留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长效滤除PMs用ZIF-8@CNTs功能化立构复合聚乳酸高电活性纳纤膜研究

孔德磊 江亮 徐超 朱桂英 邢利辉 陈浩 张明明 徐欢

孔德磊, 江亮, 徐超, 等. 长效滤除PMs用ZIF-8@CNTs功能化立构复合聚乳酸高电活性纳纤膜研究[J]. 复合材料学报, 2024, 43(0): 1-12.
引用本文: 孔德磊, 江亮, 徐超, 等. 长效滤除PMs用ZIF-8@CNTs功能化立构复合聚乳酸高电活性纳纤膜研究[J]. 复合材料学报, 2024, 43(0): 1-12.
KONG Delei, JIANG Liang, XU Chao, et al. Study on ZIF-8@CNTs functionalized stereocomplexed poly(lactic acid) highly electroactive nanofibrous membranes for long-term PMs filtration[J]. Acta Materiae Compositae Sinica.
Citation: KONG Delei, JIANG Liang, XU Chao, et al. Study on ZIF-8@CNTs functionalized stereocomplexed poly(lactic acid) highly electroactive nanofibrous membranes for long-term PMs filtration[J]. Acta Materiae Compositae Sinica.

长效滤除PMs用ZIF-8@CNTs功能化立构复合聚乳酸高电活性纳纤膜研究

基金项目: 国家能源集团井工煤矿粉尘与职业病防治研究(六)煤矿粉尘防护装备研发(E210100285);国家重点研发计划(2023YFC3011704);中国矿业大学研究生创新项目(2024WLJCRCZL266和KYCX24_2692)
详细信息
    通讯作者:

    徐欢,博士,副教授,硕士研究生导师,研究方向为可降解高分子材料 E-mail: hihuan@cumt.edu.cn

  • 中图分类号: TB332

Study on ZIF-8@CNTs functionalized stereocomplexed poly(lactic acid) highly electroactive nanofibrous membranes for long-term PMs filtration

Funds: Research on the Prevention and Control of Dust and Occupational Diseases in Underground Coal Mines of National Energy Group (6) Research and Development of Coal Mine Dust Protective Equipment (E210100285); National Key R&D Program (2023YFC3011704); Graduate Innovation Program of China University of Mining and Technology (2024WLJCRCZL266 and KYCX24_2692)
  • 摘要: 空气污染中的颗粒物(PMs)已成为全球关注的焦点问题。这些微小的颗粒能够携带众多有害物质,并通过呼吸系统进入人体的血液循环,从而对健康造成严重影响,包括呼吸系统和神经系统的疾病。然而,传统的防护口罩过滤性能存在很大的局限性,且不可生物降解的过滤口罩在丢弃后往往会对环境产生负面影响。因此,迫切需要开发一种可降解的过滤纤维膜,其中聚乳酸(PLA)在可生物降解空气过滤材料领域具有巨大潜力。然而,受制于其低电活性特征,使得其在静电吸附颗粒物方面的能力不足,难以达到高效过滤空气颗粒物的目的。本文采用微波辅助法,在碳纳米管(CNTs)上成功合成了ZIF-8纳米晶体,得到表面规整的纳米杂化结构ZIF-8@CNTs。并将左旋聚乳酸(PLLA)和右旋聚乳酸(PDLA)共混,基于静电纺-电喷技术将ZIF-8@CNTs 纳米杂化体嵌入在纤维上得到立构复合化聚乳酸纳米纤维膜(ZIF-8@CNTs/SC-PLA),在纤维表面上形成凸出状结构,增加了纤维的物理拦截以及静电吸附性能。PLLA和PDLA链之间的氢键相互作用可以触发立体复合晶(SCs)的形成,进而影响PLA的结晶度,提高了ZIF-8@CNTs/SC-PLA纳纤膜的极化性能和电活性。通过调整ZIF-8@CNTs的浓度,调控纤维的表面形貌,评估了在不同呼吸状态下所产生的电信号,并探讨了在不同流速下ZIF-8@CNTs/SC-PLA纳纤膜的过滤性能以及压降。结果表明:随着ZIF-8@CNTs浓度的增加,纤维的表面逐渐粗糙,直径呈先减小后增大的趋势,介电常数(2.5)以及表面电势(7.7 kV)得到明显改善。在不同流速下,ZIF-8@CNTs/SC-PLA纤维膜的压降都明显低于Pure PLLA纤维膜,其中,在85 L/min 流速下,10%ZIF-8@CNTs/SC-PLA纳纤膜的压降仅206.9 Pa,这远低于Pure PLLA纤维膜(465.2 Pa),且在32 L/min流速下,10%ZIF-8@CNTs/SC-PLA纳纤膜对PM0.3和PM2.5的过滤效率分别为86.9%和96.1%,相较于Pure PLLA纤维分别提升13.2%和8.6%。且在不同的呼吸状态下10%ZIF-8@CNTs/SC-PLA纳纤膜可实现不同的信号输出,展现出优异的电活性,为自供电便携式呼吸监测防护装备提供了新的设计参考。

