留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质炭@MnO2基超级电容器电极材料研究进展

张亚林 陈兴刚 王梦倩 任梦雅 蔡艳青 许莹

张亚林, 陈兴刚, 王梦倩, 等. 生物质炭@MnO2基超级电容器电极材料研究进展[J]. 复合材料学报, 2023, 40(7): 3812-3823. doi: 10.13801/j.cnki.fhclxb.20221109.001
引用本文: 张亚林, 陈兴刚, 王梦倩, 等. 生物质炭@MnO2基超级电容器电极材料研究进展[J]. 复合材料学报, 2023, 40(7): 3812-3823. doi: 10.13801/j.cnki.fhclxb.20221109.001
ZHANG Yalin, CHEN Xinggang, WANG Mengqian, et al. Research progress of biomass carbon@MnO2-based electrode materials for supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3812-3823. doi: 10.13801/j.cnki.fhclxb.20221109.001
Citation: ZHANG Yalin, CHEN Xinggang, WANG Mengqian, et al. Research progress of biomass carbon@MnO2-based electrode materials for supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3812-3823. doi: 10.13801/j.cnki.fhclxb.20221109.001

生物质炭@MnO2基超级电容器电极材料研究进展

doi: 10.13801/j.cnki.fhclxb.20221109.001
基金项目: 河北省省属高校基本科研业务费研究项目(JST2022005);华北理工大学大学生创新创业训练项目(T2022047)
详细信息
    通讯作者:

    蔡艳青,博士,副教授,硕士生导师,研究方向为储能材料、熔盐电化学、医用生物材料等 E-mail: caiyanqing126@126.com

  • 中图分类号: TB332

Research progress of biomass carbon@MnO2-based electrode materials for supercapacitors

Funds: Basic Research Funds of Hebei Provincial Universities (JST2022005); Innovation and Entrepreneurship Training Program for College Students of North China University of Science and Technology (T2022047)
  • 摘要: 基于能源危机、环境污染等问题,开发新型的高性能储能装置至关重要,超级电容器因具有高比能量、稳定性好等优异性能而受到研究者青睐。生物质炭是由生物质材料经过预碳化和活化处理后获得的,具有发达的孔径、较高的活性比表面积,且资源廉价丰富,作为超级电容器材料具有较好的应用前景。为了满足超级电容器高比容量和高循环稳定性,目前有效的方法是将生物炭材料与赝电容材料相结合。过渡金属氧化物MnO2具有高的理论比电容、宽的电位窗口、低成本、环境友好性而成为最有应用前途的赝电容材料。研究表明:由生物炭与过渡金属氧化物复合材料制备的超级电容器,其比电容和能量密度有了明显提高。本文主要介绍了生物质炭的来源、特点及制备方法,并介绍了生物质炭与MnO2的复合制备方法及生物质炭@MnO2复合材料用于超级电容器的研究现状,最后展望了生物质炭@MnO2基超级电容器的发展趋势。

     

  • 图  1  钾单质插入碳层造孔机制图[31]

    Figure  1.  Pore forming mechanism diagram of potassium inserted into carbon layer[31]

    图  2  在5 A/g电流密度下木质素生物质炭电极(a)和木质素生物质炭和MnO2复合材料电极(b)循环稳定性和库伦效率图[41]

    Figure  2.  Cyclic stability and coulomb efficiency of lignin biochar electrode (a) and lignin biochar and MnO2 composite electrode (b) at 5 A/g current density[41]

    WDB—Wood-derived biochar

    图  3  (a) 无复合MnO2多孔碳复合材料;在油浴中复合不同时间的多孔碳@MnO2:(b) 1 h;(c) 3 h;(d) 8 h;(e) 9 h;(f) 15 h[42]

    Figure  3.  (a) No composite MnO2 porous carbon composite; Porous carbon@MnO2 composite in oil bath for different time: (b) 1 h; (c) 3 h; (d) 8 h; (e) 9 h; (f) 15 h[42]

    图  4  多孔碳@MnO2的制作流程[14]

    Figure  4.  Production process of porous carbon@MnO2[14]

    HPC—Hierarchical porous carbon

    图  5  生物质碳预碳化及分级多孔碳和MnO2复合过程中结构示意图[14]

    Figure  5.  Schematic structural diagram of biomass carbon pre carbonization and hierarchical porous carbon and MnO2 composite process[14]

