具有抑制作用。此外,KH550的引入改善了复合材料的疏水性能。低GF质量分数导致降解介质的pH值明显下降,而经过改性后,pH值下降幅度较小。
(3) GF有助于提高PLA的结晶度,KH550改性后,复合材料的结晶度进一步提升。KH550中的氨基基团和硅氧烷基团与PLA和GF发生反应,形成更牢固的分子间作用力。
(4) GF质量分数为30wt%、35wt%和40wt%时,复合材料的弯曲强度分别下降了32.3%、28.13%和16.16%,剪切强度分别下降了53.74%、51.1%和47.18%。说明GF的增加有助于延缓因降解介质腐蚀造成的力学损伤。结合微观形貌观察,GF质量分数为30wt%的试样在降解第7天时出现了细小沟壑,而降解第28天时复合材料表面破坏严重。相比,GF质量分数为40wt%的试样则受降解影响较轻,印证了力学强度和剪切强度的测试结果。
-
图 7 自晶体驻极PLA取向纳纤过滤膜的过滤性能测试。气体流速为(a) 10 L/min;(b) 32 L/min;(c) 65 L/min;(d) 85 L/min时对PM0.3的过滤效率
Figure 7. Filtration performance test of self-crystal electret PLA oriented nanofibrous filtration membranes. Filtration efficiency at airflow velocities of (a) 10 L/min, (b) 32 L/min, (c) 65 L/min, and (d) 85 L/min
-
[1] GONG X B, JIN C F, LIU X Y, et al. Scalable Fabrication of Electrospun True-Nanoscale Fiber Membranes for Effective Selective Separation.[J]. Nano letters, 2023, 23(3): 1044-1051. DOI: 10.1021/acs.nanolett.2c04667
[2] WANG G Y, XU Z T, QI Y, et al. Electrospun nanofibrous membranes with antimicrobial activity for air filtration[J]. Chinese Chemical Letters, 2024, 35(10): 109503. DOI: 10.1016/j.cclet.2024.109503
[3] LYU P, JU Z, HU J, et al. Heat-resistant air filters based on self-sustained electrostatic and antibacterial polyimide/silver fiber mats[J]. Advanced Functional Materials, 2024, 34(29): 2400685. DOI: 10.1002/adfm.202400685
[4] MALLAKPOUR S, AZADI E, HUSSAIN C M. Fabrication of air filters with advanced filtration performance for removal of viral aerosols and control the spread of COVID-19[J]. Advances in Colloid and Interface Science, 2022, 303: 102653. DOI: 10.1016/j.cis.2022.102653
[5] SONG X Y, TANG M K, WANG C M, et al. Stereocomplexation-enhanced electroactivity of poly (lactic acid) nanofibrous membranes for long-term pm capturing and remote respiratory monitoring[J]. ACS Sustainable Chemistry & Engineering, 2024, 9(12): 3554-3564.
[6] BIAN Y, ZHANG C C, WANG H, et al. Degradable nanofiber for eco-friendly air filtration: Progress and perspectives[J]. Separation and Purification Technology, 2023, 306: 122642. DOI: 10.1016/j.seppur.2022.122642
[7] SUN Z X, KONG Y, LAN L, et al. A high efficiency, low resistance antibacterial filter formed by dopamine-mediated in situ deposition of silver onto glass fibers[J]. Small, 2024, 35(20): 2301074.
[8] XIE F, WANG Y F, ZHUO L H, et al. Multiple hydrogen bonding self-assembly tailored electrospun polyimide hybrid filter for efficient air pollution control[J]. Journal of Hazardous Materials, 2021, 412: 125260. DOI: 10.1016/j.jhazmat.2021.125260
[9] 李峰, 江亮, 李晓鹏, 等. 高抗菌聚乳酸纳纤膜制备及其高效低阻滤除细微颗粒物性能[J]. 复合材料学报, 2024, 41(6): 3202-3214. LI F, JIANG L, LI X P, et al. Ecofriendly and antibacterial poly(lactic acid) nanofibrous membranes for high-efficiency and low-resistance filtration of airborne particulate matters[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3202-3214(in Chinese).
