留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水中可分散型石墨烯对水泥净浆导电、发热及热电性能的影响

桂尊曜 蒲云东 张惠一 袁小亚

桂尊曜, 蒲云东, 张惠一, 等. 水中可分散型石墨烯对水泥净浆导电、发热及热电性能的影响[J]. 复合材料学报, 2023, 41(0): 1-15
引用本文: 桂尊曜, 蒲云东, 张惠一, 等. 水中可分散型石墨烯对水泥净浆导电、发热及热电性能的影响[J]. 复合材料学报, 2023, 41(0): 1-15
Zunyao GUI, Yundong PU, Huiyi ZHANG, Xiaoya YUAN. Effects of dispersible graphene in water on the electrical conductivity, heat generation and thermoelectric properties of cement slurry[J]. Acta Materiae Compositae Sinica.
Citation: Zunyao GUI, Yundong PU, Huiyi ZHANG, Xiaoya YUAN. Effects of dispersible graphene in water on the electrical conductivity, heat generation and thermoelectric properties of cement slurry[J]. Acta Materiae Compositae Sinica.

水中可分散型石墨烯对水泥净浆导电、发热及热电性能的影响

基金项目: 国家自然科学基金 (51402030);重庆市基础科学与前沿技术研究专项基金(cstc2017jcyjBX0028)
详细信息
    通讯作者:

    袁小亚,博士,教授,博士生导师,研究方向为纳米复合材料、建筑功能材料、高性能水泥混凝土等领域 E-mail: yuanxy@cqjtu.edu.cn

  • 中图分类号: TU528

Effects of dispersible graphene in water on the electrical conductivity, heat generation and thermoelectric properties of cement slurry

Funds: National Natural Science Foundation of China(51402030);Chongqing Special Fund for Basic Science and Advanced Technology Research (cstc2017jcyjBX0028)
  • 摘要: 石墨烯(G)具有优异的导电性和二维平面结构,是功能化水泥基材料的理想填料。近年来,基于G改性的智能和功能化水泥基材料成为该领域的研究热点。但目前G功能化水泥基材料面临的难题是G在水泥浆体中的分散不均匀及其导致的功能化水泥基材料时掺量过高。本文参照国家发明专利(申请号202211299955.2)制备一个兼顾高导电性和水溶性的石墨烯(G-SD),其薄膜电导率为300S/cm,在水溶液中的最大浓度为5.4g/L,在最大浓度下静置5d仍能稳定均匀分散,具有优异的导电性与水溶性,克服了G的高导电性与水溶性不兼容的难题。G-SD优良的导电性与水溶性,保证了其均匀分散在水泥浆体中,并将G功能化水泥基材料的渗滤阀值从1.6wt%降至0.4wt%。在该渗滤阀值下,G-SD改性水泥净浆复合材料的电阻率下降了94.0%;电热性能表现最佳,试件表面温度从31℃上升到320℃,平均升温速率为14.8℃/min,并能在40min内将4cm厚冰层完全融化,这表明G-SD改性水泥净浆复合材料有不错的融冰化雪潜力,对冬季道路除冰有积极意义。不同掺量G-SD试件在20min的热成像图Thermal imaging of G-SD specimens with different content at 20min

     

  • 图  1  二电极布置

    Figure  1.  Two-electrode arrangement

    图  2  电热性能实验模型

    Figure  2.  Experimental model of electrothermal performance

    图  3  室内融冰化雪实验装置

    Figure  3.  Experimental device for melting snow and ice indoor

    图  4  热电性能实验装置

    Figure  4.  Experimental device of thermoelectric properties

    图  5  G-SD在不同时间段的分散情况

    Figure  5.  Dispersion of G-SD in different time periods

    图  6  G-SD的XPS曲线(a)、G-SD的C1 s 的XPS曲线(b)

    Figure  6.  XPS curve of G-SD (a) 、C1 s survey of G-SD (b)