    图  6  制备不同玉米芯碳基底超级电容器示意图[45]

    Figure  6.  Schematic diagram of preparing supercapacitors with different corn cob carbon substrates[45]

    CC—Corncob carbon; AC—Activated carbon; PVA—Polyvinyl alcohol; ASC—All-solid-state supercapacitor

    图  7  ((a), (b)) 沉积5 min活化生物质炭@MnO2的SEM和HR-SEM图像;((c), (d)) 沉积2 h碳化的生物质炭@MnO2的SEM和HR-SEM图像;((e), (f)) 沉积2 h碳化生物质炭@MnO2 TEM和HR-TEM图像(插图:选定区域电子衍射)[45]

    Figure  7.  ((a), (b)) SEM and HR-SEM images of 5 min activated biochar@MnO2 deposited; ((c), (d)) SEM and HR-SEM images of deposited 2 h carbonized biomass carbon@MnO2; ((e), (f)) TEM and HR-TEM images of deposited 2 h carbonized biomass carbon@MnO2(Inset: Electron diffraction in selected areas)[45]

    图  8  经过活化和只碳化的两种生物质碳表面电沉积MnO2的示意图[45]

    Figure  8.  Schematic diagram of MnO2 electrodeposition on carbon surface of two kinds of biomass after activation and carbonization only[45]

    图  9  ((a), (b)) KOH活化处理的多孔碳的SEM图像;(c) KOH活化处理的多孔碳的TEM图像;((d), (e)) 3 h水热复合多孔碳@MnO2 SEM图像;(f) 3 h水热复合多孔碳@MnO2的TEM图像;(g) 3 h水热复合多孔碳@MnO2 EDS图像[51]

    Figure  9.  ((a), (b)) SEM images of KOH activated porous carbon; (c) TEM image of KOH activated porous carbon; ((d), (e)) SEM images of 3 h hydrothermal composite MnO2@porous carbon; (f) TEM image of 3 h hydrothermal composite porous carbon@MnO2; (g) EDS diagram of 3 h hydrothermal composite porous carbon@MnO2[51]

    图  10  (a) 25 mV/s时EC、MnO2和MnO2/EC复合材料的CV曲线;(b) 0.5 A/g时EC、MnO2和MnO2/EC复合材料的恒流充放电曲线;(c) MnO2/EC复合材料在10、25、50、75和100 mV/s下的CV曲线;(d) MnO2/EC复合材料在0.5、1.0、2.0、5.0和10 A/g下的恒流充放电曲线;(e) 不同电流密度下EC、MnO2和MnO2/EC复合材料的比电容;(f) EC、MnO2和MnO2/EC的电化学阻抗谱[52]

    Figure  10.  (a) CV curves of EC, MnO2 and MnO2/EC composites at 25 mV/s; (b) Galvanostatic charge/discharge curves of EC, MnO2 and MnO2/EC composites at 0.5 A/g; (c) CV curves of MnO2/EC composites at 10, 25, 50, 75 and 100 mV/s; (d) Galvanostatic charge/discharge curves of MnO2/EC composites at 0.5, 1.0, 2.0, 5.0 and 10 A/g; (e) Specific capacitance of EC, MnO2 and MnO2/EC composites at different current densities; (f) Electrochemical impedance spectroscopy of EC, MnO2 and MnO2/EC[52]

    EC—Eggplant carbon; Z'—Real part of impedance; Z"—Imaginary part of impedance

    表  1  木材、香蕉皮、茶叶、稻壳、柚皮、塔松、水稻秸秆的微观结构和电化学性能[28]

    Table  1.   Microstructure and electrochemical properties of wood, banana peel, tea, rice husk, pomelo peel, tarzon and rice straw[28]