[10] HUANG Z X, LIU X X, ZHANG X, et al. Electrospun polyvinylidene fluoride containing nanoscale graphite platelets as electret membrane and its application in air filtration under extreme environment[J]. Polymer, 2017, 131: 143-150. DOI: 10.1016/j.polymer.2017.10.033
[11] DENG Y K, LU T, ZHANG X L, et al. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration[J]. Journal of Membrane Science, 2022, 660: 120857. DOI: 10.1016/j.memsci.2022.120857
[12] SHAO W L, LIU S M, WANG K, et al. Using modified raw materials to fabricate electrospun, superhydrophobic poly (lactic acid) multiscale nanofibrous membranes for air-filtration applications[J]. Separation and Purification Technology, 2024, 333: 125872. DOI: 10.1016/j.seppur.2023.125872
[13] XU S, ZHANG D A, HUANG Q W, et al. Trap-induced hydro-charging polylactic acid nonwovens with high charge storage capability for stable and efficient air filtration[J]. Separation and Purification Technology, 2024, 343: 127164. DOI: 10.1016/j.seppur.2024.127164
[14] 李欣雨, 朱桂英, 王存民, 等. 原位MOF化聚乳酸纤维膜制备及空气过滤性能[J]. 煤炭学报, 2023, 48(10): 3885-3894. LI X Y, ZHU G Y, WANG C M, et al. Preparation and air filtration performance of PLA-based MOFilter[J]. Journal of China Coal Society, 2023, 48(10): 3885-3894(in Chinese).
[15] 宋欣译, 唐梦珂, 王存民, 等. 立构复合化聚乳酸纳纤膜的制备及高效滤除PM2.5性能[J]. 高等学校化学学报, 2024, 45(2): 9-16. SONG X Y, TANG M K, WANG C M, et al. Preparation of stereocomplexed pla nanofibrous membranes with high PM2.5 filtration efficiency[J]. Chemical Journal of Chinese Universities, 2024, 45(2): 9-16(in Chinese).
[16] SULTANA A, GHOSH S K, SENCADAS V, et al. Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-l-lactic acid nanofibers for non-invasive physiological signal monitoring[J]. Journal of materials chemistry B, 2017, 5(35): 7352-7359. DOI: 10.1039/C7TB01439B
[17] 李小川, 唐梦珂, 朱金佗, 等. 界面立构复合化电活性聚乳酸纳纤膜的制备及高效过滤性能[J]. 高等学校化学学报, 2023, 44(12): 42-50. LI X C, TANG M F, ZHU J T, et al. Interfacial stereocomplexation of electroactive poly(lactic acid)nanofibrous membranes for efficient filtration of airborne PMs[J]. Chemical Journal of Chinese Universities, 2023, 44(12): 42-50(in Chinese).
[18] FAN X, RONG L S, KONG L S, et al. Tug-of-war-inspired bio-based air filters with advanced filtration performance[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8736-8744.
[19] WANG C M, SONG X Y, LI T, et al. Biodegradable electroactive nanofibrous air filters for long-term respiratory healthcare and self-powered monitoring[J]. ACS Applied Materials & Interfaces, 2023, 15(31): 37580-37592.
[20] CUI J M, YANG S G, ZHANG Q L, et al. Poisoning by purity: what stops stereocomplex crystallization in polylactide racemate?[J]. Macromolecules, 2023, 56(3): 989-998. DOI: 10.1021/acs.macromol.2c02067
[21] PENG Q Y, LI S J, LIU F, et al. Effect of CO2 on the crystallization of poly (lactic acid) homo-crystallites via influencing the crystal structure of stereocomplex crystallites[J]. CrystEngComm, 2023, 25(3): 473-483. DOI: 10.1039/D2CE01254E
[22] PAN P J, BAO J N, HAN L L, et al. Stereocomplexation of high-molecular-weight enantiomeric poly(lactic acid)s enhanced by miscible polymer blending with hydrogen bond interactions[J]. Polymer, 2016, 98: 80-87. DOI: 10.1016/j.polymer.2016.06.014
[23] TANG M K, JIANG L, WANG C M, et al. Bioelectrets in electrospun bimodal poly (lactic acid) fibers: realization of multiple mechanisms for efficient and long-term filtration of fine PMs[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25919-25931.
