Preparation of self-crystal electret poly(lactic acid) oriented nanofibers for efficiency filtration of particulate matters
-
摘要: 近年来,为有效减少工业化过程中产生的颗粒物(PMs)对人们的生命健康造成危害,传统不可降解过滤材料被广泛使用,造成了严重的环境负担。为此,本文通过高温结晶聚左旋乳酸(PLLA)和聚右旋乳酸(PDLA)的立构复合物,构筑具有高电活性的立构复合晶(SC),并将其分散于聚乳酸(PLA)溶液中,在单向拉伸和高压电场作用下制得自晶体驻极PLA取向纳纤膜。通过SC添加和单向机械拉伸来调控纤维形态、诱导C=O偶极子定向排列、促进电活性β相产生及增强界面极化,自晶体驻极PLA取向纳纤膜的表面电势及介电性能得到极大改善。此外,高的电活性赋予自晶体驻极PLA取向纳纤膜优异的PMs去除性能,即使在气流量为85 L/min时,对PM0.3滤除效率仍达97.83%,空气阻力可控制在293 Pa,显著优于纯PLA膜(96.48%,411 Pa)。本文提出的通过自晶体驻极与取向协同策略相结合来提高PLA纳纤电活性的策略,所制备的纳纤膜表现出优异的过滤性能,这为有效解决传统聚乳酸纤维膜在空气过滤领域的应用瓶颈问题提供了重要的参考。Abstract: In recent years, in order to effectively reduce the danger to people's life and health caused by particulate matters (PMs) generated during industrialization, traditional non-degradable filter materials have been widely used, resulting in a serious environmental burden. Therefore, the stereocomplex crystals (SCs) were generated between enantiomeric poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) with high electroactivity were constructed from the PLLA and PDLA blends by high-temperature crystallization. The SCs were used as electret dispersed in poly(lactic acid) (PLA) solution, and under the effect of strong unidirectional mechanical polarization and high-voltage E-field polarization to prepare self-crystal electret oriented nanofibrous membranes. By varying the addition amount of SC and the unidirectional mechanical drawing to modulate the morphology of PLA nanofibers, induce the alignment of C=O dipoles, promote the generation of electroactive β-phase, and increase the interfacial polarization, the surface potential and dielectric properties of the fabricated self-crystal electret PLA oriented nanofibers were greatly improved. In addition, the self-crystal electret PLA oriented nanofibrous membranes exhibited excellent particle removal performance under strong interfacial polarization. Even at an air flow rate of 85 L/min, the self-crystal electret nanofibrous membrane reached a filtration efficiency of 97.83% for PM0.3, while the air resistance was controlled at 293 Pa, which was superior to that of the pure PLA membrane (96.48%, 411 Pa). The proposed strategy of increasing the polarization and electroactivity of PLA nanofibers by combining self-crystal electret and oriented strategy shows excellent filtration performance, which provides an important reference for effectively solving the bottleneck of the application of traditional PLA nanofibers in the field of air filtration.
-
图 7 自晶体驻极PLA取向纳纤过滤膜的过滤性能测试。气体流速为(a) 10 L/min;(b) 32 L/min;(c) 65 L/min;(d) 85 L/min时对PM0.3的过滤效率
Figure 7. Filtration performance test of self-crystal electret PLA oriented nanofibrous filtration membranes. Filtration efficiency at airflow velocities of (a) 10 L/min, (b) 32 L/min, (c) 65 L/min, and (d) 85 L/min
-
[1] GONG X B, JIN C F, LIU X Y, et al. Scalable Fabrication of Electrospun True-Nanoscale Fiber Membranes for Effective Selective Separation.[J]. Nano letters, 2023, 23(3): 1044-1051. doi: 10.1021/acs.nanolett.2c04667 [2] WANG G Y, XU Z T, QI Y, et al. Electrospun nanofibrous membranes with antimicrobial activity for air filtration[J]. Chinese Chemical Letters, 2024, 35(10): 109503. doi: 10.1016/j.cclet.2024.109503 [3] LYU P, JU Z, HU J, et al. Heat-resistant air filters based on self-sustained electrostatic and antibacterial polyimide/silver fiber mats[J]. Advanced Functional Materials, 2024, 34(29): 2400685. doi: 10.1002/adfm.202400685 [4] MALLAKPOUR S, AZADI E, HUSSAIN C M. Fabrication of air filters with advanced filtration performance for removal of viral aerosols and control the spread of COVID-19[J]. Advances in Colloid and Interface Science, 2022, 303: 102653. doi: 10.1016/j.cis.2022.102653 [5] SONG X Y, TANG M K, WANG C M, et