留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物炭负载绿色纳米铁颗粒去除水中U(VI)

刘清 许艺文 招国栋 滑熠龙 李伟凡

刘清, 许艺文, 招国栋, 等. 生物炭负载绿色纳米铁颗粒去除水中U(VI)[J]. 复合材料学报, 2021, 39(0): 1-12
引用本文: 刘清, 许艺文, 招国栋, 等. 生物炭负载绿色纳米铁颗粒去除水中U(VI)[J]. 复合材料学报, 2021, 39(0): 1-12
Qing LIU, Yiwen XU, Guodong ZHAO, Yilong HUA, Weifan LI. Biochar supported green nano-iron particles to remove U(VI) from water[J]. Acta Materiae Compositae Sinica.
Citation: Qing LIU, Yiwen XU, Guodong ZHAO, Yilong HUA, Weifan LI. Biochar supported green nano-iron particles to remove U(VI) from water[J]. Acta Materiae Compositae Sinica.

生物炭负载绿色纳米铁颗粒去除水中U(VI)

基金项目: 湖南省高校创新平台开放基金项目(20K111);湖南省教育厅项目(18C0432);
详细信息
    通讯作者:

    刘清,博士,教授,硕士生导师,研究方向为污染控制与资源化技术 E-mail: liuqing197901@163.com

  • 中图分类号: X703.1

Biochar supported green nano-iron particles to remove U(VI) from water

  • 摘要: 铀矿开采与水冶过程产生大量铀废水,对周边生态环境造成污染,因此高效绿色治理是保障核工业可持续发展及生态安全的重要基础。本研究以向日葵叶为原料绿色合成生物炭负载纳米铁颗粒(GN-FeNPs/BC),并用于去除水中的U(Ⅵ)。利用向日葵叶制备植物提取液,然后将残渣热解制备成生物炭,最后将七水硫酸亚铁溶液、生物炭和植物提取液混合,成功制备出绿色纳米铁复合材料。探究了生物炭碳化温度、铁碳比、pH值、温度、时间和U(Ⅵ)浓度对除铀的影响。在298 K,pH为5时,最大吸附量为96.43 mg·g−1,并进行动力学和热力学研究。结果表明,准二级动力学模型和Langmuir等温吸附模型拟合良好。热力学常数表明GN-FeNPs/BC对U(Ⅵ)的吸附是一个自发吸热的过程。XPS分析表明去除机制包括吸附作用和还原作用。

     

  • 图  1  热解-液相还原法制备绿色纳米铁复合材料(GN-FeNPs/BC)

    Figure  1.  Preparation of green biochar-loaded nano-iron particles (GN-FeNPs/BC) by pyrolysis-liquid phase reduction method

    图  2  不同温度下与不同质量比的生物炭与铁盐溶液混合制备的GN-FeNPs/BC吸附U(Ⅵ)的预实验

    Figure  2.  Preliminary experiments of the adsorption of U(Ⅵ) on green synthesis of GN-FeNPs/BC prepared by mixing biochar with iron salt solution at different temperatures and different mass ratios

    图  3  450℃ BC(a)、GN-FeNPs(b)、GN-FeNPs/BC(c)和GN-FeNPs/BC吸附铀后(d)的SEM图像;GN-FeNPs/BC吸附铀反应前(e)和反应后(f)的EDS图

    Figure  3.  SEM images of GN-FeNPs/BC(a), 450℃ BC(b), GN-FeNPs(c) and GN-FeNPs/BC-U(d) after uranium adsorption; GN-FeNPs/BC before uranium adsorption reaction (e) and EDS data graph after reaction (f)

    图  4  GN-FeNPs/BC的XRD(a),FTIR(b),BET(c)和Zeta(d)图

    Figure  4.  XRD(a), FTIR(b), BET(c) and Zeta(d) graphs of GN-FeNPs/BC

    图  5  GN-FeNPs/BC吸附U(Ⅵ)的影响因素及动力学研究:(a)pH值的影响(C0=10 mg/L);(b)时间的影响(pH=5.0, m/V=0.1 g/L, T=298 K);(c)拟一级动力学;(d)拟二级动力学