[24] CORO E, IRENE L, ALEXANDRA M, et al. Development of Highly Crystalline Polylactic Acid with β-Crystalline Phase from the Induced Alignment of Electrospun Fibers[J]. Polymers, 2021, 13(17): 2860. DOI: 10.3390/polym13172860
[25] ZHU J X, JIA L Y, HUANG R. Electrospinning poly (l-lactic acid) piezoelectric ordered porous nanofibers for strain sensing and energy harvesting[J]. Journal of Materials Science: Materials in Electronics, 2017, 28: 12080-12085. DOI: 10.1007/s10854-017-7020-5
[26] TAI Y Y, YANG S, YU S, et al. Modulation of piezoelectric properties in electrospun PLLA nanofibers for application-specific self-powered stem cell culture platforms[J]. Nano Energy, 2021, 89: 106444. DOI: 10.1016/j.nanoen.2021.106444
[27] GAO Y L, TIAN E Z, ZHANG Y P, et al. Utilizing electrostatic effect in fibrous filters for efficient airborne particles removal: Principles, fabrication, and material properties[J]. Applied Materials Today, 2022, 26: 101369. DOI: 10.1016/j.apmt.2022.101369
[28] CHEN Z X, PEI J Z, LI R. Study of the preparation and dielectric property of PP/SMA/PVDF blend material[J]. Applied Sciences, 2017, 7(4): 389. DOI: 10.3390/app7040389
[29] TAMURA R, LIM E, MANAKA T, et al. Analysis of pentacene field effect transistor as a Maxwell-Wagner effect element[J]. Journal of applied physics, 2006, 100(11): 114515. DOI: 10.1063/1.2372433
[30] LI Y H, SHI Y J, CAI F Y, et al. Graphene sheets segregated by barium titanate for polyvinylidene fluoride composites with high dielectric constant and ultralow loss tangent[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 318-326. DOI: 10.1016/j.compositesa.2015.08.031
[31] YANG T, ZHU X J, ZHANG Y, et al. Nanopatterning of beaded poly (lactic acid) nanofibers for highly electroactive, breathable, UV-shielding and antibacterial protective membranes[J]. International Journal of Biological Macromolecules, 2024, 260: 129566. DOI: 10.1016/j.ijbiomac.2024.129566
[32] 沈峥, 徐超, 张一帆, 等. 高抗湿MOF化聚乳酸纳纤膜制备及其高效滤除PM0.3性能[J/OL]. 复合材料学报. 2024: 1-10. DOI: 10.13801/j.cnki.fhclxb.20240617.007. SHEN Z, XU C, ZHANG Y F, et al. MOF-functionalized poly(lactic acid) nanofiberous membranes for efficient removal of PM0.3 and increased humidity resistance [J/OL]. Acta Materiae Compositae Sinica. 2024: 1-10. DOI: 10.13801/j.cnki.fhclxb.20240617.007 (in Chinese).
