留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强高韧机敏混凝土的制备及其性能

刘金涛 洪宇超 周煜 王伟胜 孔德玉

刘金涛, 洪宇超, 周煜, 等. 高强高韧机敏混凝土的制备及其性能[J]. 复合材料学报, 2024, 42(0): 1-11.
引用本文: 刘金涛, 洪宇超, 周煜, 等. 高强高韧机敏混凝土的制备及其性能[J]. 复合材料学报, 2024, 42(0): 1-11.
LIU Jintao, HONG Yuchao, ZHOU Yu, et al. Preparation and performance of smart high strength and high ductile concrete[J]. Acta Materiae Compositae Sinica.
Citation: LIU Jintao, HONG Yuchao, ZHOU Yu, et al. Preparation and performance of smart high strength and high ductile concrete[J]. Acta Materiae Compositae Sinica.

高强高韧机敏混凝土的制备及其性能

基金项目: 国家自然科学基金项目 (52379136);水利部水工程材料重点实验室(筹)开放研究基金项目 (EMF202414)
详细信息
    通讯作者:

    孔德玉,工学博士,教授,博士生导师,研究方向为高性能水泥基材料 E-mail: kongdeyu@zjut.edu.cn

  • 中图分类号: TB322

Preparation and performance of smart high strength and high ductile concrete

Funds: National Natural Science Foundation of China (52379136); Open Research Fund of Key Laboratory of Engineering Materials of Ministry of Water Resources (EMF202414)
  • 摘要: 研究通过混杂碳纤维(Carbon Fiber,CF)和聚乙烯纤维(Polyethylene Fiber,PE)制备出高强高韧性混凝土(High strength and high ductility concrete,HSHDC),并对其力学性能及机敏性特性进行了分析。研究表明0.25vol%CF掺量HSHDC的抗压强度较对照组提升7%、抗折强度增加13%、拉伸应变提高15.2%。HSHDC的电阻率值随CF掺量增加而显著降低,1.0vol%CF掺量HSHDC的电阻率值下降至10 Ω·m,较对照组降低三个数量级。在不同温度与相对含水率下,掺有CF的HSHDC电阻率表现出较好的稳定性,循环荷载作用下0.25vol%CF掺量HSHDC电阻率变化率与应力之间表现出良好的对应关系,压应力和压应变灵敏系数分别达到0.75%/MPa和136.5。0.25vol%CF掺量的HSHDC在加载幅度为15 MPa时的最大电阻率变化率为9.2%,加载速度为0.4 mm/min时峰值电阻率变化率达到7.9%。

     

  • 图  1  拉伸试件尺寸(a)及拉伸试验测试图(b)

    Figure  1.  Dimensions of tensile specimens (a) and tensile test (b)

    图  2  四电极测试法示意图(a)、压敏性测试试验图(b)

    Figure  2.  Four-electrode test method diagram (a) and pressure sensitivity test diagram (b)

    图  3  HSHDC的抗压、抗折强度

    Figure  3.  Compressive and flexural strength of HSHDC

    图  4  C4组试件断面纤维分布图

    Figure  4.  Fiber distribution of specimens in Group C4

    图  5  HSHDC的拉伸强度及极限拉伸应力与应变

    Figure  5.  Tensile strength and ultimate tensile stress and strain of HSHDC

    图  6  不同温度下HSHDC的电阻率值

    Figure  6.  The resistivity of HSHDC at different temperatures

    图  7  不同相对含水率下HSHDC的电阻率

    Figure  7.  The resistivity of HSHDC under different humidity

    图  8  在循环压缩荷载作用下的HSHDC试件电阻率变化率与应力应变关系

    Figure  8.  Relationship between the rate of resistivity change and the stress strain of the HSHDC specimen under cyclic compression loading

    图  9  不同加载幅度下C1组电阻率变化率与应力-应变关系

    Figure  9.  Relationship between the resistivity change rate and stress-strain of group C1 under different loading amplitudes

    图  10  不同加载幅度下C2组电阻率变化率与应力-应变关系

    Figure  10.  Relation between the resistivity change rate and stress-strain of group C2 under different loading amplitudes