    Figure  5.  Study on influencing factors and kinetics of U(Ⅵ) adsorption by GN-FeNPs/BC: (a) The influence of pH value (C0=10 mg/L); (b) The influence of time (pH=5.0, m/V=0.1 g/L, T=298 K); (c) Pseudo-first model; (d) Pseudo-second model

    qe-Adsorption capacity at equilibrium; qt-Adsorption capacity at time t; t-Reaction time

    图  6  (a)GN-FeNPs/BC的吸附等温线,pH=5,m/V=0.1 g/L;(b)Langmuir等温线;(c)Freundlich等温线;(d)ln(qe/Ce) vs qe线性拟合;(e)lnK0 vs 1/T线性关系图;(f)GN-FeNPs/BC吸附-解吸次数对U(Ⅵ)去除率的影响,pH=5,m/V=0.1 g/L,T=298 K,C0=10 mg/L

    Figure  6.  (a) Adsorption isotherm of GN-FeNPs/BC, pH=5, m/V=0.1 g/L; (b) Langmuir isotherm; (c) Freundlich isotherm; (d) ln(qe/Ce) ) vs qe linear fitting; (e) lnK0 vs 1/T linear relationship diagram; (f) the influence of GN-FeNPs/BC adsorption-desorption times on U(Ⅵ) removal rate, pH=5, m/V=0.1 g/L, T=298 K, C0=10 mg/L

    qe-Adsorption capacity at equilibrium; Ce- Adsorption equilibrium concentration

    图  7  GN-FeNPs/BC的XPS图:(a)全谱;(b)C 1s精细谱;(c)O 1s精细谱;(d)N 1s精细谱;(e)Fe 2p精细谱;(f)U 4f精细谱

    Figure  7.  XPS diagram of GN-FeNPs/BC: (a) full spectrum; (b) C 1s fine spectrum; (c) O 1s fine spectrum; (d) N 1s fine spectrum; (e) Fe 2p fine spectrum; (f) U 4f fine spectrum

    表  1  GN-FeNPs/BC吸附U(Ⅵ)的动力学常数

    Table  1.   Kinetic constants of U(Ⅵ) adsorption by GN-FenPs /BC

    AdsorbentPseudo-first order modelPseudo-second order model
    qe/(mg•g-1)k1/(min-1)R2qe/(mg•g-1)k2/(g•mg-1•min-1)R2
    GN-FeNPs/BC95.4950.0730.869101.6440.00110.999
    Notes:qe is the amount of adsorption at equilibrium; k1 is the quasi-first-order kinetic model constant; k2 is the quasi-second-order kinetic model constant; R is the correlation coefficient.
    下载: 导出CSV

    表  2  Langmuir和Freundlich等温吸附模型拟合参数

    Table  2.   Fitting parameters of Langmuir and Freundlich isotherm adsorption models

    T/KLangmuir modelFreundlich model
    qm/(mg•g−1)KL/(L•mg−1)R2nKF/(mg1-n•Ln•g−1)R2
    298214.6390.0930.9991.31419.5620.892
    308194.1400.1350.9841.37424.0690.929
    318231.2520.1390.9351.29928.4520.908
    Notes:T is absolute temperature; qm is the maximum adsorption capacity; KL is the Langmuir coefficient related to binding site affinity; R is the correlation coefficient; KF and n are constants related to the adsorption strength and adsorption capacity in the Freundlich model.
    下载: 导出CSV