     

  • 图  1  静电纺丝-电喷雾相结合技术制备ZIF-8@碳纳米管(CNTs)/立体复合晶(SCs)-聚乳酸(PLA)纳纤膜示意图

    Figure  1.  Schematic illustration for the preparation of ZIF-8@carbon nanotubes (CNTs)/stereocomplexed crystals (SCs)- polylactic acid (PLA) nanofibrous membranes by electrospinning-electrospray technology

    图  2  用于PMs滤除效果评价的空气过滤性能测试装置示意图

    Figure  2.  Schematic diagram of air filtration performance test device for PMs filtration effect evaluation

    图  3  ZIF-8@CNTs纳米杂化体表征 (a) ZIF-8@CNTs粉末;(b) ZIF-8@CNTs纳米杂化结构SEM图;(c) ZIF-8@CNTs与ZIF-8的FTIR图谱

    Figure  3.  Characterization of ZIF-8@CNTs nanohybrid structure (a) ZIF-8@CNTs powders; (b) SEM image of ZIF-8@CNTs nanohybrid structure; (c) FTIR patterns of ZIF-8@CNTsand ZIF-8

    图  4  不同ZIF-8@CNTs浓度的ZIF-8@CNTs/SC-PLA纳纤膜SEM图 (a) Pure PLLA;(b) 6%ZIF-8@CNTs/SC-PLA;(c) 8%ZIF-8@CNTs/SC-PLA;(d) 10%ZIF-8@CNTs/SC-PLA

    Figure  4.  SEM image of ZIF-8@CNTs/SC-PLA nanofibrous membranes with different ZIF-8@CNTs mass fractions (a) Pure PLA; (b) 6%ZIF-8@CNTs/SC-PLA; (c) 8%ZIF-8@CNTs/SC-PLA; (d) 10%ZIF-8@CNTs/SC-PLA

    图  5  ZIF-8@CNTs/SC-PLA和Pure PLLA纤维直径以及孔隙分布(a) Pure PLLA;(b) 6%ZIF-8@CNTs/SC-PLA;(c) 8%ZIF-8@CNTs/SC-PLA;(d) 10%ZIF-8@CNTs/SC-PLA

    Figure  5.  ZIF-8@CNTs/SC-PLA and Pure PLLA fiber diameter and pore size distribution (a) Pure PLA; (b) 6%ZIF-8@CNTs/SC-PLA; (c) 8%ZIF-8@CNTs/SC-PLA; (d) 10%ZIF-8@CNTs/SC-PLA

    图  6  ZIF-8@CNTs/SC-PLA纳纤膜的FTIR图谱(a) 800−4000 cm−1;(b) 1850−1700 cm−1;(c) 970−950 cm−1;(d)950−890 cm−1

    Figure  6.  FTIR patterns of ZIF-8@CNTs/SC-PLA nanofibrous membranes (a) 800−4000 cm−1; (b) 1850−1700 cm−1; (c) 970−950 cm−1; (d) 950−890 cm−1

    图  7  ZIF-8@CNTs/SC-PLA和Pure PLA纤维膜的力学性能:(a)应力-应变曲线;(b)拉伸强度与断裂伸长率;(c)杨氏模量

    Figure  7.  Mechanical properties of ZIF-8@CNTs/SC-PLA and Pure PLA nanofibrous membranes: (a) Stress-strain curve of nanofibrous membranes, (b) Tensile strength and elongation at break, (c) Young's modulus

    图  8  ZIF-8@CNTs/SC-PLA纳纤膜的(a)介电常数与(b)表面电势

    Figure  8.  (a) Dielectric constant and surface (b) potential of ZIF-8@CNTs/SC-PLA nanofibrous membranes