    图  11  加载幅度对HSHDC应力(a)、应变(b)灵敏系数的影响

    Figure  11.  Influence of loading amplitude on the sensitivity coefficients of stress (a) and strain (b) in HSHDC

    图  12  不同加载频率下C1组HSHDC的电阻率变化率与应力-应变关系

    Figure  12.  Relation between the resistivity change rate and stress-strain of C1 HSHDC under different loading frequencies

    图  13  不同加载频率下C2组电阻率变化率与应力应变关系

    Figure  13.  Relation between the rate of change of resistivity and stress-strain in group C2 under different loading frequencies

    图  14  加载速率对HSHDC应力(a)、应变(b)灵敏系数的影响

    Figure  14.  Influence of loading rate on the sensitivity coefficients of stress (a) and strain (b) in HSHD

    表  1  PⅡ 52.5水泥的基本性能

    Table  1.   PⅡ 52.5 Basic properties of cement

    Firing
    loss/%
    Sulfur
    trioxide/%
    Chloride
    Ion/%
    Specific surface
    area/(m2·kg−1)
    Initial setting
    time/min
    Final setting
    time/min
    Compressive
    Strength/MPa
    Flexural
    Strength/MPa
    3 d 28 d 3 d 28 d
    2.73 2.18 0.031 344 128 175 6.5 34.7 9.1 59.1
    下载: 导出CSV

    表  2  纤维的基本性能

    Table  2.   Basic properties of fibers

    Fiber
    type
    Density/
    (g·cm−3)
    Length/
    mm
    Fiber
    diameter/μm
    Tensile
    strength/MPa
    Tensile modulus
    of elasticity/GPa
    Resistivity/
    (Ω·cm)
    PE 0.97 12 24 3000 116 103-105
    CF 1.75 12 7 3530 228 1.0-1.6
    Notes: PE—Polyethylene fiber; CF—Carbon fiber.
    下载: 导出CSV

    表  3  高强高韧性混凝土(HSHDC)配合比设计及其流动性

    Table  3.   Mix ratio design and fluidity of high strength and high ductility concrete (HSHDC)

    Group Cement/g Fly ash/g Silica fume/g Sand/g Water reducing
    Agent/g
    Water/g PE/vol% CF/vol% Fluidity/mm
    R 700 500 200 400 6.0 364 2.00 0 181
    C1 700 500 200 400 6.0 364 1.75 0.25 173
    C2 700 500 200 400 6.0 364 1.50 0.50 169
    C3 700 500 200 400 6.0 364 1.25 0.75 168
    C4 700 500 200 400 6.0 364 1.00 1.00 165
    下载: 导出CSV
  • [1] Ranade R, Li V. Composites properties of high-strength, high-ductility concrete[J]. ACI Materials Journal, 2013, (110): 413-422.
    [2] Yu K, Zhu W, Yao D. Micro-structural and mechanical properties of ultra-high performance engineered cementitious composites (UHP-ECC) incorporation of recycled fine powder (RFP)[J]. Cement and Concrete Research, 2019, 124(10): 105813.
    [3] Zhou Y, Xi B, Yu K, et al. Mechanical properties of hybrid ultra-high performance engineered cementitious composites incorporating steel and polyethylene fibers[J]. Mater, 2018, 11(8): 1448. doi: 10.3390/ma11081448
    [4] Konsta-Gdoutos S M, Aza A C. Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures[J]. Cement and Concrete Composites, 2014, 53: 162-169. doi: 10.1016/j.cemconcomp.2014.07.003
    [5] Chung L D D. Cement-matrix composites for smart structures[J]. Smart Materials and Structures, 2000, 9(4): 389-401. doi: 10.1088/0964-1726/9/4/302
    [6] Kim G, Yang B, Ryu G, et al. The electrically conductive carbon nanotube (CNT)/cement composites for accelerated curing and thermal cracking reduction[J]. Composite Structures, 2016, 158: 20-29. doi: 10.1016/j.compstruct.2016.09.014
    [7] Gomis J, Galao O, Gomis V, et al. Self-heating and deicing conductive cement. Experimental study and modeling[J]. Construction and Building Materials, 2015, 75: 442-449. doi: 10.1016/j.conbuildmat.2014.11.042
    [8] Han B G, Ou J P. Embedded piezoresistive cement-based stress/strain sensor[J]. Sensors and Actuators A:Physical, 2007, 138(2): 294-298. doi: 10.1016/j.sna.2007.05.011
    [9] Wang S, Chung D. Self-sensing of flexural strain and damage in carbon fiber polymer-matrix composite by electrical resistance measurement[J]. Carbon, 2006, 44(13): 2739-2751. doi: 10.1016/j.carbon.2006.03.034
    [10] Ding Y, Han Z, Zhang Y, et al. Concrete with triphasic conductive materials for self-monitoring of cracking development subjected to flexure[J]. Composite Structures, 2016, 138: 184-191. doi: 10.1016/j.compstruct.2015.11.051
    [11] Lin C, Chung D. Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials[J]. Carbon, 2008, 47(1): 295-305.
    [12] Dong S F, Han B G, Ou J P, et al. Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete[J]. Cement & Concrete Composites, 2016: 48-65.
    [13] Chen P-W, Chung D D L. Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection[J]. Smart Materials & Structures, 2(1): 22-30.
    [14] Shi Z Q, Chung D D L. Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion[J]. Cement & Concrete Research, 1999, 29(3): 435-439.
    [15] Li H, Xiao H, Ou J. Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites[J]. Cement and Concrete Composites, 2006, 28(9): 824-828. doi: 10.1016/j.cemconcomp.2006.05.004
    [16] MONTEIRO A O, CACHIM P B, COSTA P M F J. Self-sensing piezoresistive cement composite loaded with carbon black particles[J]. Cement and Concrete Composites, 2017, 81: 59-65. doi: 10.1016/j.cemconcomp.2017.04.009
    [17] 刘金涛, 黄存旺, 杨杨, 等. 三维石墨烯-碳纳米管/水泥净浆的压敏性能[J]. 复合材料学报, 2022, 39(1): 313-321.

