留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自晶体驻极聚乳酸取向纳纤制备及其高效滤除颗粒物性能

何沛东 王存民 朱桂英 陈雨阳 李欣雨 江亮 宋欣译 张明明 邵将 尹媛 郭震 刘今 樊全水 徐欢

何沛东, 王存民, 朱桂英, 等. 自晶体驻极聚乳酸取向纳纤制备及其高效滤除颗粒物性能[J]. 复合材料学报, 2024, 43(0): 1-10.
引用本文: 何沛东, 王存民, 朱桂英, 等. 自晶体驻极聚乳酸取向纳纤制备及其高效滤除颗粒物性能[J]. 复合材料学报, 2024, 43(0): 1-10.
HE Peidong, WANG Cunmin, ZHU Guiying, et al. Preparation of self-crystal electret poly(lactic acid) oriented nanofibers for efficiency filtration of particulate matters[J]. Acta Materiae Compositae Sinica.
Citation: HE Peidong, WANG Cunmin, ZHU Guiying, et al. Preparation of self-crystal electret poly(lactic acid) oriented nanofibers for efficiency filtration of particulate matters[J]. Acta Materiae Compositae Sinica.

自晶体驻极聚乳酸取向纳纤制备及其高效滤除颗粒物性能

基金项目: 中国矿业大学研究生创新计划项目资助(批准号:2024 WLKXJ143, 2024 WLJCRCZL276, 2024 WLKXJ140, 2024 WLJCRCZL272, 2024 WLJCRCZL195), 中央高校基本科研业务费专项资金资助(批准号:2024-10958, 2024-10967), 江苏省研究生科研与实践创新计划资助(批准号:KYCX24_2917, SJCX24_1407, KYCX_2914, SJCX24_1403, KYCX24_2937), 国家自然科学基金(52003292, 52174222), 国家重点研发计划(2023 YFC3011704), 国家能源集团井工煤矿粉尘与职业病防治研究(六)煤矿粉尘防护装备研发(E210100285).
详细信息
    通讯作者:

    徐 欢, 博士, 副教授, 主要从事可降解高分子材料形态与性能调控的理论基础和加工方法研究. E-mail: hihuan@cumt.edu.cn

  • 中图分类号: TB332

Preparation of self-crystal electret poly(lactic acid) oriented nanofibers for efficiency filtration of particulate matters

Funds: Supported by the Graduate Innovation Program of CUMT (No. 2024 WLKXJ143, 2024 WLJCRCZL276, 2024 WLKXJ140, 2024 WLJCRCZL272 and 2024 WLJCRCZL195), Fundamental Research Funds for the Central Universities (No. 2024-10958, 2024-10967), Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX24_2917, SJCX24_1407, KYCX_2914, SJCX24_1403, KYCX24_2937), the National Natural Science Foundation of China (Nos. 52003292 and 52174222), the National Key Research and Development Program of China (No. 2023 YFC3011704), Key Science and Technology Program of CHN Energy Group (E210100285).
  • 摘要: 近年来,为有效减少工业化过程中产生的颗粒物(PMs)对人们的生命健康造成危害,传统不可降解过滤材料被广泛使用,造成了严重的环境负担。为此,本文通过高温结晶聚左旋乳酸(PLLA)和聚右旋乳酸(PDLA)的立构复合物,构筑具有高电活性的立构复合晶(SC),并将其分散于聚乳酸(PLA)溶液中,在单向拉伸和高压电场作用下制得自晶体驻极PLA取向纳纤膜。通过SC添加和单向机械拉伸来调控纤维形态、诱导C=O偶极子定向排列、促进电活性β相产生及增强界面极化,自晶体驻极PLA取向纳纤膜的表面电势及介电性能得到极大改善。此外,高的电活性赋予自晶体驻极PLA取向纳纤膜优异的PMs去除性能,即使在气流量为85 L/min时,对PM0.3滤除效率仍达97.83%,空气阻力可控制在293 Pa,显著优于纯PLA膜(96.48%,411 Pa)。本文提出的通过自晶体驻极与取向协同策略相结合来提高PLA纳纤电活性的策略,所制备的纳纤膜表现出优异的过滤性能,这为有效解决传统聚乳酸纤维膜在空气过滤领域的应用瓶颈问题提供了重要的参考。

     

  • 图  1  自主搭建纤维膜空气过滤试验装置原理图

    Figure  1.  Schematic diagram of homemade air filtration test device for PLA NFMs

