留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水中可分散型石墨烯对水泥净浆导电、发热及热电性能的影响

桂尊曜 蒲云东 张惠一 袁小亚

桂尊曜, 蒲云东, 张惠一, 等. 水中可分散型石墨烯对水泥净浆导电、发热及热电性能的影响[J]. 复合材料学报, 2023, 40(11): 6336-6350. doi: 10.13801/j.cnki.fhclxb.20230215.003
引用本文: 桂尊曜, 蒲云东, 张惠一, 等. 水中可分散型石墨烯对水泥净浆导电、发热及热电性能的影响[J]. 复合材料学报, 2023, 40(11): 6336-6350. doi: 10.13801/j.cnki.fhclxb.20230215.003
GUI Zunyao, PU Yundong, ZHANG Huiyi, et al. Effects of dispersible graphene in water on the electrical conductivity, heat generation and thermoelectric properties of cement slurry[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6336-6350. doi: 10.13801/j.cnki.fhclxb.20230215.003
Citation: GUI Zunyao, PU Yundong, ZHANG Huiyi, et al. Effects of dispersible graphene in water on the electrical conductivity, heat generation and thermoelectric properties of cement slurry[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6336-6350. doi: 10.13801/j.cnki.fhclxb.20230215.003

水中可分散型石墨烯对水泥净浆导电、发热及热电性能的影响

doi: 10.13801/j.cnki.fhclxb.20230215.003
基金项目: 国家自然科学基金(51402030);重庆市基础科学与前沿技术研究专项基金(cstc2017jcyjBX0028)
详细信息
    通讯作者:

    袁小亚,博士,教授,博士生导师,研究方向为纳米复合材料、建筑功能材料、高性能水泥混凝土等领域 E-mail: yuanxy@cqjtu.edu.cn

  • 中图分类号: TU528;TB33

Effects of dispersible graphene in water on the electrical conductivity, heat generation and thermoelectric properties of cement slurry

Funds: National Natural Science Foundation of China (51402030); Chongqing Special Fund for Basic Science and Advanced Technology Research (cstc2017jcyjBX0028)
  • 摘要: 为解决石墨烯(G)在水泥浆中均匀分散及其功能化水泥基材料时掺量过高的难题,选择一种兼顾高导电性与水溶性的石墨烯(G-SD)作为导电填料,研究了聚羧酸减水剂(PCE)存在时,木质素磺酸钠(MN)对G-SD在模拟水泥水化孔隙液的饱和氢氧化钙溶液(CH)中分散能力的影响及其对水泥净浆的导电性能、电热性能、融雪化冰和热电性能的影响。吸光度测试表明,当MN与G-SD质量比为3∶1时,G-SD的分散性最佳。电学性能测试发现,石墨烯水泥基材料的渗滤阀值为0.4%,阀值下试件的电热性能良好,在外加30 V电压下通电20 min,试件温度可达320℃,40 min内可将4 cm厚冰层完全融化,具有优异的融雪化冰潜力。热电性能研究表明,当G-SD掺量为0.1% 时,试件的Seebeck系数为154.4 μV/K。以上研究表明,G-SD能在极低掺量下赋予水泥基材料优异的电、热及热电等功能特性。

     

  • 图  1  (a) 二电极布置;(b) 电极间距20 mm

    Figure  1.  (a) Two-electrode arrangement; (b) Electrode spacing 20 mm

    图  2  电热性能实验模型

    AC—Alternating voltage

    Figure  2.  Experimental model of electrothermal performance

    图  3  室内融冰化雪实验装置

    Figure  3.  Experimental device for melting snow and ice indoor

    图  4  热电性能实验装置

    ΔT—The temperature difference between the hot end and the cold end

    Figure  4.  Experimental device of thermoelectric properties

    图  5  G-SD在不同时间段的分散情况

    Figure  5.  Dispersion of G-SD in different time periods

    图  6  G-SD的XPS曲线 (a) 和C1s曲线 (b)

    Figure  6.  XPS curve (a) and C1s survey (b) of G-SD

    图  7  G-SD的拉曼图谱

    Figure  7.  Raman spectrum of G-SD

    图  8  G-SD的XRD图谱

    Figure  8.  XRD patterns of G-SD

    图  9  G-SD的TEM图像

    Figure  9.  TEM images of G-SD

    图  10  G-SD的AFM图像

    Figure  10.  AFM image of G-SD

    图  11  G-SD、MN溶液的紫外吸收图谱

    Figure  11.  UV-visible absorption spectra of G-SD and MN solutions

    图  12  MN含量对G-SD在饱和氢氧化钙(CH)溶液中吸光度的影响

    Figure  12.  Effect of content of MN on the absorbance of G-SD in saturated calcium hydroxide (CH) solution