    LIU Jintao, HUANG Cunwang, YANG Yang, et al. Piezoresistivity of three dimensional graphene-carbon nanotubes/cement paste[J]. Acta Mater. Compositae Sin, 2022, 39(1): 313-321(in Chinese).
    [18] Demirciliolu E, Teomete E, Schlangen E, et al. Temperature and moisture effects on electrical resistance and strain sensitivity of smart concrete[J]. Construction and Building Materials, 2019, 224: 420-427. doi: 10.1016/j.conbuildmat.2019.07.091
    [19] 赵娇. 碳纤维智能混凝土的电—热—力效应研究[D]. 南京理工大学, 2008.

    Zhao J. Study on electrothermal force effect of carbon fiber smart concrete [D]. Nanjing University of Science and Technology, 2008.
    [20] 袁娇, 刘小艳, 陈玉泉, 等. 碳纳米管水泥基复合材料温敏及湿敏性能研究[J]. 混凝土与水泥制品, 2020, (4): 5-8.

    Yuan J, Liu X Y, Chen Y Q, et al. Study on temperature and humidity sensitive of carbon/ nanotube cement composites[J]. China Concrete and Cement Products, 2020, (4): 5-8.
    [21] Han B G, Zhang L Y, Ou J P. Influence of water content on conductivity and piezoresistivity of cement-based material with both carbon fiber and carbon black[J]. Journal of Wuhan University of Technology Materials Science Edition, 2010, 25: 147-151. doi: 10.1007/s11595-010-1147-z
    [22] Li H, Xiao H G, Ou J P. Electrical property of cement-based composites filled with carbon black under long-term wet and loading condition[J]. Composites Science and Technology, 2008, 68(9): 2114-2119. doi: 10.1016/j.compscitech.2008.03.007
    [23] 曹明莉, 许玲, 张聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015, 43(05): 632-642.

    Cao Mingli, Xu Ling, Zhang Cong. Review on Micromechanical Design, Performance and Development Tendency of Engineered Cementitious Composite. JOURNAL OF THE CHINESE CERAMIC SOCIETY. 2015, 43(05): 632-642.
    [24] C Li Victor. 高延性纤维增强水泥基复合材料的研究进展及应用[J]. 硅酸盐学报, 2007, 35(4): 531-535.