    表  3  GN-FeNPs/BC吸附U(Ⅵ)的热力学参数

    Table  3.   Thermodynamic parameters of U(Ⅵ) adsorption by GN-FeNPs/BC

    T/KΔG/(KJ•mol−1)ΔH/(KJ•mol−1)ΔS/(J•mol−1•K−1)
    298−2.72
    308−3.045.4527.47
    318−3.27
    Notes:T is absolute temperature; ΔH is enthalpy; ΔS is entropy; ΔG is Gibbs free energy.
    下载: 导出CSV
  • [1] LIU B, PENG T J, SUN H J, et al. Release behavior of uranium in uranium mill tailings under environmental conditions[J]. Journal of Environmental Radioactivity,2017,171:160-168. doi: 10.1016/j.jenvrad.2017.02.016
    [2] DING L, TAN W F, XIE S B, et al. Uranium adsorption and subsequent re-oxidation under aerobic conditions by Leifsonia sp-Coated biochar as green trapping agent[J]. Environmental Pollution,2018,242:778-787. doi: 10.1016/j.envpol.2018.07.050
    [3] LIU B, PENG T J, SUN H J, et al. Mobility and risk assessment of uranium and associated heavy metals in uranium mill Tailings[J]. Journal of Nanoscience and Nanotechnology,2017,17(9):6746-6753. doi: 10.1166/jnn.2017.14449
    [4] ZHANG Q, ZHAO D L, FENG S J, et al. Synthesis of nanoscale zero-valent iron loaded chitosan for synergistically enhanced removal of U(VI) based on adsorption and reduction[J]. Journal of Colloid and Interface Science,2019,552:735-743. doi: 10.1016/j.jcis.2019.05.109
    [5] JIN J, LI S W, PENG X Q, et al. HNO3 modified biochars for uranium(VI) removal from aqueous solution[J]. Bioresource Technology,2018,256:247-253. doi: 10.1016/j.biortech.2018.02.022
    [6] KLUEPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (Biochar)[J]. Environmental Science & Technology,2014,48(10):5601-5611.
    [7] WANG S S, ZHAO M Y, ZHOU M, et al. Biochar-supported nZVI(nZVI/BC) for contaminant removal from soil and water: A critical review[J]. Journal of Hazardous Materials,2019,373:820-834. doi: 10.1016/j.jhazmat.2019.03.080
    [8] 姜记威, 张诗轩, 曾文炉, 等. 生物炭基材料在抗生素废水处理中的研究进展[J]. 化工进展, 2021, 40(S2):389-401.