    图  13  不同 G-SD 溶液体系的Zeta电位图

    Figure  13.  Zeta potential diagram of different G-SD solutions

    图  14  (a) 水泥净浆电阻率随G-SD掺量的变化关系;(b) G-SD水泥净浆电阻率的一阶偏导数图

    Figure  14.  (a) Relationship between the resistivity of cement paste and G-SD content; (b) First-order partial derivative of cement paste resistivity on G-SD

    图  15  水泥净浆复合材料电阻率随温度的变化关系

    Figure  15.  Relationship between the resistivity of cement paste and the temperature

    图  16  不同G-SD掺量对水泥净浆电热性能的影响

    Figure  16.  Effect of the content of G-SD on electrothermal performance of cement paste

    图  17  不同掺量G-SD水泥净浆试件在20 min的热成像图

    Figure  17.  Thermal imaging of cement paste specimens with different contents of G-SD at 20 min

    图  18  带冰层净浆试件的质量随通电时间变化曲线

    Figure  18.  Vibration of cement paste mass with ice layer with power-on time

    图  19  温度对G-SD改性水泥净浆复合材料Seebeck系数的影响

    Figure  19.  Seebeck coefficient and temperature variation relationship of cement-based composites

    表  1  水泥物理性能

    Table  1.   Physical properties of the cement

    Water requirement
    of normal
    consistency/%
    Specific surface
    area/(m2·kg−1)
    Density/
    (g·cm−3)
    Setting time/minFlexural strength/MPaCompression strength/MPa
    InitialFinal3 d28 d3 d28 d
    27.83513.151362445.16.325.643.4
    下载: 导出CSV

    表  2  用于吸光度和Zeta电位测试的水中可分散型石墨烯(G-SD)溶液组成

    Table  2.   Composition of dispersible graphene in water (G-SD) solution for absorbance and Zeta potential test

    SampleWater/mLCa(OH)2/gG-SD/mLPCE/mLMN
    Control900.16100.000
    0MN@1 G-SD900.16100.050
    1MN@1 G-SD900.16100.051∶1
    2MN@1 G-SD900.16100.052∶1
    3MN@1 G-SD900.16100.053∶1
    4MN@1 G-SD900.16100.054∶1
    5MN@1 G-SD900.16100.055∶1
    Notes: ① Content of MN is its mass ratio to G-SD; PCE—Polycarboxylate; MN—Sodium lignosulfonate.
    下载: 导出CSV

    表  3  不同G-SD掺量的水泥净浆配合比

    Table  3.   Mix ratios of cement paste with different contents of G-SD

    SampleCement/gPCE/gWater/gG-SD/%MN/%
    Blank4501.351700.00.00
    0.1%G-SD@C4501.351700.10.03
    0.2%G-SD@C4501.351700.20.06
    0.3%G-SD@C4501.351700.30.09
    0.4%G-SD@C4501.351700.40.12
    0.5%G-SD@C4501.351700.50.15
    Notes: ① Mass ratio to cement; C—Cement.
    下载: 导出CSV

    表  4  文献中碳纳米材料的分散方法

    Table  4.   Dispersion methods of carbon nanomaterials in literature

    ReferenceConductive fillersDispersantDispersion mode and parameter
    This paperGrapheneMNWet mix method, ultrasonic, 30 min
    [30]Graphene nanosheetsSPWet mix method, ultrasonic, 1 h
    [31]Nickel nanowiresPCEWet mix method, ultrasonic, 15 min
    [32]Carbon nanotubesSPWet mix method, ultrasonic, –
    [33]Carbon nanotubes
    /nano carbon black
    3310EWet mix method, mechanical stirring, 4 min
    [27]Multiwalled carbon nanotubesMNWet mix method, ultrasonic, 30 min
    Notes: SP—Polycarboxylate superplasticizer; 3310 E—3310 E polycarboxylate superplasticizer.
    下载: 导出CSV

    表  5  石墨烯水泥基复合材料的渗滤阀值

    Table  5.   Percolation threshold of graphene cement-based composites

    ReferenceConductive fillersPercolation thresholds/%Resistivity/
    (Ω·m)
    This paper Graphene 0.4 53
    [34] Graphene 0.8 800
    [29] Graphene 1.6 2800
    [35] Graphene 2.0 1300
    [36] Graphene 1.4 500
    [37] Graphene 1.2 100
    Note: ① Mass ratio to cement.
    下载: 导出CSV