    图  2  聚乳酸(PLA)前驱体的微观形貌和结构(a) SEM图像;(b) XRD衍射谱图以及(c) PLA前驱体中晶体的比例

    Figure  2.  Microscopic morphology and structure of poly(lactic acid) (PLA) precursor. (a) SEM image and (b) XRD spectra and (c) proportion of crystal in PLA precursor

    图  3  自晶体驻极PLA取向纳纤的微观形貌(a,a1) Pure PLA;(b,b1) SP1.5;(c,c1) SP3.0;(d,d1) SP4.5

    Figure  3.  Microscopic morphology of self-crystal electret PLA oriented nanofiber. SEM images of (a, a1) Pure PLA, (b, b1) SP1.5, (c, c1) SP3.0 and (d, d1) SP4.5

    图  4  自晶体驻极PLA取向纳纤的纤维直径分布(a) Pure PLA;(b) SP1.5;(c) SP3.0;(d) SP4.5

    Figure  4.  Fiber diameter distribution of self-crystal electret PLA oriented nanofiber. (a) Pure PLA, (b) SP1.5, (c) SP3.0 and (d) SP4.5

    图  5  自晶体驻极PLA取向纳纤的微观结构(a) XRD衍射强度曲线;(b–f) FTIR谱图

    Figure  5.  Microstructure of self-crystal electret PLA oriented nanofibers. (a) XRD pattern, (b-f) FTIR spectra

    图  6  自晶体驻极PLA取向纳纤的电活性评价(a)初始表面电势;(b)表面电势随时间演变关系;(c)介电常数

    Figure  6.  Electroactivity testing of self-crystal electret PLA oriented nanofibers. (a) Initial surface potential, (b) Surface potential stability, and(c) Dielectric constant

    图  7  自晶体驻极PLA取向纳纤过滤膜的过滤性能测试。气体流速为(a) 10 L/min;(b) 32 L/min;(c) 65 L/min;(d) 85 L/min时对PM0.3的过滤效率

    Figure  7.  Filtration performance test of self-crystal electret PLA oriented nanofibrous filtration membranes. Filtration efficiency at airflow velocities of (a) 10 L/min, (b) 32 L/min, (c) 65 L/min, and (d) 85 L/min

    图  8  自晶体驻极PLA取向纳纤过滤膜的过滤PM0.3的(a)品质因子、(b)过滤后的SEM图和(c)过滤机制图

    Figure  8.  Filtration of PM0.3 by self-crystal electret PLA oriented nanofibrous filtration membrane with (a) quality factor, (b) SEM image after filtration and (c) filtration mechanism

    图  9  自晶体驻极PLA取向纳纤过滤膜与其他商用口罩的过滤性能比较

    Figure  9.  Comparison of filtration performance between self-crystal electret PLA oriented nanofibrous membrane and other commercial masks

  • [1] GONG X B, JIN C F, LIU X Y, et al. Scalable Fabrication of Electrospun True-Nanoscale Fiber Membranes for Effective Selective Separation.[J]. Nano letters, 2023, 23(3): 1044-1051. doi: 10.1021/acs.nanolett.2c04667
    [2] WANG G Y, XU Z T, QI Y, et al. Electrospun nanofibrous membranes with antimicrobial activity for air filtration[J]. Chinese Chemical Letters, 2024, 35(10): 109503. doi: 10.1016/j.cclet.2024.109503
    [3] LYU P, JU Z, HU J, et al. Heat-resistant air filters based on self-sustained electrostatic and antibacterial polyimide/silver fiber mats[J]. Advanced Functional Materials, 2024, 34(29): 2400685. doi: 10.1002/adfm.202400685
    [4] MALLAKPOUR S, AZADI E, HUSSAIN C M. Fabrication of air filters with advanced filtration performance for removal of viral aerosols and control the spread of COVID-19[J]. Advances in Colloid and Interface Science, 2022, 303: 102653. doi: 10.1016/j.cis.2022.102653
    [5] SONG X Y, TANG M K, WANG C M, et al. Stereocomplexation-enhanced electroactivity of poly (lactic acid) nanofibrous membranes for long-term pm capturing and remote respiratory monitoring[J]. ACS Sustainable Chemistry & Engineering, 2024, 9(12): 3554-3564.
    [6] BIAN Y, ZHANG C C, WANG H, et al. Degradable nanofiber for eco-friendly air filtration: Progress and perspectives[J]. Separation and Purification Technology, 2023, 306: 122642. doi: 10.1016/j.seppur.2022.122642
    [7] SUN Z X, KONG Y, LAN L, et al. A high efficiency, low resistance antibacterial filter formed by dopamine-mediated in situ deposition of silver onto glass fibers[J]. Small, 2024, 35(20): 2301074.
    [8] XIE F, WANG Y F, ZHUO L H, et al. Multiple hydrogen bonding self-assembly tailored electrospun polyimide hybrid filter for efficient air pollution control[J]. Journal of Hazardous Materials, 2021, 412: 125260. doi: 10.1016/j.jhazmat.2021.125260
    [9] 李峰, 江亮, 李晓鹏, 等. 高抗菌聚乳酸纳纤膜制备及其高效低阻滤除细微颗粒物性能[J]. 复合材料学报, 2024, 41(6): 3202-3214.

