留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯增强层对石墨烯/Al复合材料不同压缩阶段的强化影响

颜建伟 程超 金超奇 谭鑫 朱兆铭

颜建伟, 程超, 金超奇, 等. 石墨烯增强层对石墨烯/Al复合材料不同压缩阶段的强化影响[J]. 复合材料学报, 2023, 40(6): 3662-3672. doi: 10.13801/j.cnki.fhclxb.20220913.002
引用本文: 颜建伟, 程超, 金超奇, 等. 石墨烯增强层对石墨烯/Al复合材料不同压缩阶段的强化影响[J]. 复合材料学报, 2023, 40(6): 3662-3672. doi: 10.13801/j.cnki.fhclxb.20220913.002
YAN Jianwei, CHENG Chao, JIN Chaoqi, et al. Effect of graphene reinforcement on strengthening of grapheme/Al composites at different compression stages[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3662-3672. doi: 10.13801/j.cnki.fhclxb.20220913.002
Citation: YAN Jianwei, CHENG Chao, JIN Chaoqi, et al. Effect of graphene reinforcement on strengthening of grapheme/Al composites at different compression stages[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3662-3672. doi: 10.13801/j.cnki.fhclxb.20220913.002

石墨烯增强层对石墨烯/Al复合材料不同压缩阶段的强化影响

doi: 10.13801/j.cnki.fhclxb.20220913.002
基金项目: 国家自然科学基金(12072112);江西省杰出青年科学基金(20202 ACBL214014)
详细信息
    通讯作者:

    颜建伟,博士,教授,博士生导师,研究方向为纳系统非线性动力学 E-mail: tyanjianwei@jnu.edu.cn

  • 中图分类号: TB331

Effect of graphene reinforcement on strengthening of grapheme/Al composites at different compression stages

Funds: National Natural Science Foundation of China (12072112); Natural Science Foundation of Jiangxi Province (20202 ACBL214014)
  • 摘要: 利用分子动力学(MD)方法探究了石墨烯纳米片(GNs)层数和每层片数对GNs/Al复合材料不同压缩阶段力学增强效果的影响。结果发现:GNs层和片数越多,复合材料弹性模量、屈服强度和最大应力强度的增强效果越显著,且增强层由3片及以上GNs构成时,压缩曲线会出现双最大应力峰值。压缩后期,GNs的断裂造成复合材料的各向异性,使复合材料在GNs锯齿形方向上的横向变形大于扶手椅方向。与MD结果对比分析发现,当金属层厚不足3 nm时,限制层滑模型不再适用。

     

  • 图  1  石墨烯纳米片(GNs)/Al复合材料模型图

    Figure  1.  Graphene nanosheets (GNs)/Al composite model diagram

    图  2  GNs/Al复合材料应力-应变曲线

    Figure  2.  Stress-strain curves of GNs/Al composite

    图  3  GNs/Al复合材料压缩时的微观结构

    Figure  3.  Microstructure of the GNs/Al composite under compression

    HCP—Hexagonal closest packed; ε—Compression strain

    图  4  GNs断裂

    Figure  4.  Fracture of GNs

    图  5  GNs/Al复合材料表面的滑移台阶

    Figure  5.  Slip steps on the surface of GNs/Al composite

    图  6  GNs/Al复合材料模型结构分层图解

    Figure  6.  Diagram of hierarchical model structure of GNs/Al composite

    λ1, λ2—Thickness of GNs and Al in the basic periodic layer, respectively; h—Periodic layer thickness

    图  7  GNs/Al复合材料计算弹性模量的比较

    Figure  7.  Comparison of calculated elastic moduli of GNs/Al composite

    ROM—Rule of mixtures; MD—Molecular dynamics

    图  8  GNs/Al复合材料计算屈服强度的比较

    Figure  8.  Comparison of calculated yield strength of GNs/Al composite

    CLS—Confined layer slip

    图  9  GNs层示意图

    Figure  9.  Diagram of the GNs layer

    图  10  GNs/Al复合材料的压缩应力-应变曲线与位错形态

    Figure  10.  Compressive stress-strain curves and dislocation morphology of GNs/Al composite

    图  11  GNs/Al复合材料双最大应力峰值产生过程的示意图

    Figure  11.  Schematic diagram of the generation process of double maximum stress peaks of GNs/Al composite

    图  12  GNs/Al复合材料的横向变形

    Figure  12.  Transverse deformation of GNs/Al composite

    图  13  GNs的破坏失效

    Figure  13.  Failure of GNs

    表  1  不同GNs层数复合材料的弹性模量、屈服强度和最大应力强度

    Table  1.   Elastic modulus, yield strength and maximum stress strength of composites with different GNs layers