    Biomass carbon precursorBiomass carbon morphologyElectrochemical performance
    Notes: PC—Direct pyrolysis of wood chips; RC—PC delignified treatment; TARC—Carbonized wood chips; TARC-N—TARC treated twice in N2; KB—KHCO3; AC—Porous carbon; X—KHCO3(KOH)/HC mass radio; HC—Hydrothermal carbon.
    下载: 导出CSV
  • [1] ZHANG X Q, CHENG X B, ZHANG Q. Nanostructured energy materials for electrochemical energy conversion and storage: A review[J]. Journal of Energy Chemistry,2016,25(6):967-984. doi: 10.1016/j.jechem.2016.11.003
    [2] CHAO D L, XIA X H, ZHU C R, et al. Hollow nickel nanocorn arrays as three-dimensional and conductive support for metal oxides to boost supercapacitive performance[J]. Nanoscale,2014,6(11):5691-5697. doi: 10.1039/C4NR01119H
    [3] CHENG Y W, LU S T, ZHANG H B, et al. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors[J]. Nano Letters,2012,12(8):4206-4211. doi: 10.1021/nl301804c
    [4] HE N F, YILDIZ O, PAN Q, et al. Pyrolytic-carbon coating in carbon nanotube foams for better performance in supercapacitors[J]. Journal of Power Sources,2017,343:492-501. doi: 10.1016/j.jpowsour.2017.01.091
    [5] HU M L, LIU Y H, ZHANG M, et al. Wire-type MnO2/multilayer graphene/Ni electrode for high-performance supercapacitors[J]. Journal of Power Sources,2016,335:113-120. doi: 10.1016/j.jpowsour.2016.10.043
    [6] LEI W, LIU H P, XIAO J L, et al. Moss-derived mesoporous carbon as Bi-functional electrode materials for lithium-sulfur batteries and supercapacitors[J]. Nanomaterials,2019,9(1):84. doi: 10.3390/nano9010084
    [7] ZHANG Z T, WANG L, LI Y M, et al. Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor[J]. Advanced Energy Materials,2017,7(5):1601814. doi: 10.1002/aenm.201601814
    [8] HTUT K Z, KIM M, LEE E, et al. Biodegradable polymer-modified graphene/polyaniline electrodes for supercapacitors[J]. Synthetic Metals,2017,227:61-70. doi: 10.1016/j.synthmet.2017.03.005
    [9] SANTINO L M, ACHARYA S, D'ARCY J M. Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors[J]. Journal of Materials Chemistry A,2017,5(23):11772-11780. doi: 10.1039/C7TA00369B
    [10] GUO D, ZHANG H M, YU X Z, et al. Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors[J]. Journal of Materials Chemistry A,2013,1(24):7247-7254. doi: 10.1039/c3ta10909g
    [11] KULAL P M, DUBAL D P, LOKHANDE C D, et al. Chemical synthesis of Fe2O3 thin films for supercapacitor application[J]. Journal of Alloys and Compounds,2011,509(5):2567-2571. doi: 10.1016/j.jallcom.2010.11.091
    [12] XU J, WANG Q F, WANG X W, et al. Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth[J]. ACS Nano,2013,7(6):5453-5462. doi: 10.1021/nn401450s
    [13] 李学林. 二维Ti3C2TX基复合材料的改性及其超级电容器性能研究[D]. 西安: 陕西科技大学, 2021.

    LI Xuelin. Study on modification of two-dimensional Ti3C2TX-based composites and their supercapacitor properties[D]. Xi'an: Shaanxi University of Science and Technology, 2021(in Chinese).
    [14] LI X Y, HAN D, GONG Z Q, et al. Nest-like MnO2 nanowire/hierarchical porous carbon composite for high-performance supercapacitor from oily sludge[J]. Nanomaterials,2021,11(10):2715. doi: 10.3390/nano11102715
    [15] DAI C C, WAN J F, YANG J, et al. H3PO4 solution hydrothermal carbonization combined with KOH activation to prepare argy wormwood-based porous carbon for high-performance supercapacitors[J]. Applied Surface Science,2018,444:105-117. doi: 10.1016/j.apsusc.2018.02.261
    [16] HOU J H, CAO C B, IDREES F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J]. ACS Nano,2015,9(3):2556-2564. doi: 10.1021/nn506394r
    [17] WEI W F, CUI X W, CHEN W X, et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chemical Society Reviews,2011,40(3):1697-1721. doi: 10.1039/C0CS00127A
    [18] 宋晓琪, 雷西萍, 樊凯, 等. 基于生物质衍生炭在超级电容器中的研究进展[J]. 复合材料学报, 2023, 40(3):1328-1339. doi: 10.13801/j.cnki.fhclxb.20220628.002