    图  7  G-SD的拉曼光谱图

    Figure  7.  Raman spectrum of G-SD

    图  8  G-SD的XRD图谱

    Figure  8.  XRD pattern of G-SD

    图  9  G-SD的TEM图像

    Figure  9.  TEM image of G-SD

    图  10  G-SD的AFM图像

    Figure  10.  AFM image of G-SD

    图  11  G-SD、MN溶液的紫外吸收光谱图

    Figure  11.  UV-visible absorption spectra of G-SD and MN solutions

    图  12  MN 含量对G-SD 在饱和 CH 溶液中吸光度的影响

    Figure  12.  Effect of content of MN on the absorbance of G-SD in saturated CH solution

    图  13  不同 G-SD 溶液体系的 Zeta 电位图

    Figure  13.  Zeta potential diagram of different G-SD solutions

    图  14  水泥净浆电阻率随 G-SD掺量的变化关系(a); G-SD水泥净浆电阻率的一阶偏导数图(b)

    Figure  14.  Relationship between the resistivity of cement paste and G-SD content(a); First-order partial derivative of cement paste resistivity on G-SD (b)

    图  15  水泥净浆复合材料电阻率随温度的变化关系

    Figure  15.  Relationship between the resistivity of cement paste and the temperature

    图  16  不同G-SD掺量对水泥净浆电热性能的影响

    Figure  16.  Effect of the content of G-SD on electrothermal performance of cement paste with different contents of G-SD

    图  17  不同掺量G-SD水泥净浆试件在20 min的热成像图

    Figure  17.  Thermal imaging of cement paste specimens with different contents of G-SD at 20 min

    图  18  带冰层净浆试件的质量随通电时间变化曲线

    Figure  18.  Vibration of cement paste mass with ice layer with power-on time

    图  19  温度对G-SD改性水泥净浆复合材料Seebeck系数的影响

    Figure  19.  Seebeck coefficient and temperature variation relationship of cement-based composites

    表  1  水泥物理性能

    Table  1.   Physical properties of the cement

    Water requirement
    of normal
    consistency/%
    Specific surface
    area/(mkg−1)
    Density/
    (g·cm−3)
    Setting time/
    min
    Flexural strength/
    MPa
    Compression strength/
    MPa
    InitialFinal3 days28 days3 days28 days
    27.83513.151362445.16.325.643.4
    下载: 导出CSV

    表  2  用于吸光度和 Zeta 电位测试的 G-SD 溶液组成

    Table  2.   Composition of G-SD solution for absorbance and zeta potential test

    SampleWater/mLCa(OH)2/gG-SD/mLPCE/mLMN
    Control900.161000
    0MN@1 G-SD900.16100.050
    1MN@1 G-SD900.16100.051∶1
    2MN@1 G-SD900.16100.052∶1
    3MN@1 G-SD900.16100.053∶1
    4MN@1 G-SD900.16100.054∶1
    5MN@1 G-SD900.16100.055∶1
    Notes:①Content of MN is its mass ratio to G-SD ; G-SD-Dispersible graphene in water ;PCE-Polycarboxylate ;MN-Sodium lignosulfonate.
    下载: 导出CSV

    表  3  不同G-SD掺量的水泥净浆配合比

    Table  3.   Mix ratios of cement paste with different contents of G-SD

    SampleCement/gPCE/gWater/gG-SD/%MN/%
    Blank4501.3517000
    0.1%G-SD@C4501.351700.10.03
    0.2%G-SD@C4501.351700.20.06
    0.3%G-SD@C4501.351700.30.09
    0.4%G-SD@C4501.351700.40.12
    0.5%G-SD@C4501.351700.50.15
    Notes:①Mass ratio to cement ; C-Cement.
    下载: 导出CSV