    LI F, JIANG L, LI X P, et al. Ecofriendly and antibacterial poly(lactic acid) nanofibrous membranes for high-efficiency and low-resistance filtration of airborne particulate matters[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3202-3214(in Chinese).
    [10] HUANG Z X, LIU X X, ZHANG X, et al. Electrospun polyvinylidene fluoride containing nanoscale graphite platelets as electret membrane and its application in air filtration under extreme environment[J]. Polymer, 2017, 131: 143-150. doi: 10.1016/j.polymer.2017.10.033
    [11] DENG Y K, LU T, ZHANG X L, et al. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration[J]. Journal of Membrane Science, 2022, 660: 120857. doi: 10.1016/j.memsci.2022.120857
    [12] SHAO W L, LIU S M, WANG K, et al. Using modified raw materials to fabricate electrospun, superhydrophobic poly (lactic acid) multiscale nanofibrous membranes for air-filtration applications[J]. Separation and Purification Technology, 2024, 333: 125872. doi: 10.1016/j.seppur.2023.125872
    [13] XU S, ZHANG D A, HUANG Q W, et al. Trap-induced hydro-charging polylactic acid nonwovens with high charge storage capability for stable and efficient air filtration[J]. Separation and Purification Technology, 2024, 343: 127164. doi: 10.1016/j.seppur.2024.127164
    [14] 李欣雨, 朱桂英, 王存民, 等. 原位MOF化聚乳酸纤维膜制备及空气过滤性能[J]. 煤炭学报, 2023, 48(10): 3885-3894.

    LI X Y, ZHU G Y, WANG C M, et al. Preparation and air filtration performance of PLA-based MOFilter[J]. Journal of China Coal Society, 2023, 48(10): 3885-3894(in Chinese).
    [15] 宋欣译, 唐梦珂, 王存民, 等. 立构复合化聚乳酸纳纤膜的制备及高效滤除PM2.5性能[J]. 高等学校化学学报, 2024, 45(2): 9-16.

    SONG X Y, TANG M K, WANG C M, et al. Preparation of stereocomplexed pla nanofibrous membranes with high PM2.5 filtration efficiency[J]. Chemical Journal of Chinese Universities, 2024, 45(2): 9-16(in Chinese).
    [16] SULTANA A, GHOSH S K, SENCADAS V, et al. Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-l-lactic acid nanofibers for non-invasive physiological signal monitoring[J]. Journal of materials chemistry B, 2017, 5(35): 7352-7359. doi: 10.1039/C7TB01439B
    [17] 李小川, 唐梦珂, 朱金佗, 等. 界面立构复合化电活性聚乳酸纳纤膜的制备及高效过滤性能[J]. 高等学校化学学报, 2023, 44(12): 42-50.