    图  9  ZIF-8@CNTs/SC-PLA和Pure PLLA纳纤膜在不同流速下的过滤性能(a) 10 L/min;(b) 32 L/min;(c) 65 L/min;(d) 85 L/min;

    Figure  9.  Filtration performance of ZIF-8@CNTs/SC-PLA and Pure PLLA nanofibrous membranes at different airflow (a) 10 L/min; (b) 32 L/min;(c) 65 L/min; (d) 85 L/min;

    图  10  (a) ZIF-8@CNTs/SC-PLA和Pure PLLA纤维膜的品质因素;(b) 在32 L/min流速下循环测试,10%ZIF-8@CNTs/SC-PLA纳纤维膜对PM0.3和PM2.5的过滤效率;(c) 10%ZIF-8@CNTs/SC-PLA循环过滤后的扫描电镜图

    Figure  10.  (a) Quality factors of ZIF-8@CNTs/SC-PLA and Pure PLA fibrous membranes; (b) Filtration efficiency of 10%ZIF-8@CNTs/SC-PLA nanofibrous membrane for PM0.3 and PM2.5 tested by cycling at airflow of 32 L/min; (c) SEM image of 10%ZIF-8@CNTs/SC-PLA after cyclic filtration test

    图  11  (a)TENG装配以及测试图;(b)呼吸驱动TENG的工作机理

    Figure  11.  (a) TENG assembly and test images; (b) The mechanism of work of the respiratory-driven TENG

    图  12  不同呼吸状态下的电流信号(a)浅呼吸;(b)正常呼吸;(c)快呼吸;(d)深呼吸

    Figure  12.  Current signals in different respiratory states (a) shallow breathing; (b) normal breathing; (c) rapid breathing; (d) deep breathing

  • [1] DOU Y, WANG N, ZHANG S, et al. Electroactive nanofibrous membrane with antibacterial and deodorizing properties for air filtration[J]. Journal of hazardous materials, 2024, 469: 134064. doi: 10.1016/j.jhazmat.2024.134064
    [2] 沈峥, 徐超, 张一帆, 等. 高抗湿MOF化聚乳酸纳纤膜制备及其高效滤除PM0.3性能[J]. 复合材料学报. 2024: 1-10.

    SHEN Zheng, XU Chao, ZHANG Yifan, et al. MOF-functionalized poly(lactic acid) nanofiberous membranes for efficient removal of PM0.3 and increased humidity resistance[J]. Acta Materiae Compositae Sinica. 2024: 1-10 (in Chinese).
    [3] SUN J, PENG Z, ZHU Z, et al. The atmospheric microplastics deposition contributes to microplastic pollution in urban waters[J]. Water Research, 2022, 225: 119116. doi: 10.1016/j.watres.2022.119116
    [4] PIYATHILAKE U, LIN C, BOLAN N, et al. Exploring the hidden environmental pollution of microplastics derived from bioplastics: A review[J]. Chemosphere, 2024, 355: 141773. doi: 10.1016/j.chemosphere.2024.141773
    [5] HAN W, RAO D, GAO H, et al. Green-solvent-processable biodegradable poly(lactic acid) nanofibrous membranes with bead-on-string structure for effective air filtration: “Kill two birds with one stone”[J]. Nano Energy, 2022, 97: 107237. doi: 10.1016/j.nanoen.2022.107237
    [6] VATANPOUR V, DEHQAN A, PAZIRESH S, et al. Polylactic acid in the fabrication of separation membranes: A review[J]. Separation and Purification Technology, 2022, 296: 121433. doi: 10.1016/j.seppur.2022.121433
    [7] YANG Y, ZHONG M, WANG W, et al. Engineering biodegradable bacterial cellulose/polylactic acid multi-scale fibrous membrane via co-electrospinning-electrospray strategy for efficient, wet-stable, durable PM0.3 filtration[J]. Separation and Purification Technology, 2025, 352: 128143. doi: 10.1016/j.seppur.2024.128143
    [8] 吕英华, 陈雨阳, 王存民, 等. 基于MOF改性的超细聚乳酸纤维过滤性能强化及其智能监测应用[J]. 复合材料学报. 2024: 1-10.