    JIANG Jiwei, ZHANG Shixuan, ZENG Wenlu, et al. Research progress on biochar-based materials for the treatment of antibiotic wastewater[J]. Chemical Industry and Engineering Progress,2021,40(S2):389-401(in Chinese).
    [9] DIAO Z H, DU J J, JIANG D, et al. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron: Coexistence effect and mechanism[J]. Science of the Total Environment,2018,642:505-515. doi: 10.1016/j.scitotenv.2018.06.093
    [10] YANG F, ZHANG S, SUN Y, et al. Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal[J]. Bioresource Technology,2018,265:490-497. doi: 10.1016/j.biortech.2018.06.029
    [11] CHEN L, YANG J Y, WANG D. Phytoremediation of uranium and cadmium contaminated soils by sunflower (Helianthus annuus L. ) enhanced with biodegradable chelating agents[J]. Journal of Cleaner Production,2020,263:121491. doi: 10.1016/j.jclepro.2020.121491
    [12] CHEN L, HU W F, LONG C, et al. Exogenous plant growth regulator alleviate the adverse effects of U and Cd stress in sunflower (Helianthus annuus L. ) and improve the efficacy of U and Cd remediation[J]. Chemosphere,2021,262:127809. doi: 10.1016/j.chemosphere.2020.127809
    [13] CHEN A W, SHANG C, SHAO J H, et al. The application of iron-based technologies in uranium remediation: A review[J]. Science of the Total Environment,2017,575:1291-1306. doi: 10.1016/j.scitotenv.2016.09.211
    [14] TSAREV S, COLLINS R N, ILTON E S, et al. The short-term reduction of uranium by nanoscale zero-valent iron(nZVI): role of oxide shell, reduction mechanism and the formation of U(V)-carbonate phases[J]. Environ Sci-Nano,2017,4(6):1304-1313. doi: 10.1039/C7EN00024C
    [15] LI J, ZHANG L B, PENG J H, et al. Removal of uranium from uranium plant wastewater using zero-valent iron in an ultrasonic field[J]. Nuclear Engineering and Technology,2016,48(3):744-750. doi: 10.1016/j.net.2016.01.021
    [16] WANG Y N, O'CONNOR D, SHEN Z T, et al. Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors[J]. Journal of Cleaner Production,2019,226:540-549. doi: 10.1016/j.jclepro.2019.04.128
    [17] MACHADO S, PINTO S L, GROSSO J P, et al. Green production of zero-valent iron nanoparticles using tree leaf extracts[J]. Science of the Total Environment,2013,445:1-8.
    [18] CHEN R, YI G H, WU S S, et al. Controlled green synthesis of Au-Pt bimetallic nanoparticles using chlorogenic acid[J]. Research on Chemical Intermediates,2021,47(10):4051-4066. doi: 10.1007/s11164-021-04513-8
    [19] LIU C M, DIAO Z H, HUO W Y, et al. Simultaneous removal of Cu2+ and bisphenol A by a novel biochar-supported zero valent iron from aqueous solution: Synthesis, reactivity and mechanism[J]. Environmental Pollution,2018,239:698-705. doi: 10.1016/j.envpol.2018.04.084
    [20] MANDAL S, PU S Y, HE L L, et al. Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil[J]. Environmental Pollution,2020,259:113851. doi: 10.1016/j.envpol.2019.113851
    [21] WEI Y F, FANG Z Q, ZHENG L C, et al. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal[J]. Applied Surface Science,2017,399:322-329. doi: 10.1016/j.apsusc.2016.12.090
    [22] ZHANG Q, WANG Y Y, WANG Z, et al. Active biochar support nano zero-valent iron for efficient removal of U(VI) from sewage water[J]. J Alloy Compd,2021,852:156993. doi: 10.1016/j.jallcom.2020.156993
    [23] WANG G H, LIU J S, WANG X G, et al. Adsorption of uranium(VI) from aqueous solution onto cross-linked chitosan[J]. Journal of Hazardous Materials,2009,168(2-3):1053-1058. doi: 10.1016/j.jhazmat.2009.02.157
    [24] 司子彦, 谢水波, 朱奥琦, 等. 蒙脱土/Fe3O4/腐殖酸复合材料对U(Ⅵ)的作用机制[J]. 材料工程, 2021, 49(03):158-166.

    SI Ziyan, XIE Shuibo, ZHU Aoqi, et al. Action mechanism of montmorillonit/ Fe3O4/humic acid composite on U(Ⅵ)[J]. Journal of Materials Engineering,2021,49(03):158-166(in Chinese).
    [25] SUN Y B, YANG S T, SHENG G D, et al. Comparison of U(VI) removal from contaminated groundwater by nanoporous alumina and non-nanoporous alumina[J]. Separation and Purification Technology,2011,83:196-203. doi: 10.1016/j.seppur.2011.09.050
    [26] ELTAWEIL A S, MOHAMED H A, ABD EL-MONAEM E M, et al. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms[J]. Advanced Powder Technology,2020,31(3):1253-1263. doi: 10.1016/j.apt.2020.01.005
    [27] HO Y, MCKAY G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat[J]. Water Research,2000,34(3):735-742. doi: 10.1016/S0043-1354(99)00232-8
    [28] JIN J, LI S, PENG X, et al. HNO3 modified biochars for uranium(VI) removal from aqueous solution[J]. Bioresource Technology,2018,256:247-253. doi: 10.1016/j.biortech.2018.02.022
    [29] 荣丽杉, 夏麟, 周书葵, 等. UiO-66/壳聚糖的制备及其对U(VI)的吸附机制[J/OL]. 复合材料学报: 1-11