    表  6  各组水泥净浆试件拟合曲线的拟合参数

    Table  6.   Parameters of fitted curves of each group of cement paste specimen

    Parameter A B R2
    Blank 0.04 30.8
    0.1%G-SD@C 0.10 30.6 0.708
    0.2%G-SD@C 0.62 30.8 0.925
    0.3%G-SD@C 4.56 41.8 0.919
    0.4%G-SD@C 14.80 52.0 0.937
    0.5%G-SD@C 10.80 42.0 0.965
    下载: 导出CSV

    表  7  不同导电相复合材料的升温情况

    Table  7.   Temperature rises of cement-based composites with different conductive fillers

    ReferenceConductive fillersContent/wt%Voltage/VTime/minTemperature rise/℃
    This paper Graphene 0.4 30 20 289.0
    [9] Graphene 0.5 60 60 15.2
    [39] Carbon fiber 2.0 36 80 25.0
    [40] Carbon nanofiber 5.0 150 30 65.0
    [18] Carbon nanotube 1.1 30 10 90.0
    下载: 导出CSV

    表  8  不同导电相复合材料的Seebeck系数

    Table  8.   Seebeck coefficient of composites with different conductive phases

    ReferenceConductive fillersContent/
    wt%
    Seebeck
    coefficient/
    (μV·K−1)
    This paper Graphene 0.1 154.40
    [43] Carbon nanotube 10.0 57.98
    [41] Reduced graphene oxide 1.0 168.12
    [10] Graphene nanosheets 15.0 34.00
    [5] Graphene 10.0 100.00
    下载: 导出CSV
  • [1] 徐鹏, 张轩翰, 明高林, 等. 纳米改性水泥基材料功能化研究进展[J]. 材料导报, 2023, 37(16): 119-128.

    XU Peng, ZHANG Xuanhan, MING Gaolin, et al. Research progress on functionalized nano-modified cement-based materials[J]. Materials Reports, 2023, 37(16): 119-128(in Chinese).
    [2] 樊宇澄, 冯闯. 热电水泥基复合材料研究现状及展望[J]. 材料导报, 2023, 37(17): 145-166.

    FAN Yucheng, FENG Chuang. Current status and prospect of the research of thermoelectric cement-based composites[J]. Materials Reports, 2023, 37(17): 145-166(in Chinese).
    [3] 方思怡, 巴明芳, 许浩锋, 等. HEC分散剂和纤维掺量对短切碳纤维水泥基材料压敏性的影响[J]. 材料导报, 2023, 37(15): 265-303.

    FANG Siyi, BA Mingfang, XU Haofeng, et al. Effects of HEC dispersant and fiber content on compression-sensitivity of short carbon fiber cement-based materials[J]. Materials Reports, 2023, 37(15): 265-303.
    [4] DONG S F, LI L W, ASHOUR A, et al. Self-assembled 0D/2D nano carbon materials engineered smart and multifunctional cement-based composites[J]. Construction and Building Materials,2021,272:121632. doi: 10.1016/j.conbuildmat.2020.121632
    [5] GHOSH S, HARISH S, OHTAKI M, et al. Thermoelectric figure of merit enhancement in cement composites with graphene and transition metal oxides[J]. Materials Today Energy,2020,18:100492. doi: 10.1016/j.mtener.2020.100492
    [6] 吴磊, 吕生华, 李泽雄, 等. 超低掺量氧化石墨烯的分散行为及其对水泥基材料结构与性能的影响[J]. 复合材料学报, 2023, 40(4): 2296-2307.

    WU Lei, LYU Shenghua, LI Zexiong, et al. Dispersion behavior of ultra-low dosage graphene oxide and its effect on structure and performances of cement-based materials[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2296-2307(in Chinese).
    [7] 吕骄阳, 李思李, 田波, 等. 石墨烯在水泥净浆中的分散特性[J]. 复合材料学报, 2022, 39(10):4746-4756. doi: 10.13801/j.cnki.fhclxb.20211214.002

    LYU Jiaoyang, LI Sili, TIAN Bo, et al. Dispersion characteristics of graphene in cement paste[J]. Acta Materiae Compositae Sinica,2022,39(10):4746-4756(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211214.002
    [8] 王悦, 王琴, 郑海宇, 等. 分散剂对石墨烯水泥基复合材料压敏性能的影响研究[J]. 硅酸盐通报, 2021, 40(8):2515-2526. doi: 10.16552/j.cnki.issn1001-1625.2021.08.003