[33] SHAO Z G, XIE J J, JIANG J X, et al. Research on topological effect of natural small molecule and high–performance antibacterial air filtration application by electrospinning[J]. Science of The Total Environment, 2024, 909: 168654. DOI: 10.1016/j.scitotenv.2023.168654
[34] WANG K, HAN P J, LIU S M, et al. Polystyrene/polymethylhydrosiloxane multiscale electrospun nanofiber membranes for air filtration[J]. ACS Applied Nano Materials, 2023, 6(22): 21293-21302. DOI: 10.1021/acsanm.3c04590
-
期刊类型引用(1)
1. 鞠泽辉,王志强,张海洋,郑维,束必清. 3D打印聚乙二醇修饰木质素/聚乳酸生物复合材料的热性能与力学性能. 复合材料学报. 2024(12): 6691-6701 . 本站查看
其他类型引用(1)
-
目的
随着工业化的不断发展,生产过程中产生的颗粒物(PMs)对空气质量造成的巨大影响。而空气悬浮颗粒物暴露是导致全球慢性阻塞性肺病、哮喘的主要危险因素之一。熔喷驻极纤维膜常被作为传统口罩及过滤器的核心成分,然而熔喷纤维的表面电荷在纤维表面稳定性差、储存量有限且易耗散,导致滤膜过滤效率衰减快。且常用熔喷纤维成分是聚丙烯等难降解高分子材料,频繁使用和更换积聚塑料污染和微塑料危害。聚乳酸(PLA)作为目前研究较广泛深入的生物可降解高分子材料,因其良好的可加工性能和生物相容性,成为取代不可生物降解材料的良好替代品。因此,本文提出通过自晶体驻极与取向协同策略相结合来提高PLA纳纤电活性的策略,制备具有优异电活性的自晶体驻极PLA取向纳纤膜来实现对颗粒物的高效滤除,有效解决传统纤维膜在空气过滤领域的应用瓶颈问题。
方法本文提出引入SC晶作为驻极体,通过少量均匀分散在PLA纺丝溶液中,结合超高压电纺和高速单向机械牵伸以提高PLA纳纤的细化和取向程度,通过SC的添加和单向的机械拉伸来调控纤维形态、诱导C═O偶极子定向排列、促进电活性β相产生及增强界面极化,制备兼具高效静电捕集和物理拦截作用的自晶体驻极PLA取向纳纤膜。并通过扫面电镜对纤维的形貌进行观察,通过傅里叶红外光谱和X射线衍射光谱对纳纤膜的化学性能进行表征,并通过自主搭建的纤维膜空气过滤试验装置测试了纳纤膜在不同气流量下对PMs的有效去除效率及空气阻力的影响。
结果在单向机械牵引及高电压电场极化作用下,随着SCs添加含量的增加,自晶体驻极PLA取向纳纤得到有效细化,纤维直径从462 nm减小到了393 nm。纤维的细化可有效的减小纤维之间的缝隙,对于提高纳纤膜的物理拦截能力具有重要作用。此外,高电活性SCs的驻入,可显著提高PLA纳纤的极化能力,改善纳纤膜的原位驻极能力,可显著提高自晶体驻极PLA纳纤膜的电活性,介电常数提升了31.1%,表面电势达到纯PLA膜的5.93倍。介电常数的增大可归因于SCs的驻入提高了纳纤膜的界面极化导致的,而介电常数的增大意味着纳纤膜具有更高的电荷存储能力,有利于实现纳纤膜对超细PMs的高静电吸附,在32 L/min时,对PM的过滤效率可达97.95%,即使在85 L/min的气流量下,自晶体驻极PLA取向纳纤膜对PM的过滤效率仍可达到97.83%,自晶体驻极诱导的高界面极化有效地克服了纤维膜随空气流量的增加而减小的难题。
结论(1)通过对PLA立构复合物进行溶剂浇铸,制备具有高稳定性、高活性立构复合晶(SCs),并以高电场极化及强单向机械极化为辅助条件,制成的自晶体驻极PLA纳纤膜表现出了高的电活性,优异的过滤性能。(2)SCs晶体驻入使得自晶体驻极PLA纳纤膜的纤维得到显著细化,从Pure PLA的462 nm降低到了SP4.5的393 nm。且纳纤中SCs晶与PLA之间的结晶区与非晶区之间在电场作用下会形成显著的界面极化,有利于诱导极化电荷及深度电荷陷阱的产生,从而显著提高了纳纤膜的表面电势及介电性能。(3)优异的电活性赋予了PLA纳纤膜卓越的过滤性能,即使在85 L/min的超高空气流速下,SP4.5对PM的过滤效率仍能达到超高的97.83%,且保持了良好的空气阻力(293 Pa),实现了对PM的高效低阻过滤,这可为制备可降解高性能空气过滤材料的研究提供重要参考。