al. Stereocomplexation-enhanced electroactivity of poly (lactic acid) nanofibrous membranes for long-term pm capturing and remote respiratory monitoring[J]. ACS Sustainable Chemistry & Engineering, 2024, 9(12): 3554-3564. [6] BIAN Y, ZHANG C C, WANG H, et al. Degradable nanofiber for eco-friendly air filtration: Progress and perspectives[J]. Separation and Purification Technology, 2023, 306: 122642. doi: 10.1016/j.seppur.2022.122642 [7] SUN Z X, KONG Y, LAN L, et al. A high efficiency, low resistance antibacterial filter formed by dopamine-mediated in situ deposition of silver onto glass fibers[J]. Small, 2024, 35(20): 2301074. [8] XIE F, WANG Y F, ZHUO L H, et al. Multiple hydrogen bonding self-assembly tailored electrospun polyimide hybrid filter for efficient air pollution control[J]. Journal of Hazardous Materials, 2021, 412: 125260. doi: 10.1016/j.jhazmat.2021.125260 [9] 李峰, 江亮, 李晓鹏, 等. 高抗菌聚乳酸纳纤膜制备及其高效低阻滤除细微颗粒物性能[J]. 复合材料学报, 2024, 41(6): 3202-3214.LI F, JIANG L, LI X P, et al. Ecofriendly and antibacterial poly(lactic acid) nanofibrous membranes for high-efficiency and low-resistance filtration of airborne particulate matters[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3202-3214(in Chinese). [10] HUANG Z X, LIU X X, ZHANG X, et al. Electrospun polyvinylidene fluoride containing nanoscale graphite platelets as electret membrane and its application in air filtration under extreme environment[J]. Polymer, 2017, 131: 143-150. doi: 10.1016/j.polymer.2017.10.033 [11] DENG Y K, LU T, ZHANG X L, et al. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration[J]. Journal of Membrane Science, 2022, 660: 120857. doi: 10.1016/j.memsci.2022.120857 [12] SHAO W L, LIU S M, WANG K, et al. Using modified raw materials to fabricate electrospun, superhydrophobic poly (lactic acid) multiscale nanofibrous membranes for air-filtration applications[J]. Separation and Purification Technology, 2024, 333: 125872. doi: 10.1016/j.seppur.2023.125872 [13] XU S, ZHANG D A, HUANG Q W, et al. Trap-induced hydro-charging polylactic acid nonwovens with high charge storage capability for stable and efficient air filtration[J]. Separation and Purification Technology, 2024, 343: 127164. doi: 10.1016/j.seppur.2024.127164 [14] 李欣雨, 朱桂英, 王存民, 等. 原位MOF化聚乳酸纤维膜制备及空气过滤性能[J]. 煤炭学报, 2023, 48(10): 3885-3894.LI X Y, ZHU G Y, WANG C M, et al. Preparation and air filtration performance of PLA-based MOFilter[J]. Journal of China Coal Society, 2023, 48(10): 3885-3894(in Chinese). [15] 宋欣译, 唐梦珂, 王存民, 等. 立构复合化聚乳酸纳纤膜的制备及高效滤除PM2.5性能[J]. 高等学校化学学报, 2024, 45(2): 9-16.SONG X Y, TANG M K, WANG C M, et al. Preparation of stereocomplexed pla nanofibrous membranes with high PM2.5 filtration efficiency[J]. Chemical Journal of Chinese Universities, 2024, 45(2): 9-16(in Chinese). [16] SULTANA A, GHOSH S K, SENCADAS V, et al. Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly-l-lactic acid nanofibers for non-invasive physiological signal monitoring[J]. Journal of materials chemistry B, 2017, 5(35): 7352-7359. doi: 10.1039/C7TB01439B [17] 李小川, 唐梦珂, 朱金佗, 等. 界面立构复合化电活性聚乳酸纳纤膜的制备及高效过滤性能[J]. 高等学校化学学报, 2023, 44(12): 42-50.LI X C, TANG M F, ZHU J T, et al. Interfacial stereocomplexation of electroactive poly(lactic acid)nanofibrous membranes for efficient filtration of airborne PMs[J]. Chemical Journal of Chinese Universities, 2023, 44(12): 42-50(in Chinese). [18] FAN X, RONG L S, KONG L S, et al. Tug-of-war-inspired bio-based air filters with advanced filtration performance[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8736-8744. [19] WANG C M, SONG X Y, LI T, et al. Biodegradable electroactive nanofibrous air filters for long-term respiratory healthcare and self-powered monitoring[J]. ACS Applied Materials & Interfaces, 2023, 15(31): 37580-37592. [20] CUI J M, YANG S G, ZHANG Q L, et al. Poisoning by purity: what stops stereocomplex crystallization in polylactide racemate?