    表  4  文献中碳纳米材料的分散方法

    Table  4.   Dispersion methods of carbon nanomaterials in literature

    ReferenceConductive fillersDispersantDispersion mode and parameter
    This paperGrapheneMNWet mix method, ultrasonic,30 min
    [28]Graphene nanosheetsSPWet mix method, ultrasonic,1 h
    [29]Nickel nanowiresPCEWet mix method, ultrasonic,15 min
    [30]Carbon nanotubesSPWet mix method, ultrasonic, -
    [31]Carbon nanotubes
    /nano carbon black
    3310EWet mix method, mechanical stirring, 4 min
    [25]Multiwalled carbon nanotubesMNWet mix method, ultrasonic, 30 min
    Notes: SP- polycarboxylate superplasticizer;3310 E- 3310 E polycarboxylate superplasticizer
    下载: 导出CSV

    表  5  石墨烯水泥基复合材料的渗滤阀值

    Table  5.   Percolation threshold of graphene cement-based composites

    ReferenceConductive fillersPercolation thresholds/%Resistivity/(Ω·m)
    This paperGraphene0.453
    [32]Graphene0.8800
    [27]Graphene1.62800
    [33]Graphene2.01300
    [34]Graphene1.4500
    [35]Graphene1.2100
    Note:①Mass ratio to cement
    下载: 导出CSV

    表  6  各组水泥净浆试件拟合曲线的拟合参数

    Table  6.   Parameters of fitted curves of each group of cement paste specimen

    ParameterBlank0.1%G-SD@C0.2%G-SD@C0.3%G-SD@C0.4%G-SD@C0.5%G-SD@C
    A 0.04 0.10 0.62 4.56 14.8 10.8
    B 30.8 30.6 30.8 41.8 52.0 42.0
    R2 —— 0.708 0.925 0.919 0.965 0.937
    下载: 导出CSV

    表  7  不同导电相复合材料的升温情况

    Table  7.   Temperature rises of cement-based composites with different conductive fillers

    ReferenceConductive fillersContent/wt%Voltage/VTime/minTemperature rise/℃
    This paper Graphene 0.4 30 20 289
    [9] Graphene 0.5 60 60 15.2
    [37] Carbon fiber 2 36 80 25.0
    [38] Carbon nanofiber 5 150 30 65
    [16] Carbon nanotube 1.1 30 10 90
    下载: 导出CSV

    表  8  不同导电相复合材料的Seebeck系数

    Table  8.   Seebeck coefficient of composites with different conductive phases

    ReferenceConductive fillersContent/
    wt%
    Seebeck
    coefficient/
    (μV·K−1)
    This paperGraphene0.1154.4
    [41]Carbon nanotube1057.98
    [39]Reduced graphene oxide1.0168.12
    [10]Graphene nanosheets1534
    [5]Graphene10100
    下载: 导出CSV
  • [1] 徐鹏, 张轩翰, 明高林, 等. 纳米改性水泥基材料功能化研究进展 [J/OL]. 材料导报, 2023, (16): 1-19. [2023-02-08]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220810.1821.004.html.

    XU Peng, ZHANG Xuanhan, MING Gaolin, et al. Research Progress on Functionalized Nano-modified Cement-based Materials [J/OL]. Materials Reports, 2023, (16): 1-19. [2023-02-08]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220810.1821.004.html. (in Chinese)
    [2] 樊宇澄, 冯闯. 热电水泥基复合材料研究现状及展望 [J/OL]. 材料导报, 2023, (17): 1-51. [2023-02-08]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220727.1634.008.html.

    FAN Yucheng, FENG Chuang. Current Status and Prospect of the Research of Thermoelectric Cement-based Composites [J/OL]. Materials Reports, 2023, (17): 1-51. [2023-02-08]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220727.1634.008.html. (in Chinese)
    [3] 方思怡, 巴明芳, 许浩锋, 等. HEC分散剂和纤维掺量对短切碳纤维水泥基材料压敏性的影响 [J/OL]. 材料导报, 2023, (19): 1-17. [2023-02-08]. http://kns.cnki.net/kcms/detail/50.1078.tb.20220922.1726.014.html.