    2021-11-18]. https: //doi. org/10.13801/j. cnki. fhclxb. 20211025.002. RONG Lishan, XIA Lin, ZHOU Shukui, et al. Preparation of UiO-66/chitosan and its adsorption mechanism of U(VI) [J]. Acta Materiae Compositae Sinica: 1-11[2021-11-18]. https://doi.org/10.13801/j.cnki.fhclxb.20211025.002(in Chinese).
    [30] FEBRIANTO J, KOSASIH A N, SUNARSO J, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies[J]. Journal of Hazardous Materials,2009,162(2-3):616-645. doi: 10.1016/j.jhazmat.2008.06.042
    [31] AHMED W, MEHMOOD S, NUNEZ-DELGADO A, et al. Utilization of Citrullus lanatus L. seeds to synthesize a novel MnFe2O4-biochar adsorbent for the removal of U(VI) from wastewater: Insights and comparison between modified and raw biochar[J]. Science of The Total Environment,2021,771:144955. doi: 10.1016/j.scitotenv.2021.144955
    [32] 杨金辉, 胡世琴, 杨斌, 等.氨化烟末生物碳吸附剂的制备及对Cr(VI)的吸附行为[J/OL].复合材料学报:1-11[2021-11-18]. https://doi.org/10.13801/j.cnki.fhclxb.20210320.001.

    YANG Jinhui, HU Shiqin, YANG Bin, et al. Preparation of bio-carbon adsorbent for ammoniated tobacco dust and its adsorption behavior for Cr(VI)[J/OL]. Journal of Composite Materials:1-11[2021-07-28].https://doi.org/10.13801/j.cnki.fhclxb.20210320.001(in Chinese).
    [33] FAN Q H, HAO L M, WANG C L, et al. The adsorption behavior of U(VI) on granite[J]. Environmental Science-Processes & Impacts,2014,16(3):534-541.
    [34] HU H, ZHANG X, WANG T, et al. Bamboo (Acidosasa longiligula) shoot shell biochar: its potential application to isolation of uranium(VI) from aqueous solution[J]. Journal of Radioanalytical and Nuclear Chemistry,2018,316(1):349-362. doi: 10.1007/s10967-018-5731-6
    [35] SAWADA K, HIRABAYASHI D, ENOKIDA Y. Kinetics of chlorination of uranium-antimony composite oxide for uranium removal from waste catalyst used for acrylonitrile synthesis[J]. Journal of Nuclear Science and Technology,2019,56(4):317-321. doi: 10.1080/00223131.2019.1580622
    [36] ZHANG Q, ZHAO D, DING Y, et al. Synthesis of Fe-Ni/graphene oxide composite and its highly efficient removal of uranium(VI) from aqueous solution[J]. Journal of Cleaner Production,2019,230:1305-1315. doi: 10.1016/j.jclepro.2019.05.193
    [37] GUO D, SONG X, ZHANG L, et al. Recovery of uranium(VI) from aqueous solutions by the polyethyleneimine-functionalized reduced graphene oxide/molybdenum disulfide composition aerogels[J]. Journal of the Taiwan Institute of Chemical Engineers,2020,106:198-205. doi: 10.1016/j.jtice.2019.09.029
    [38] LI J, ZHANG X, LIU M, et al. Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward Chromate under aerobic conditions[J]. Environmental Science & Technology,2018,52(5):2988-2997.
  • 加载中
计量
  • 文章访问数:  139
  • HTML全文浏览量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-25
  • 录用日期:  2021-11-19
  • 修回日期:  2021-11-18
  • 网络出版日期:  2021-12-14

目录

    /

    返回文章
    返回