[J]. Macromolecules, 2023, 56(3): 989-998. doi: 10.1021/acs.macromol.2c02067 [21] PENG Q Y, LI S J, LIU F, et al. Effect of CO2 on the crystallization of poly (lactic acid) homo-crystallites via influencing the crystal structure of stereocomplex crystallites[J]. CrystEngComm, 2023, 25(3): 473-483. doi: 10.1039/D2CE01254E [22] PAN P J, BAO J N, HAN L L, et al. Stereocomplexation of high-molecular-weight enantiomeric poly(lactic acid)s enhanced by miscible polymer blending with hydrogen bond interactions[J]. Polymer, 2016, 98: 80-87. doi: 10.1016/j.polymer.2016.06.014 [23] TANG M K, JIANG L, WANG C M, et al. Bioelectrets in electrospun bimodal poly (lactic acid) fibers: realization of multiple mechanisms for efficient and long-term filtration of fine PMs[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 25919-25931. [24] CORO E, IRENE L, ALEXANDRA M, et al. Development of Highly Crystalline Polylactic Acid with β-Crystalline Phase from the Induced Alignment of Electrospun Fibers[J]. Polymers, 2021, 13(17): 2860. doi: 10.3390/polym13172860 [25] ZHU J X, JIA L Y, HUANG R. Electrospinning poly (l-lactic acid) piezoelectric ordered porous nanofibers for strain sensing and energy harvesting[J]. Journal of Materials Science: Materials in Electronics, 2017, 28: 12080-12085. doi: 10.1007/s10854-017-7020-5 [26] TAI Y Y, YANG S, YU S, et al. Modulation of piezoelectric properties in electrospun PLLA nanofibers for application-specific self-powered stem cell culture platforms[J]. Nano Energy, 2021, 89: 106444. doi: 10.1016/j.nanoen.2021.106444 [27] GAO Y L, TIAN E Z, ZHANG Y P, et al. Utilizing electrostatic effect in fibrous filters for efficient airborne particles removal: Principles, fabrication, and material properties[J]. Applied Materials Today, 2022, 26: 101369. doi: 10.1016/j.apmt.2022.101369 [28] CHEN Z X, PEI J Z, LI R. Study of the preparation and dielectric property of PP/SMA/PVDF blend material[J]. Applied Sciences, 2017, 7(4): 389. doi: 10.3390/app7040389 [29] TAMURA R, LIM E, MANAKA T, et al. Analysis of pentacene field effect transistor as a Maxwell-Wagner effect element[J]. Journal of applied physics, 2006, 100(11): 114515. doi: 10.1063/1.2372433 [30] LI Y H, SHI Y J, CAI F Y, et al. Graphene sheets segregated by barium titanate for polyvinylidene fluoride composites with high dielectric constant and ultralow loss tangent[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 318-326. doi: 10.1016/j.compositesa.2015.08.031 [31] YANG T, ZHU X J, ZHANG Y, et al. Nanopatterning of beaded poly (lactic acid) nanofibers for highly electroactive, breathable, UV-shielding and antibacterial protective membranes[J]. International Journal of Biological Macromolecules, 2024, 260: 129566. doi: 10.1016/j.ijbiomac.2024.129566 [32] 沈峥, 徐超, 张一帆, 等. 高抗湿MOF化聚乳酸纳纤膜制备及其高效滤除PM0.3性能[J/OL]. 复合材料学报. 2024: 1-10. DOI: 10.13801/j.cnki.fhclxb.20240617.007.SHEN Z, XU C, ZHANG Y F, et al. MOF-functionalized poly(lactic acid) nanofiberous membranes for efficient removal of PM0.3 and increased humidity resistance [J/OL]. Acta Materiae Compositae Sinica. 2024: 1-10. DOI: 10.13801/j.cnki.fhclxb.20240617.007 (in Chinese). [33] SHAO Z G, XIE J J, JIANG J X, et al. Research on topological effect of natural small molecule and high–performance antibacterial air filtration application by electrospinning[J]. Science of The Total Environment, 2024, 909: 168654. doi: 10.1016/j.scitotenv.2023.168654 [34] WANG K, HAN P J, LIU S M, et al. Polystyrene/polymethylhydrosiloxane multiscale electrospun nanofiber membranes for air filtration[J]. ACS Applied Nano Materials, 2023, 6(22): 21293-21302. doi: 10.1021/acsanm.3c04590
计量
- 文章访问数: 31
- HTML全文浏览量: 19
- 被引次数: 0