    FANG Siyi, BA Mingfang, XU Haofeng, et al. Effects of HEC Dispersant and Fiber Content on Compression-sensitivity of Short Carbon Fiber Cement-based Materials [J/OL]. Materials Reports, 2023, (19): 1-17. [2023-02-08]. http://kns.cnki.net/kcms/detail/50.1078.tb.20220922.1726.014.html. (in Chinese)
    [4] DONG S. F., LI L. W., ASHOUR A., et al. Self-assembled 0 D/2 D nano carbon materials engineered smart and multifunctional cement-based composites[J]. Construction and Building Materials,2021,272:121632. doi: 10.1016/j.conbuildmat.2020.121632
    [5] GHOSH S. , HARISH S., OHTAKI M., et al. Thermoelectric figure of merit enhancement in cement composites with graphene and transition metal oxides[J]. Materials Today Energy,2020,18:100492. doi: 10.1016/j.mtener.2020.100492
    [6] 吴磊, 吕生华, 李泽雄, 等. 超低掺量氧化石墨烯的分散行为及其对水泥基材料结构与性能的影响 [J/OL]. 复合材料学报, [2023-02-08] https://doi.org/10.13801/j.cnki.fhclxb.20220623.004

    WU Lei, LU Shenghua, LI Zexiong, et al. Dispersion behavior of ultra-low dosage graphene oxide and itseffect on structure and performances of cement-based materials [J/OL]. Acta Materiae Compositae Sinica, [2023-02-08] https://doi.org/10.13801/j.cnki.fhclxb.20220623.004 (in Chinese)
    [7] 吕骄阳, 李思李, 田波, 等. 石墨烯在水泥净浆中的分散特性[J]. 复合材料学报, 2022, 39(10):4746-4756.

    LU Jiaoyang, LI Sili, TIAN Bo, et al. Acta Materiae Compositae Sinica[J]. Dispersion characteristics of graphene in cement paste,2022,39(10):4746-4756(in Chinese).
    [8] 王悦, 王琴, 郑海宇, 等. 分散剂对石墨烯水泥基复合材料压敏性能的影响研究[J]. 硅酸盐通报, 2021, 40(8):2515-2526. doi: 10.16552/j.cnki.issn1001-1625.2021.08.003

    WANG Yue, WANG Qin, ZHENG Haiyu, et al. Influence of Dispersant on Pressure-Sensitive Properties of Graphene Cement-Based Composites[J]. Bulletin of the Chinese Ceramic Society,2021,40(8):2515-2526(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2021.08.003
    [9] 袁小亚, 张维福, 曹潘磊, 等. 复掺石墨烯/氧化石墨烯改性砂浆电学与融雪化冰性能研究[J]. 功能材料, 2021, 52(12):12100-12109. doi: 10.3969/j.issn.1001-9731.2021.12.017

    YUAN Xiaoya, ZHANG Weifu, CAO Panlei, et al. Research on electrical properties and performance of deicing and snow-melting of the modified mortar blended with graphene/graphene oxide[J]. Journal of Functional Materials,2021,52(12):12100-12109(in Chinese). doi: 10.3969/j.issn.1001-9731.2021.12.017
    [10] 钱锋, 刘宪昌. 石墨烯增强水泥基复合材料的制备及热电性能研究[J]. 功能材料, 2020, 51(10):10152-10156. doi: 10.3969/j.issn.1001-9731.2020.10.023