    LI X C, TANG M F, ZHU J T, et al. Interfacial stereocomplexation of electroactive poly(lactic acid)nanofibrous membranes for efficient filtration of airborne PMs[J]. Chemical Journal of Chinese Universities, 2023, 44(12): 42-50(in Chinese).
    [18] FAN X, RONG L S, KONG L S, et al. Tug-of-war-inspired bio-based air filters with advanced filtration performance[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8736-8744.
    [19] WANG C M, SONG X Y, LI T, et al. Biodegradable electroactive nanofibrous air filters for long-term respiratory healthcare and self-powered monitoring[J]. ACS Applied Materials & Interfaces, 2023, 15(31): 37580-37592.
    [20] CUI J M, YANG S G, ZHANG Q L, et al. Poisoning by purity: what stops stereocomplex crystallization in polylactide racemate?[J]. Macromolecules, 2023, 56(3): 989-998. doi: 10.1021/acs.macromol.2c02067
    [21] PENG Q Y, LI S J, LIU F, et al. Effect of CO2 on the crystallization of poly (lactic acid) homo-crystallites via influencing the crystal structure of stereocomplex crystallites[J]. CrystEngComm, 2023, 25(3): 473-483. doi: 10.1039/D2CE01254E
    [22] PAN P J, BAO J N, HAN L L, et al. Stereocomplexation of high-molecular-weight enantiomeric poly(lactic acid)s enhanced by miscible polymer blending with hydrogen bond interactions[J]. Polymer, 2016, 98: 80-87. doi: 10.1016/j.polymer.2016.06.014
    [23] TANG M K, JIANG L, WANG C M, et al. Bioelectrets in electrospun bimodal poly (lactic acid) fibers: realization of multiple mechanisms for efficient and long-term filtration of fine PMs[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25919-25931.
    [24] CORO E, IRENE L, ALEXANDRA M, et al. Development of Highly Crystalline Polylactic Acid with β-Crystalline Phase from the Induced Alignment of Electrospun Fibers[J]. Polymers, 2021, 13(17): 2860. doi: 10.3390/polym13172860
    [25] ZHU J X, JIA L Y, HUANG R. Electrospinning poly (l-lactic acid) piezoelectric ordered porous nanofibers for strain sensing and energy harvesting[J]. Journal of Materials Science: Materials in Electronics, 2017, 28: 12080-12085. doi: 10.1007/s10854-017-7020-5
    [26] TAI Y Y, YANG S, YU S, et al. Modulation of piezoelectric properties in electrospun PLLA nanofibers for application-specific self-powered stem cell culture platforms[J]. Nano Energy, 2021, 89: 106444. doi: 10.1016/j.nanoen.2021.106444
    [27] GAO Y L, TIAN E Z, ZHANG Y P, et al. Utilizing electrostatic effect in fibrous filters for efficient airborne particles removal: Principles, fabrication, and material properties[J]. Applied Materials Today, 2022, 26: 101369. doi: 10.1016/j.apmt.2022.101369
    [28] CHEN Z X, PEI J Z, LI R. Study of the preparation and dielectric property of PP/SMA/PVDF blend material[J]. Applied Sciences, 2017, 7(4): 389. doi: 10.3390/app7040389
    [29] TAMURA R, LIM E, MANAKA T, et al. Analysis of pentacene field effect transistor as a Maxwell-Wagner effect element[J]. Journal of applied physics, 2006, 100(11): 114515. doi: 10.1063/1.2372433
    [30] LI Y H, SHI Y J, CAI F Y, et al. Graphene sheets segregated by barium titanate for polyvinylidene fluoride composites with high dielectric constant and ultralow loss tangent[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 318-326. doi: 10.1016/j.compositesa.2015.08.031
    [31] YANG T, ZHU X J, ZHANG Y, et al. Nanopatterning of beaded poly (lactic acid) nanofibers for highly electroactive, breathable, UV-shielding and antibacterial protective membranes[J]. International Journal of Biological Macromolecules, 2024, 260: 129566. doi: 10.1016/j.ijbiomac.2024.129566
    [32] 沈峥, 徐超, 张一帆, 等. 高抗湿MOF化聚乳酸纳纤膜制备及其高效滤除PM0.3性能[J/OL]. 复合材料学报. 2024: 1-10. DOI: 10.13801/j.cnki.fhclxb.20240617.007.

    SHEN Z, XU C, ZHANG Y F, et al. MOF-functionalized poly(lactic acid) nanofiberous membranes for efficient removal of PM0.3 and increased humidity resistance [J/OL]. Acta Materiae Compositae Sinica. 2024: 1-10. DOI: 10.13801/j.cnki.fhclxb.20240617.007 (in Chinese).
    [33] SHAO Z G, XIE J J, JIANG J X, et al. Research on topological effect of natural small molecule and high–performance antibacterial air filtration application by electrospinning[J]. Science of The Total Environment, 2024, 909: 168654. doi: 10.1016/j.scitotenv.2023.168654
    [34] WANG K, HAN P J, LIU S M, et al. Polystyrene/polymethylhydrosiloxane multiscale electrospun nanofiber membranes for air filtration[J]. ACS Applied Nano Materials, 2023, 6(22): 21293-21302. doi: 10.1021/acsanm.3c04590
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-14
  • 修回日期:  2024-09-25
  • 录用日期:  2024-10-01
  • 网络出版日期:  2024-10-19

目录

    /

    返回文章
    返回