    LV Yinghua, CHEN Yuyang, WANG Cunming, et al. Enhanced air filtration performance and intelligent monitoring by MOF functionalized ultrafine poly(lactic acid) fibers[J]. Acta Materiae Compositae Sinica. 2024: 1-10 (in Chinese).
    [9] ZHAN L, DENG J, KE Q, et al. Grooved Fibers: Preparation Principles Through Electrospinning and Potential Applications[J]. Advanced fiber materials (Online), 2022, 4(2): 203-213. doi: 10.1007/s42765-021-00116-5
    [10] SHI S, SI Y, HAN Y, et al. Recent Progress in Protective Membranes Fabricated via Electrospinning: Advanced Materials, Biomimetic Structures, and Functional Applications[J]. Advanced Materials, 2022, 34(17): 07938.
    [11] SI Y, SHI S, HU J. Applications of electrospinning in human health: From detection, protection, regulation to reconstruction[J]. Nano Today, 2023, 48: 101723. doi: 10.1016/j.nantod.2022.101723
    [12] 宋欣译, 唐梦珂, 王存民, 等. 立构复合化聚乳酸纳纤膜的制备及高效滤除PM2.5性能[J]. 高等学校化学学报, 2024, 45(2): 9-16.

    SONG Xingyi, TANG Mengke, WANG Cunming, et al. Preparation of Stereocomplexed PLA Nanofibrous Membranes with High PM2.5 Filtration Efficiency[J]. Chemical Journal of Chinese Universities, 2024, 45(2): 9-16 (in Chinese).
    [13] 李小川, 唐梦珂, 朱金佗, 等. 界面立构复合化电活性聚乳酸纳纤膜的制备及高效过滤性能[J]. 高等学校化学学报. 2023, 44(12): 34-42.

    LI Xiaochuan, TANG Mengke, ZHU Jintuo, et al. Interfacial Stereocomplexation of Electroactive Poly(lactic acid) Nanofibrous Membranes for Efficient Filtration of Airborne PMs[J]. Chemical Journal of Chinese Universities. 2024, 44(12): 34-42 (in Chinese).
    [14] ZHENG Y, XU S, YU C, et al. Stereocomplexed Materials of Chiral Polymers Tuned by Crystallization: A Case Study on Poly(lactic acid)[J]. Accounts of Materials Research, 2022, 3(12): 1309-1322. doi: 10.1021/accountsmr.2c00208
    [15] ZHU G, LI X, LI X, et al. Nanopatterned Electroactive Polylactic Acid Nanofibrous MOFilters for Efficient PM0.3 Filtration and Bacterial Inhibition[J]. ACS Applied Materials & Interfaces, 2023, 15(40): 47145-47157.
    [16] TANG M, JIANG L, WANG C, et al. Bioelectrets in Electrospun Bimodal Poly(lactic acid) Fibers: Realization of Multiple Mechanisms for Efficient and Long-Term Filtration of Fine PMs[J]. ACS Appl Mater Interfaces, 2023, 15(21): 25919-25931. doi: 10.1021/acsami.3c02365
    [17] DENG Y, ZHANG N, HUANG T, et al. Constructing tubular/porous structures toward highly efficient oil/water separation in electrospun stereocomplex polylactide fibers via coaxial electrospinning technology[J]. Applied Surface Science, 2022, 573: 151619. doi: 10.1016/j.apsusc.2021.151619
    [18] YADAV A, YADAV P, LABHASETWAR P K, et al. CNT functionalized ZIF-8 impregnated poly(vinylidene fluoride-co-hexafluoropropylene) mixed matrix membranes for antibiotics removal from pharmaceutical industry wastewater by vacuum membrane distillation[J]. Journal of environmental chemical engineering, 2021, 9(6): 106560. doi: 10.1016/j.jece.2021.106560
    [19] LI X, ZHU G, TANG M, et al. Biodegradable MOFilters for Effective Air Filtration and Sterilization by Coupling MOF Functionalization and Mechanical Polarization of Fibrous Poly(lactic acid)[J]. ACS Appl Mater Interfaces, 2023, 15(22): 26812-26823. doi: 10.1021/acsami.3c03932
    [20] JIANG L, ZHU X, LI J, et al. Electroactive and breathable protective membranes by surface engineering of dielectric nanohybrids at poly(lactic acid) nanofibers with excellent self-sterilization and photothermal properties[J]. Separation and Purification Technology, 2024, 339: 126708. doi: 10.1016/j.seppur.2024.126708
    [21] HU Y, KAZEMIAN H, ROHANI S, et al. In situ high pressure study of ZIF-8 by FTIR spectroscopy[J]. Chemical Communications, 2011, 47(47): 12694. doi: 10.1039/c1cc15525c
    [22] 牛桂玲, 陶银萍, 相恒学, 等. 静电纺纳米纤维膜的制备及其在空气过滤中的应用[J]. 中国材料进展, 2024, 43(6): 513-524. doi: 10.7502/j.issn.1674-3962.202206012