    QIAN Feng, LIU Xianchang. Preparation and thermoelectric properties of graphene-reinforced cement-based composites[J]. Journal of Functional Materials,2020,51(10):10152-10156(in Chinese). doi: 10.3969/j.issn.1001-9731.2020.10.023
    [11] YANG S. , JIA W., WANG Y., et al. Hydroxylated Graphene: A Promising Reinforcing Nanofiller for Nanoengineered Cement Composites[J]. ACS Omega,2021,6(45):30465-30477. doi: 10.1021/acsomega.1c03844
    [12] RAHMANI Sima, SHARIF Alireza, HABIBNEJAD KORAYEM Asghar. Dispersion stability of chitosan grafted graphene oxide nanosheets in cementitious environments and their effects on the fluidity of cement mortar nanocomposites[J]. Journal of Applied Polymer Science,2022,139(19):52095. doi: 10.1002/app.52095
    [13] HU Miaomiao, LIU Ming, LI Pengpeng, et al. Effects of triethanolamine modified graphene oxide on calcium silicate hydrate in synthesized system and cement composite[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,602:125037. doi: 10.1016/j.colsurfa.2020.125037
    [14] 陈操, 翟文涛, 郑文革, 等. 水溶性石墨烯及其高导电率薄膜的制备与表征[J]. 无机材料学报, 2011, 26(7):707-710. doi: 10.3724/SP.J.1077.2011.00707

    CHEN Cao, ZHAI Wen-Tao, ZHENG Wen-Ge, et al. Preparation and Characterization of Water-soluble Graphene and HighlyConducting Films[J]. Journal of Inorganic Materials,2011,26(7):707-710(in Chinese). doi: 10.3724/SP.J.1077.2011.00707
    [15] TAO Ran, LI Fan, LU Xing, et al. High-Conductivity-Dispersibility Graphene Made by Catalytic Exfoliation of Graphite for Lithium-Ion Battery[J]. Advanced Functional Materials,2021,31(6):2007630. doi: 10.1002/adfm.202007630
    [16] LIEBSCHER Marco, TZOUNIS Lazaros, JUNGER Dominik, et al. Electrical Joule heating of cementitious nanocomposites filled with multi-walled carbon nanotubes: role of filler concentration, water content, and cement age[J]. Smart Materials and Structures,2020,29(12):125019. doi: 10.1088/1361-665X/abc23b
    [17] 余东升, 付芳, 贾铁昆, 等. 亲水型功能化石墨烯的分散性及其对水泥基复合材料力学性能的影响[J]. 复合材料学报, 2021, 38(2):622-629. doi: 10.13801/j.cnki.fhclxb.20200710.002

    YU Dongsheng, FU Fang, ZHANG Huijun, et al. Dispersity of hydrophilic functional graphene and its impact on mechanical properties of cement based composites[J]. Acta Materiae Compositae Sinica,2021,38(2):622-629(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200710.002
    [18] 陈宽, 田建华, 崔兰, 等. 石墨烯和铂/石墨烯的合成及其表征[J]. 无机化学学报, 2012, 28(8):1541-1546.

    CHEN Kuan, TIAN Jian-Hua, CUI Lan, et al. Preparation and Characterization of Graphene and Platinum/Graphene[J]. CHINESE JOURNAL OF INORGANIC CHEMISTRY,2012,28(8):1541-1546(in Chinese).
    [19] 姜晓琳, 李君, 刘臻, 等. 石墨烯炭材料的结构表征方法研究 [J/OL]. 洁净煤技术, 2022: 1-13. [2023-02-08]. https: //doi.org/10.13226/j.issn.1006-6772.22010701.

    JIANG Xiaolin, LI Jun, LIU Zhen, et al. Graphene carbon materials and their characterization methods research [J/OL]. Clean Coal Technology, 2022: 1-13. [2023-02-08]. https://doi.org/10.13226/j.issn.1006-6772.22010701. (in Chinese)
    [20] 胡圣飞, 魏文闵, 刘清亭, 等. 超临界流体剥离制备石墨烯研究进展[J]. 材料工程, 2017, 45(3):28-34. doi: 10.11868/j.issn.1001-4381.2015.001011