    SONG Xiaoqi, LEI Xiping, FAN Kai, et al. Research progress of biomass derived carbon in supercapacitors[J]. Acta Materiae Compositae Sinica,2023,40(3):1328-1339(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220628.002
    [19] CHEN Y D, LI S P, HO S H, et al. Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery[J]. Renewable and Sustainable Energy Reviews,2018,96:76-90. doi: 10.1016/j.rser.2018.07.028
    [20] SHAN X F, WU J, ZHANG X T, et al. Review wood for application in electrochemical energy storage devices[J]. Cell Reports Physical Science,2021,2(12):100654. doi: 10.1016/j.xcrp.2021.100654
    [21] TANG Z J, PEI Z X, WANG Z F, et al. Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction[J]. Carbon,2018,130:532-543. doi: 10.1016/j.carbon.2018.01.055
    [22] LV Y K, GAN L H, LIU M X, et al. A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes[J]. Journal of Power Sources,2012,209:152-157. doi: 10.1016/j.jpowsour.2012.02.089
    [23] SONG X Y, MA X L, LI Y, et al. Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors[J]. Applied Surface Science,2019,487:189-197. doi: 10.1016/j.apsusc.2019.04.277
    [24] XUE B C, JIN L, CHEN Z M, et al. The template effect of silica in rice husk for efficient synthesis of the activated carbon based electrode material[J]. Journal of Alloys and Compounds,2019,789:777-784. doi: 10.1016/j.jallcom.2019.03.012
    [25] WANG Y Y, HOU B H, LU H Y, et al. Hierarchically porous N-doped carbon nanosheets derived from grapefruit peels for high-performance supercapacitors[J]. Chemistryselect,2016,1(7):1441-1447. doi: 10.1002/slct.201600133
    [26] 高曼. 松塔生物炭基超级电容器材料的制备与性能研究[D]. 北京: 中国地质大学(北京), 2021.

    GAO Man. Study on the preparation and performance of pinecone-based carbon supercapacitor materials[D]. Beijing: China University of Geosciences(Beijing), 2021(in Chinese).
    [27] 徐增华. 生物质水热炭基多孔炭的制备及其电化学性能研究[D]. 杭州: 浙江大学, 2021.

    XU Zenghua. Preparation and electrochemical of hydrochar-based porous carbons derived from biomass[D]. Hangzhou: Zhejiang University, 2021(in Chinese).
    [28] 芦宇婷. 生物质碳基MnO2复合材料制备及其电化学性能研究[D]. 大连: 大连海洋大学, 2022.

    LU Yuting. Preparation of biomass carbon-based MnO2 composites and study on their electrochemical properties[D]. Dalian: Dalian Ocean University, 2022(in Chinese).
    [29] 徐曼曼. 生物质基多孔材料与其在超级电容器中的应用研究[D]. 广州: 华南理工大学, 2017.

    XU Manman. Study on biomass-based porous materials and their application in supercapacitors[D]. Guangzhou: South China University of Technology, 2017(in Chinese).
    [30] WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry,2012,22(45):23710-23725. doi: 10.1039/c2jm34066f
    [31] ROMANOS J, BECKNER M, RASH T, et al. Nanospace engineering of KOH activated carbon[J]. Nanotechnology,2012,23(1):015401. doi: 10.1088/0957-4484/23/1/015401
    [32] WU F M, GAO J P, ZHAI X G, et al. Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors[J]. Carbon,2019,147:242-251. doi: 10.1016/j.carbon.2019.02.072
    [33] WANG C S, LIU T Z. Nori-based N, O, S, Cl co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor[J]. Journal of Alloys and Compounds,2017,696:42-50. doi: 10.1016/j.jallcom.2016.11.206
    [34] 张本镔, 刘运权, 叶跃元. 活性炭制备及其活化机理研究进展[J]. 现代化工, 2014, 34(3):34-39. doi: 10.16606/j.cnki.issn0253-4320.2014.03.016