    NIU Guiling, TAO Yinping, XIANG Hengxue, et al. Preparation of Electrospinning Nanofiber Membranes and Their Application in Air Filtration[J]. Materials China, 2024, 43(6): 513-524 (in Chinese). doi: 10.7502/j.issn.1674-3962.202206012
    [23] MIRJALILI M, ZOHOORI S. Review for application of electrospinning and electrospun nanofibers technology in textile industry[J]. Journal of Nanostructure in Chemistry, 2016, 6(3): 207-213. doi: 10.1007/s40097-016-0189-y
    [24] KE L, YANG T, LIANG C, et al. Electroactive, Antibacterial, and Biodegradable Poly(lactic acid) Nanofibrous Air Filters for Healthcare[J]. ACS Appl Mater Interfaces, 2023, 15(27): 32463-32474. doi: 10.1021/acsami.3c05834
    [25] LIU W, SHI Y, SUN Z, et al. Poling-Free Hydroxyapatite/Polylactide Nanogenerator with Improved Piezoelectricity for Energy Harvesting[J]. Micromachines, 2022, 13(6): 889. doi: 10.3390/mi13060889
    [26] ZHAO R, CAI S, ZHAO Y, et al. Enhanced stereocomplex crystalline polylactic acids in melt processed enantiomeric bicomponent fiber configurations[J]. International Journal of Biological Macromolecules, 2023, 253: 127123. doi: 10.1016/j.ijbiomac.2023.127123
    [27] LI Z, TAN B H, LIN T, et al. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications[J]. Progress in Polymer Science, 2016, 62: 22-72. doi: 10.1016/j.progpolymsci.2016.05.003
    [28] MEI L, REN Y, GU Y, et al. Strengthened and Thermally Resistant Poly(lactic acid)-Based Composite Nanofibers Prepared via Easy Stereocomplexation with Antibacterial Effects[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42992-43002.
    [29] HUANG W, SHI Y, WANG P, et al. Facile and efficient formation of stereocomplex polylactide fibers drawn at low temperatures[J]. Polymer, 2022, 246: 124743. doi: 10.1016/j.polymer.2022.124743
    [30] REN Q, WU M, WENG Z, et al. Promoted formation of stereocomplex in enantiomeric poly(lactic acid)s induced by cellulose nanofibers[J]. Carbohydrate Polymers, 2022, 276: 118800. doi: 10.1016/j.carbpol.2021.118800
    [31] QUAN Z, ZU Y, WANG Y, et al. Slip effect based bimodal nanofibrous membrane for high-efficiency and low-resistance air purification[J]. Separation and Purification Technology, 2021, 275: 119258. doi: 10.1016/j.seppur.2021.119258
    [32] YANG X, PU Y, LI S, et al. Electrospun Polymer Composite Membrane with Superior Thermal Stability and Excellent Chemical Resistance for High-Efficiency PM2.5 Capture[J]. ACS Appl Mater Interfaces, 2019, 11(46): 43188-43199. doi: 10.1021/acsami.9b15219
    [33] FU Q, LIU Y, LIU T, et al. Air-permeable cellulosic triboelectric materials for self-powered healthcare products[J]. Nano Energy, 2022, 102: 107739. doi: 10.1016/j.nanoen.2022.107739
    [34] MEENA J S, KHANH T D, JUNG S, et al. Self-Repairing and Energy-Harvesting Triboelectric Sensor for Tracking Limb Motion and Identifying Breathing Patterns[J]. ACS applied materials & interfaces, 2023, 15(24): 29486-29498.
  • 加载中
计量
  • 文章访问数:  16
  • HTML全文浏览量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-05
  • 修回日期:  2024-10-10
  • 录用日期:  2024-10-26
  • 网络出版日期:  2024-11-06

目录

    /

    返回文章
    返回