    Number
    of GNs
    layers
    Thickness of periodic layer/nmElasticity modulus/
    GPa
    Yield strength/GPaMaximum stress/
    GPa
    0 16.20 69.9 5.41
    1 8.27 71.7 6.96 9.08
    2 5.51 72.2 8.09 17.49
    3 4.13 75.8 9.12 30.05
    4 3.31 79.4 10.03 44.46
    5 2.76 82.9 10.74 54.21
    下载: 导出CSV
  • [1] MORTENSEN A, LLORCA J. Metal matrix composites[J]. Annual Review of Materials Research,2010,40:243-270. doi: 10.1146/annurev-matsci-070909-104511
    [2] CHAWLA N, SHEN Y L. Mechanical behavior of particle reinforced metal matrix composites[J]. Advanced Engineering Materials,2001,3(6):357-370. doi: 10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.0.CO;2-I
    [3] CASATI R, VEDANI M. Metal matrix composites reinforced by nano-particles—A review[J]. Metals,2014,4(1):65-83. doi: 10.3390/met4010065
    [4] ZHANG Z, CHEN D L. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites[J]. Materials Science and Engineering: A,2008,483:148-152.
    [5] ZHANG Z, CHEN D. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength[J]. Scripta Materialia,2006,54(7):1321-1326. doi: 10.1016/j.scriptamat.2005.12.017
    [6] SANATY-ZADEH A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect[J]. Materials Science and Engineering: A,2012,531:112-118. doi: 10.1016/j.msea.2011.10.043
    [7] BARTOLUCCI S F, PARAS J, RAFIEE M A, et al. Graphene–aluminum nanocomposites[J]. Materials Science and Engi-neering: A,2011,528(27):7933-7937. doi: 10.1016/j.msea.2011.07.043
    [8] HU Z, TONG G, LIN D, et al. Graphene-reinforced metal matrix nanocomposites–A review[J]. Materials Science and Technology,2016,32(9):930-953. doi: 10.1080/02670836.2015.1104018
    [9] DIXIT S, MAHATA A, MAHAPATRA D R, et al. Multi-layer graphene reinforced aluminum-manufacturing of high strength composite by friction stir alloying[J]. Composites Part B: Engineering,2018,136:63-71. doi: 10.1016/j.compositesb.2017.10.028
    [10] 王娟, 张法明, 商彩云, 等. 石墨烯/钛基复合材料的界面反应控制、微观组织和压缩性能[J]. 复合材料学报, 2020, 37(12):3137-3148. doi: 10.13801/j.cnki.fhclxb.20200421.001

    WANG J, ZHANG F M, SHANG C Y, et al. Interfacial reaction control, microstructure and compression properties of graphene/titanium matrix composites[J]. Acta Materiae Compositae Sinica,2020,37(12):3137-3148(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200421.001
    [11] 冯俊俊, 张会, 李亚鹏, 等. 石墨烯负载铜增强铜基块体复合材料制备及其性能[J]. 复合材料学报, 2023, 40(1):485-498. doi: 10.13801/j.cnki.fhclxb.20220307.003

    FENG J J, ZHANG H, LI Y P, et al. Preparation and properties of graphene-supported copper reinforced copper matrix composites[J]. Acta Materiae Compositae Sinica,2023,40(1):485-498(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220307.003
    [12] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [13] TJONG S C. Recent progress in the development and pro-perties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering: R: Reports,2013,74(10):281-350. doi: 10.1016/j.mser.2013.08.001
    [14] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [15] CHAE H K, SIBERIO-PÉREZ D Y, JAHEON K, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,427(6974):523-527. doi: 10.1038/nature02311
    [16] MORTAZAVI B, RÉMOND Y, AHZI S, et al. Thickness and chirality effects on tensile behavior of few-layer graphene by molecular dynamics simulations[J]. Computational Materials Science,2012,53(1):298-302. doi: 10.1016/j.commatsci.2011.08.018
    [17] 程有亮, 赵维娜, 方长青, 等. 石墨烯量子点/纤维素复合气凝胶材料的制备及其吸附性能研究[J]. 包装工程, 2020, 41(5):114-120. doi: 10.19554/j.cnki.1001-3563.2020.05.016

    CHENG Y L, ZHAO W N, FANG C Q, et al. Preparation and adsorption properties of graphene quantum dots/cellulose composite aerogels[J]. Packaging Engineering,2020,41(5):114-120(in Chinese). doi: 10.19554/j.cnki.1001-3563.2020.05.016
    [18] 陈鹏, 徐朝阳. 对苯二酚增强纤维素/石墨烯电极的制备[J]. 包装工程, 2019, 40(15):92-97. doi: 10.19554/j.cnki.1001-3563.2019.15.015