    HU Sheng-fei, WEI Wen-min, LIU Qing-ting, et al. Research Progress on Preparation of Graphene by Supercritical Fluid Exfoliation[J]. Journal of Materials Engineering,2017,45(3):28-34(in Chinese). doi: 10.11868/j.issn.1001-4381.2015.001011
    [21] DRESSELHAUS Mildred S. , DRESSELHAUS Gene F, HOFMANN Mario. Raman spectroscopy as a probe of graphene and carbon nanotubes[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2008,366(1863):231-236. doi: 10.1098/rsta.2007.2155
    [22] WALL Mark. The Raman Spectroscopy of Graphene and the Determination of Layer Thickness, F, 2011 [C].
    [23] 彭黎琼, 谢金花, 郭超, 等. 石墨烯的表征方法[J]. 功能材料, 2013, 44(21):3055-3059. doi: 10.3969/j.issn.1001-9731.2013.21.001

    PENG Liqiong, XIE Jinhua, GUO Chao, et al. Review of characterization methods of graphene[J]. Journal of Functional Materials,2013,44(21):3055-3059(in Chinese). doi: 10.3969/j.issn.1001-9731.2013.21.001
    [24] 盛况, 杨森, 毕俊峰, 等. 有机染料辅助分散氧化石墨烯及其对水泥砂浆强度和耐久性的影响[J]. 复合材料学报, 2022, 39(11):5486-5498.

    SHENG Kuang, YANG Sen, BI Junfeng, et al. Effect of organic dye assisted dispersion of graphene oxide on mechanical properties and durability of cement mortar[J]. Acta Materiae Compositae Sinica,2022,39(11):5486-5498(in Chinese).
    [25] 杨森, 王远贵, 齐孟, 等. 氧化石墨烯对多壁碳纳米管掺配水泥砂浆强度、压敏性能与微观结构的影响[J]. 复合材料学报, 2022, 39(5):2340-2355.

    YANG Sen, WANG Yuangui, QI Meng, et al. Effect of graphene oxide on mechanical properties, piezoresistivity and microstructure of cement mortar blended with multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica,2022,39(5):2340-2355(in Chinese).
    [26] 王晓楠, 冯德成. 纳米碳/水泥基复合材料研究进展 [J/OL]. 材料导报, 2022: 1-29. [2023-02-08]. http://kns.cnki.net/kcms/detail/50.1078.TB.20221130.1558.009.html.

    WANG Xiaonan, FENG Decheng. [J/OL]. Materials Reports, 2022: 1-29. [2023-02-08]. http://kns.cnki.net/kcms/detail/50.1078.TB.20221130.1558.009.html.(in Chinese)
    [27] 刘金涛, 黄存旺, 杨杨, 等. 三维石墨烯-碳纳米管/水泥净浆的压敏性能[J]. 复合材料学报, 2022, 39(1):313-321.

    LIU Jintao, HUANG Cunwang, YANG Yang, et al. Piezoresistivity of three dimensional graphene-carbon nanotubes/cement paste[J]. Acta Materiae Compositae Sinica,2022,39(1):313-321(in Chinese).
    [28] DU Hongjian, PANG Sze Dai. Dispersion and stability of graphene nanoplatelet in water and its influence on cement composites[J]. Construction and Building Materials,2018,167:403-413. doi: 10.1016/j.conbuildmat.2018.02.046
    [29] 曹亚龙, 徐金霞, 蒋林华, 等. 自感知镍纳米线/水泥基复合材料的制备及压敏性能[J]. 复合材料学报, 2018, 35(4):957-963. doi: 10.13801/j.cnki.fhclxb.20170622.001