    LI Victor C. PROGRESS AND APPLICATION OF ENGINEERED CEMENTITIOUS COMPOSITES. JOURNAL OF THE CHINESE CERAMIC SOCIETY. 2007, 35(4): 531-535.
    [25] 王秀峰, 王永兰, 金志浩. 碳纤维增强水泥复合材料的机敏性[J]. 硅酸盐学报. 1998, 26(3): 253-257.

    Wang X F, Wng Y L, Jin Z H, The agility of carbon fiber reinforced cement composites[J]. Journal of Ceramics. 1998, 26 (3): 253-257.
    [26] 全国水泥标准化技术委员会(SAC/TC 184). 水泥胶砂强度检验方法(ISO法). GB/T 17671-2021.

    National Technical Committee for Cement Standardization (SAC/TC 184). Cement mortar strength test method (ISO method). GB/T 17671-2021.
    [27] 水泥胶砂流动度测定方法[S]. GB/T 2419-2005.

    Determination of fluidity of cement mortar [S]. GB/T 2419-2005.
    [28] SHEIBANY F, GHAEMIAN M. Effects of environmental action on thermal stress analysis of Karaj concrete arch dam[J]. Journal of Engineering Mechanics, 2006, 132(5): 532-544. doi: 10.1061/(ASCE)0733-9399(2006)132:5(532)
    [29] Zhang Y, Pan J, SUN X, et al. Simulation of thermal stress and control measures for rock-filled concrete dam in high-altitude and cold regions[J]. Engineering Structures, 2021, 230(1): 111721.1-111721.10.
    [30] Teomete E. The effect of temperature and moisture on electrical resistance, strain sensitivity and crack sensitivity of steel fiber reinforced smart cement composite[J]. Smart Materials and Structures, 2016, 25(7): 075024. doi: 10.1088/0964-1726/25/7/075024
    [31] Forde M C, Mccarter J, Whittington H W. The conduction of electricity through concrete[J]. Magazine of Concrete Research, 1981, 33(114): 48-60. doi: 10.1680/macr.1981.33.114.48
    [32] Chen B, Liu J Y, Wu K. Electrical responses of carbon fiber reinforced cementitious composites to monotonic and cyclic loading[J]. Cement and Concrete Research, 2005, 35(11): 2183-2191. doi: 10.1016/j.cemconres.2005.02.004
    [33] Qing L Z, Fen S D, Yang Y W, et al. Multifunctionalities of Nanocarbon Materials Filled Cement-Based Composites[J]. Materials Science Forum, 2014, 809-810(809-810): 144-154.
    [34] 孙明清. 碳纤维混凝土与素混凝土的力电机敏性及其应用. 武汉理工大学博士学位论文. 2001.

    Sun M Q. Electrodynamic agility of carbon fiber concrete and plain concrete and its application. Wuhan University of Technology doctoral dissertation. 2001.
    [35] 毛起炤, 杨元霞, 李卓球, 等. 碳纤维增强水泥压敏性影响因素的研究[J]. 硅酸盐学报. 1997, 25(6): 110-113. 118.

    Mao Q Z, Yang Y X, Li Z Q, et al. Study on influencing factors of pressure sensitivity of carbon fiber reinforced cement[J]. Journal of Ceramics. 1997, 25(6): 110-113. 118.
    [36] H. A. Toutanji, T. EI-Korchi. R. N. Katz. Strength and reliability of carbon-fiber reinforced cement. ACI Mater. 1992 89(3): 269-274.
    [37] H. Sakia, K. Takahashi, Y. Mitsui, etc. Flexural behavior of carbon fiber reinforced cement composite. ACI SP-142. in: Fiber Reinforced Concrete. J. I. Daneel. S. P. Shah(Eds). ACI. Detroit. MI. 1994: 121-140.
    [38] Yu X, Kwon E. A carbon nanotube cement composite with piezoresistive properties[J]. Smart Materials and Structures, 2009, 18(5): 1-5.
  • 加载中
计量
  • 文章访问数:  95
  • HTML全文浏览量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-19
  • 修回日期:  2024-03-04
  • 录用日期:  2024-03-10
  • 网络出版日期:  2024-04-12

目录

    /

    返回文章
    返回