    WANG Yue, WANG Qin, ZHENG Haiyu, et al. Influence of dispersant on pressure-sensitive properties of graphene cement-based composites[J]. Bulletin of the Chinese Ceramic Society,2021,40(8):2515-2526(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2021.08.003
    [9] 袁小亚, 张维福, 曹潘磊, 等. 复掺石墨烯/氧化石墨烯改性砂浆电学与融雪化冰性能研究[J]. 功能材料, 2021, 52(12):12100-12109. doi: 10.3969/j.issn.1001-9731.2021.12.017

    YUAN Xiaoya, ZHANG Weifu, CAO Panlei, et al. Research on electrical properties and performance of deicing and snow-melting of the modified mortar blended with graphene/graphene oxide[J]. Journal of Functional Materials,2021,52(12):12100-12109(in Chinese). doi: 10.3969/j.issn.1001-9731.2021.12.017
    [10] 钱锋, 刘宪昌. 石墨烯增强水泥基复合材料的制备及热电性能研究[J]. 功能材料, 2020, 51(10):10152-10156. doi: 10.3969/j.issn.1001-9731.2020.10.023

    QIAN Feng, LIU Xianchang. Preparation and thermoelectric properties of graphene-reinforced cement-based composites[J]. Journal of Functional Materials,2020,51(10):10152-10156(in Chinese). doi: 10.3969/j.issn.1001-9731.2020.10.023
    [11] YANG S, JIA W, WANG Y, et al. Hydroxylated graphene: A promising reinforcing nanofiller for nanoengineered cement composites[J]. ACS Omega,2021,6(45):30465-30477. doi: 10.1021/acsomega.1c03844
    [12] RAHMANI S, SHARIF A, HABIBNEJAD K A. Dispersion stability of chitosan grafted graphene oxide nanosheets in cementitious environments and their effects on the fluidity of cement mortar nanocomposites[J]. Journal of Applied Polymer Science,2022,139(19):52095. doi: 10.1002/app.52095
    [13] HU M M, LIU M, LI P P, et al. Effects of triethanolamine modified graphene oxide on calcium silicate hydrate in synthesized system and cement composite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,602:125037. doi: 10.1016/j.colsurfa.2020.125037
    [14] 陈操, 翟文涛, 郑文革, 等. 水溶性石墨烯及其高导电率薄膜的制备与表征[J]. 无机材料学报, 2011, 26(7):707-710. doi: 10.3724/SP.J.1077.2011.00707

    CHEN Cao, ZHAI Wentao, ZHENG Wen'ge, et al. Preparation and characterization of water-soluble graphene and highly conducting films[J]. Journal of Inorganic Materials,2011,26(7):707-710(in Chinese). doi: 10.3724/SP.J.1077.2011.00707
    [15] TAO R, LI F, LU X, et al. High-conductivity-dispersibility graphene made by catalytic exfoliation of graphite for lithium-ion battery[J]. Advanced Functional Materials,2021,31(6):2007630. doi: 10.1002/adfm.202007630
    [16] 袁小亚. 一种水溶导电型石墨烯及其制备方法: 中国, CN202310595561.X[P]. 2023-10-13

    YUAN Xiaoya. A water-soluble conductive graphene and its preparation method: China Patent, CN202310595561. X[P]. 2023-10-13(in Chinese).
    [17] 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671−2021[S]. 北京: 中国标准出版社, 2021.

    China National Standardization Management Committee. Strength test method of cement mortar (ISO method): GB/T 17671−2021[S]. Beijing: China Standards Press, 2021(in Chinese).
    [18] LIEBSCHER M, TZOUNIS L, JUNGER D, et al. Electrical joule heating of cementitious nanocomposites filled with multi-walled carbon nanotubes: Role of filler concentration, water content, and cement age[J]. Smart Materials and Structures,2020,29(12):125019. doi: 10.1088/1361-665X/abc23b
    [19] 余东升, 付芳, 贾铁昆, 等. 亲水型功能化石墨烯的分散性及其对水泥基复合材料力学性能的影响[J]. 复合材料学报, 2021, 38(2):622-629. doi: 10.13801/j.cnki.fhclxb.20200710.002

    YU Dongsheng, FU Fang, JIA Tiekun, et al. Dispersity of hydrophilic functional graphene and its impact on mechanical properties of cement based composites[J]. Acta Materiae Compositae Sinica,2021,38(2):622-629(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200710.002
    [20] 陈宽, 田建华, 崔兰, 等. 石墨烯和铂/石墨烯的合成及其表征[J]. 无机化学学报, 2012, 28(8):1541-1546.