    CHEN P, XU C Y. Preparation of hydroquinone reinforced cellulose/graphene electrode[J]. Packaging Engineering,2019,40(15):92-97(in Chinese). doi: 10.19554/j.cnki.1001-3563.2019.15.015
    [19] ZHAO C. Enhanced strength in reduced graphene oxide/nickel composites prepared by molecular-level mixing for structural applications[J]. Applied Physics A,2015,118(2):409-416. doi: 10.1007/s00339-014-8909-y
    [20] BOOSTANI A F, TAHAMTAN S, JIANG Z, et al. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles[J]. Composites Part A: Applied Science and Manufacturing,2015,68:155-163. doi: 10.1016/j.compositesa.2014.10.010
    [21] RASHAD M, PAN F, HU H, et al. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets[J]. Materials Science and Engineering: A,2015,630:36-44. doi: 10.1016/j.msea.2015.02.002
    [22] LIU G, ZHAO N, SHI C, et al. In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061 Al matrix composites[J]. Materials Science and Engineering: A,2017,699:185-193.
    [23] ZENG X, YU J, FU D, et al. Wear characteristics of hybrid aluminum-matrix composites reinforced with well-dispersed reduced graphene oxide nanosheets and silicon carbide particulates[J]. Vacuum,2018,155:364-375. doi: 10.1016/j.vacuum.2018.06.033
    [24] ZARE Y. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties[J]. Composites Part A: Applied Science and Manufacturing,2016,84:158-164. doi: 10.1016/j.compositesa.2016.01.020
    [25] ALGUL H, TOKUR M, OZCAN S, et al. The effect of graphene content and sliding speed on the wear mecha-nism of nickel-graphene nanocomposites[J]. Applied Surface Science,2015,359:340-348. doi: 10.1016/j.apsusc.2015.10.139
    [26] QI S, LI X, ZHANG Z, et al. Fabrication and characterisation of electro-brush plated nickel-graphene oxide nano-composite coatings[J]. Thin Solid Films,2017,644:106-114. doi: 10.1016/j.tsf.2017.06.064
    [27] ZHANG H, XU C, XIAO W, et al. Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion[J]. Materials Science and Engineering: A,2016,658:8-15. doi: 10.1016/j.msea.2016.01.076
    [28] 张家宝, 李志鹏, 杨鲁岩, 等. FCC金属中位错与孪晶界交互作用的原子机制[J]. 电子显微学报, 2020, 39(6):731-743. doi: 10.3969/j.issn.1000-6281.2020.06.016

    ZHANG J B, LI Z P, YANG L Y, et al. Atomic mechanism of interaction between dislocation and twin boundary in FCC metal[J]. Journal of Chinese Electron Microscopy Society,2020,39(6):731-743(in Chinese). doi: 10.3969/j.issn.1000-6281.2020.06.016
    [29] 陈玉丽, 马勇, 潘飞, 等. 多尺度复合材料力学研究进展[J]. 固体力学学报, 2018, 39(1):1-68. doi: 10.19636/j.cnki.cjsm42-1250/o3.2017.030

    CHEN Y L, MA Y, PAN F, et al. Advances in mechanics research of multi-scale composites[J]. Chinese Journal of Solid Mechanics,2018,39(1):1-68(in Chinese). doi: 10.19636/j.cnki.cjsm42-1250/o3.2017.030
    [30] 俞洋, 苏益士, YANN B, 等. 颗粒增强金属基复合材料的结构建模与力学模拟研究进展[J]. 中国材料进展, 2020, 39(3):214-225. doi: 10.7502/j.issn.1674-3962.201811010