    ZHANG Benbin, LIU Yunquan, YE Yueyuan. Progress in preparation of activated carbon and its activation mechanism[J]. Modern Chemical Industry,2014,34(3):34-39(in Chinese). doi: 10.16606/j.cnki.issn0253-4320.2014.03.016
    [35] DING L L, ZOU B, LI Y N, et al. The production of hydrochar-based hierarchical porous carbons for use as electrochemical supercapacitor electrode materials[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,423:104-111. doi: 10.1016/j.colsurfa.2013.02.003
    [36] BARBIERI O, HAHN M, HERZOG A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors[J]. Carbon,2005,43(6):1303-1310. doi: 10.1016/j.carbon.2005.01.001
    [37] WANG D W, LI F, LIU M, et al. Mesopore-aspect-ratio dependence of ion transport in rodtype ordered mesoporous carbon[J]. Journal of Physical Chemistry C,2008,112(26):9950-9955. doi: 10.1021/jp800173z
    [38] WANG Q, YAN J, FAN Z J. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities[J]. Energy & Environmental Science,2016,9(3):729-762. doi: 10.1039/c5ee03109e
    [39] YOON S B, CHAI G S, KANG S K, et al. Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates[J]. Journal of the American Chemical Society,2005,127(12):4188-4189. doi: 10.1021/ja0423466
    [40] KRIVORUCHKO O P, MAKSIMOVA N I, ZAIKOVSKII V I, et al. Study of multiwalled graphite nanotubes and filaments formation from carbonized products of polyvinyl alcohol via catalytic graphitization at 600-800℃ in nitrogen atmosphere[J]. Carbon,2000,38(7):1075-1082. doi: 10.1016/S0008-6223(99)00225-0
    [41] WAN C C, JIAO Y, LI J. Core-shell composite of wood-derived biochar supported MnO2 nanosheets for supercapacitor applications[J]. RSC Advances,2016,6(69):64811-64817. doi: 10.1039/C6RA12043A
    [42] 傅寒立. 虾壳源生物质炭及其MnO2复合材料的制备与超级电容特性[D]. 杭州: 浙江工业大学, 2020.

    FU Hanli. Preparation and supercapacitor propreties of shrimp shell-derived carbons and their MnO2 composites[D]. Hangzhou: Zhejiang University of Technology, 2020(in Chinese).
    [43] BROUSSE T, BÉLANGER D, LONG J W, et al. To be or not to be pseudocapacitive?[J]. Journal of the Electrochemical Society,2015,162:A5185. doi: 10.1149/2.0201505jes
    [44] JIN Y, CHEN H Y, CHEN M H, et al. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces,2013,5(8):3408-3416. doi: 10.1021/am400457x
    [45] LI X S, XU M M, YANG Y, et al. MnO2@corncob carbon composite electrode and all-solid-state supercapacitor with improved electrochemical performance[J]. Materials,2019,12(15):2379. doi: 10.3390/ma12152379
    [46] CHENG Z Y, TAN G P, QIU Y F, et al. High performance electrochemical capacitors based on MnO2/activated-carbon-paper[J]. Journal of Materials Chemistry C,2015,3(24):6166-6171. doi: 10.1039/C5TC00645G
    [47] YUAN X M, ZHANG Y, YAN Y S, et al. Tunable synthesis of biomass-based hierarchical porous carbon scaffold@MnO2 nanohybrids for asymmetric supercapacitor[J]. Chemical Engineering Journal,2020,393:121214. doi: 10.1016/j.cej.2019.03.090
    [48] ZHANG P, LI K X, LIU X H. Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells[J]. Journal of Power Sources,2014,264:248-253. doi: 10.1016/j.jpowsour.2014.04.098
    [49] FUERTES A B, LOTA G, CENTENO T A, et al. Templated mesoporous carbons for supercapacitor application[J]. Electrochimica Acta,2005,50(14):2799-2805. doi: 10.1016/j.electacta.2004.11.027
    [50] SETARO A. Advanced carbon nanotubes functionalization[J]. Journal of Physics-condensed Matter,2017,29(42):423003. doi: 10.1088/1361-648X/aa8248
    [51] YU J, LI M L, WANG X D, et al. Promising high-performance supercapacitor electrode materials from MnO2 nanosheets@bamboo leaf carbon[J]. ACS Omega,2020,5(26):16299-16306. doi: 10.1021/acsomega.0c02169
    [52] WANG X, CHU J, YAN H J, et al. Synthesis and characterization of MnO2/eggplant carbon composite for enhanced supercapacitors[J]. Heliyon, 2022, 8(9): e10631.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1040
  • HTML全文浏览量:  611
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-20
  • 修回日期:  2022-10-25
  • 录用日期:  2022-10-29
  • 网络出版日期:  2022-11-10
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回