    CAO Yalong, XU Jinxia, JIANG Linhua, et al. Fabrication and piezoresistivity of self-sensing Ni nanowire/cement composites[J]. Acta Materiae Compositae Sinica,2018,35(4):957-963(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170622.001
    [30] YOO Doo-Yeol, YOU Ilhwan, ZI Goangseup, et al. Effects of carbon nanomaterial type and amount on self-sensing capacity of cement paste[J]. Measurement,2019,134:750-761. doi: 10.1016/j.measurement.2018.11.024
    [31] DING Siqi, RUAN Yanfeng, YU Xun, et al. Self-monitoring of smart concrete column incorporating CNT/NCB composite fillers modified cementitious sensors[J]. Construction and Building Materials,2019,201:127-137. doi: 10.1016/j.conbuildmat.2018.12.203
    [32] 赵昕, 黄存旺, 傅佳丽, 等. 石墨烯水泥基复合材料的电学性能[J]. 建筑材料学报, 2022, 25(1):8-15. doi: 10.3969/j.issn.1007-9629.2022.01.002

    ZHAO Xin, HUANG Cunwang, FU Jiali, et al. Electrical Properties of Graphene Cement Based Composites[J]. Journal of Building Materials,2022,25(1):8-15(in Chinese). doi: 10.3969/j.issn.1007-9629.2022.01.002
    [33] ZHANG N. , SHE W., DU F. Y., et al. Experimental Study on Mechanical and Functional Properties of Reduced Graphene Oxide/Cement Composites[J]. Materials,2020,13(13):3015. doi: 10.3390/ma13133015
    [34] 蒋林华, 白舒雅, 金鸣, 等. 石墨烯水泥基复合材料的电导率研究[J]. 哈尔滨工程大学学报, 2018, 39(3):601-606. doi: 10.11990/jheu.201610043

    JIANG Linhua, BAI Shuya, JIN Ming, et al. Electrical conductivity of the graphene/cement composites[J]. Journal of Harbin Engineering University,2018,39(3):601-606(in Chinese). doi: 10.11990/jheu.201610043
    [35] BAI S. Y., JIANG L. H., JIANG Y., et al. Research on electrical conductivity of graphene/cement composites[J]. Advances in Cement Research,2020,32(2):45-52. doi: 10.1680/jadcr.16.00170
    [36] HUANG Yi, LI Ning, MA Yanfeng, et al. The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites[J]. Carbon,2007,45(8):1614-1621. doi: 10.1016/j.carbon.2007.04.016
    [37] 魏建强. 低温下碳纤维混凝土电热效应实验[J]. 西安科技大学学报, 2018, 38(3):473-478. doi: 10.13800/j.cnki.xakjdxxb.2018.0318

    WEI Jianqiang. Effect of thermoelectricity on carbon fiber reinforcedconcrete under low temperatures[J]. Journal of Xi'an University of Science and Technology,2018,38(3):473-478(in Chinese). doi: 10.13800/j.cnki.xakjdxxb.2018.0318
    [38] GOMIS J. , GALAO O., GOMIS V., et al. Self-heating and deicing conductive cement. Experimental study and modeling[J]. Construction and Building Materials,2015,75:442-449. doi: 10.1016/j.conbuildmat.2014.11.042
    [39] WEI Jian, JIA Zhaoyang, WANG Yuan, et al. Enhanced thermoelectric performance of low carbon cement-based composites by reduced graphene oxide[J]. Energy and Buildings,2021,250:111279. doi: 10.1016/j.enbuild.2021.111279
    [40] TZOUNIS Lazaros, LIEBSCHER Marco, FUGE Robert, et al. P- and n-type thermoelectric cement composites with CVD grown p- and n-doped carbon nanotubes: Demonstration of a structural thermoelectric generator[J]. Energy and Buildings,2019,191:151-163. doi: 10.1016/j.enbuild.2019.03.027
    [41] WEI Jian, FAN Yin, ZHAO Lili, et al. Thermoelectric properties of carbon nanotube reinforced cement-based composites fabricated by compression shear[J]. Ceramics International,2018,44(6):5829-5833. doi: 10.1016/j.ceramint.2018.01.074
  • 加载中
计量
  • 文章访问数:  80
  • HTML全文浏览量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 修回日期:  2022-12-26
  • 录用日期:  2023-01-14
  • 网络出版日期:  2023-02-18

目录

    /

    返回文章
    返回