    CHEN Kuan, TIAN Jianhua, CUI Lan, et al. Preparation and characterization of graphene and platinum/graphene[J]. Chinese Journal of Inorganic Chemistry,2012,28(8):1541-1546(in Chinese).
    [21] 姜晓琳, 李君, 刘臻, 等. 石墨烯炭材料的结构表征方法研究[J/OL]. 洁净煤技术, 2022: 1-13. [2023-02-08]. https: //doi.org/10.13226/j.issn.1006-6772.22010701.

    JIANG Xiaolin, LI Jun, LIU Zhen, et al. Graphene carbon materials and their characterization methods research[J/OL]. Clean Coal Technology, 2022: 1-13. [2023-02-08]. https://doi.org/10.13226/j.issn.1006-6772.22010701(in Chinese).
    [22] 胡圣飞, 魏文闵, 刘清亭, 等. 超临界流体剥离制备石墨烯研究进展[J]. 材料工程, 2017, 45(3):28-34. doi: 10.11868/j.issn.1001-4381.2015.001011

    HU Shengfei, WEI Wenmin, LIU Qingting, et al. Research progress on preparation of graphene by supercritical fluid exfoliation[J]. Journal of Materials Engineering,2017,45(3):28-34(in Chinese). doi: 10.11868/j.issn.1001-4381.2015.001011
    [23] DRESSELHAUS M S, DRESSELHAUS G F, HOFMANN M. Raman spectroscopy as a probe of graphene and carbon nanotubes[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2008,366(1863):231-236. doi: 10.1098/rsta.2007.2155
    [24] WALL M. The Raman spectroscopy of graphene and the determination of layer thickness[J]. Thermal Science, 2011, 5: 1-5.
    [25] 彭黎琼, 谢金花, 郭超, 等. 石墨烯的表征方法[J]. 功能材料, 2013, 44(21):3055-3059. doi: 10.3969/j.issn.1001-9731.2013.21.001

    PENG Liqiong, XIE Jinhua, GUO Chao, et al. Review of characterization methods of graphene[J]. Journal of Functional Materials,2013,44(21):3055-3059(in Chinese). doi: 10.3969/j.issn.1001-9731.2013.21.001
    [26] 盛况, 杨森, 毕俊峰, 等. 有机染料辅助分散氧化石墨烯及其对水泥砂浆强度和耐久性的影响[J]. 复合材料学报, 2022, 39(11):5486-5498.

    SHENG Kuang, YANG Sen, BI Junfeng, et al. Effect of organic dye assisted dispersion of graphene oxide on mechanical properties and durability of cement mortar[J]. Acta Materiae Compositae Sinica,2022,39(11):5486-5498(in Chinese).
    [27] 杨森, 王远贵, 齐孟, 等. 氧化石墨烯对多壁碳纳米管掺配水泥砂浆强度、压敏性能与微观结构的影响[J]. 复合材料学报, 2022, 39(5):2340-2355.

    YANG Sen, WANG Yuangui, QI Meng, et al. Effect of graphene oxide on mechanical properties, piezoresistivity and microstructure of cement mortar blended with multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica,2022,39(5):2340-2355(in Chinese).
    [28] 王晓楠, 冯德成. 纳米碳/水泥基复合材料研究进展[J/OL]. 材料导报, 2023(21): 1-29[2023-11-03].

    WANG Xiaonan, FENG Decheng. Research progress on carbon nanomaterials modified cementitious composites[J/OL]. Materials Reports, 2023(21): 1-29[2023-11-03].
    [29] 刘金涛, 黄存旺, 杨杨, 等. 三维石墨烯-碳纳米管/水泥净浆的压敏性能[J]. 复合材料学报, 2022, 39(1):313-321.

    LIU Jintao, HUANG Cunwang, YANG Yang, et al. Piezoresistivity of three dimensional graphene-carbon nanotubes/cement paste[J]. Acta Materiae Compositae Sinica,2022,39(1):313-321(in Chinese).
    [30] DU H J, PANG S D. Dispersion and stability of graphene nanoplatelet in water and its influence on cement composites[J]. Construction and Building Materials,2018,167:403-413. doi: 10.1016/j.conbuildmat.2018.02.046
    [31] 曹亚龙, 徐金霞, 蒋林华, 等. 自感知镍纳米线/水泥基复合材料的制备及压敏性能[J]. 复合材料学报, 2018, 35(4):957-963. doi: 10.13801/j.cnki.fhclxb.20170622.001

    CAO Yalong, XU Jinxia, JIANG Linhua, et al. Fabrication and piezoresistivity of self-sensing Ni nanowire/cement composites[J]. Acta Materiae Compositae Sinica,2018,35(4):957-963(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170622.001
    [32] YOO D Y, YOU I, ZI G, et al. Effects of carbon nanomaterial type and amount on self-sensing capacity of cement paste[J]. Measurement,2019,134:750-761. doi: 10.1016/j.measurement.2018.11.024
    [33] DING S Q, RUAN Y F, YU X, et al. Self-monitoring of smart concrete column incorporating CNT/NCB composite fillers modified cementitious sensors[J]. Construction and Building Materials,2019,201:127-137. doi: 10.1016/j.conbuildmat.2018.12.203
    [34] 赵昕, 黄存旺, 傅佳丽, 等. 石墨烯水泥基复合材料的电学性能[J]. 建筑材料学报, 2022, 25(1):8-15. doi: 10.3969/j.issn.1007-9629.2022.01.002

    ZHAO Xin, HUANG Cunwang, FU Jiali, et al. Electrical properties of graphene cement based composites[J]. Journal of Building Materials,2022,25(1):8-15(in Chinese). doi: 10.3969/j.issn.1007-9629.2022.01.002
    [35] ZHANG N, SHE W, DU F Y, et al. Experimental study on mechanical and functional properties of reduced graphene oxide/cement composites[J]. Materials,2020,13(13):3015-3033. doi: 10.3390/ma13133015
    [36] 蒋林华, 白舒雅, 金鸣, 等. 石墨烯水泥基复合材料的电导率研究[J]. 哈尔滨工程大学学报, 2018, 39(3):601-606. doi: 10.11990/jheu.201610043

    JIANG Linhua, BAI Shuya, JIN Ming, et al. Electrical conductivity of the graphene/cement composites[J]. Journal of Harbin Engineering University,2018,39(3):601-606(in Chinese). doi: 10.11990/jheu.201610043
    [37] BAI S Y, JIANG L H, JIANG Y, et al. Research on electrical conductivity of graphene/cement composites[J]. Advances in Cement Research,2020,32(2):45-52. doi: 10.1680/jadcr.16.00170
    [38] HUANG Y, LI N, MA Y F, et al. The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites[J]. Carbon,2007,45(8):1614-1621. doi: 10.1016/j.carbon.2007.04.016
    [39] 魏建强. 低温下碳纤维混凝土电热效应实验[J]. 西安科技大学学报, 2018, 38(3):473-478. doi: 10.13800/j.cnki.xakjdxxb.2018.0318

    WEI Jianqiang. Effect of thermoelectricity on carbon fiber reinforced concrete under low temperatures[J]. Journal of Xi'an University of Science and Technology,2018,38(3):473-478(in Chinese). doi: 10.13800/j.cnki.xakjdxxb.2018.0318
    [40] GOMIS J, GALAO O, GOMIS V, et al. Self-heating and deicing conductive cement: Experimental study and modeling[J]. Construction and Building Materials,2015,75:442-449. doi: 10.1016/j.conbuildmat.2014.11.042
    [41] WEI J, JIA Z Y, WANG Y, et al. Enhanced thermoelectric performance of low carbon cement-based composites by reduced graphene oxide[J]. Energy and Buildings,2021,250:111279. doi: 10.1016/j.enbuild.2021.111279
    [42] TZOUNIS L, LIEBSCHER M, FUGE R, et al. p- and n-type thermoelectric cement composites with CVD grown p- and n-doped carbon nanotubes: Demonstration of a structural thermoelectric generator[J]. Energy and Buildings,2019,191:151-163. doi: 10.1016/j.enbuild.2019.03.027
    [43] WEI J, FAN Y, ZHAO L L, et al. Thermoelectric properties of carbon nanotube reinforced cement-based composites fabricated by compression shear[J]. Ceramics International,2018,44(6):5829-5833. doi: 10.1016/j.ceramint.2018.01.074
  • 加载中
图(19) / 表(8)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  176
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 修回日期:  2022-12-26
  • 录用日期:  2023-01-14
  • 网络出版日期:  2023-02-16
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回