    YU Y, SU Y S, YANN B, et al. Progress in structural modeling and mechanical simulation of particle reinforced metal matrix composites[J]. Materials China,2020,39(3):214-225(in Chinese). doi: 10.7502/j.issn.1674-3962.201811010
    [31] RAO L, LIU H, LIU S, et al. Interface relationship between TiN and Ti substrate by first-principles calculation[J]. Computational Materials Science,2018,155:36-47. doi: 10.1016/j.commatsci.2018.08.028
    [32] LIU R, YIN X, FENG K, et al. First-principles calculations on Mg/TiB2 interfaces[J]. Computational Materials Science,2018,149:373-378. doi: 10.1016/j.commatsci.2018.03.045
    [33] WANG F, LI J, SHI C, et al. Orientation relationships and interface structure in MgAl2O4 and MgAlB4 co-reinforced Al matrix composites[J]. ACS Applied Materials & Interfaces,2019,11(45):42790-42800.
    [34] DONG A, FU Q, WEI M, et al. Graphene-metal interaction and its effect on the interface stability under ambient conditions[J]. Applied Surface Science,2017,412:262-270. doi: 10.1016/j.apsusc.2017.03.240
    [35] PENG W, SUN K. Effects of Cu/graphene interface on the mechanical properties of multilayer Cu/graphene compo-sites[J]. Mechanics of Materials,2020,141:103270. doi: 10.1016/j.mechmat.2019.103270
    [36] LIN J, JIANG F, XU X, et al. Molecular dynamics simulation of nanoindentation on c-plane sapphire[J]. Mechanics of Materials,2021,154:103716. doi: 10.1016/j.mechmat.2020.103716
    [37] MA Y, ZHANG S, XU Y, et al. Effects of temperature and grain size on deformation of polycrystalline copper-graphene nanolayered composites[J]. Physical Chemistry Chemical Physics,2020,22(8):4741-4748. doi: 10.1039/C9CP06830A
    [38] TANG W, ZHANG J, WU J, et al. Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites[J]. Acta Mechanica Sinica,2020,36(4):855-865. doi: 10.1007/s10409-020-00968-x
    [39] 郭俊贤, 王波, 杨振宇. 石墨烯/Cu复合材料力学性能的分子动力学模拟[J]. 复合材料学报, 2014, 31(1):152-157. doi: 10.3969/j.issn.1000-3851.2014.01.022

    GUO J X, WANG B, YANG Z Y. Molecular dynamics simulation of mechanical properties of graphene/Cu composites[J]. Acta Materiae Compositae Sinica,2014,31(1):152-157(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.022
    [40] 湛家铭, 姚小虎, 李旺辉, 等. 基于分子动力学的石墨烯/碳化硅复合材料力学性能研究[J]. 华南理工大学学报:自然科学版, 2017, 45(5):135-140.

    ZHAN J M, YAO X H, LI W H, et al. Mechanical properties of graphene/Silicon carbide composites based on molecular dynamics[J]. Journal of South China University of Technology (Natural Science Edition),2017,45(5):135-140(in Chinese).
    [41] 陈生辉, 吕强, 郭继成, 等. 石墨烯/聚乙烯复合材料及其拉伸性能的分子动力学模拟[J]. 高分子学报, 2017(4):716-726. doi: 10.11777/j.issn1000-3304.2017.16201

    CHEN S H, LV Q, GUO J C, et al. Molecular dynamics simulation of graphene/polyethylene composites and their tensile properties[J]. Acta Polymerica Sinica,2017(4):716-726(in Chinese). doi: 10.11777/j.issn1000-3304.2017.16201
    [42] 魏宁, 赵思涵, 李志辉, 等. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响[J]. 物理学报, 2022, 71(13):134702.

    WEI N, ZHAO S H, LI Z H, et al. Effects of graphene size and distribution on crack propagation in graphene/aluminum matrix composites[J]. Acta Physica Sinica,2022,71(13):134702(in Chinese).
    [43] SHUANG F, AIFANTIS K E. Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions: A molecular dynamics study[J]. Carbon,2021,172:50-70. doi: 10.1016/j.carbon.2020.09.043
    [44] WENG S, NING H, FU T, et al. Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression[J]. Scientific Reports,2018,8(1):1-10.
    [45] 华军, 宋郴, 段志荣, 等. 石墨烯/铜复合材料剪切性能的分子动力学模拟[J]. 复合材料学报, 2018, 35(3):632-639. doi: 10.13801/j.cnki.fhclxb.20170504.001

    HUA J, SONG C, DUAN Z R, et al. Molecular dynamics simulation of shear properties of graphene/copper composites[J]. Acta Materiae Compositae Sinica,2018,35(3):632-639(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170504.001
    [46] PENG W, SUN K, ZHANG M, et al. Effects of graphene coating on the plastic deformation of single crystal copper nano-cuboid under different nanoindentation modes[J]. Materials Chemistry and Physics,2019,225:1-7. doi: 10.1016/j.matchemphys.2018.12.028
    [47] GAO Y, RUESTES C J, URBASSEK H M. Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions[J]. Computational Materials Science,2014,90:232-240. doi: 10.1016/j.commatsci.2014.04.027
    [48] LIU X, WANG F, WANG W, et al. Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation[J]. Carbon,2016,107:680-688. doi: 10.1016/j.carbon.2016.06.071
    [49] ZHANG J, ZHANG X, LIU G, et al. Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films[J]. Scripta Materialia,2010,63(1):101-104. doi: 10.1016/j.scriptamat.2010.03.024
    [50] SONG H, XU J, ZHANG Y, et al. Molecular dynamics study of deformation behavior of crystalline Cu/amorphous Cu50Zr50 nanolaminates[J]. Materials & Design,2017,127:173-182.
    [51] EMBURY J, HIRTH J. On dislocation storage and the mechanical response of fine scale microstructures[J]. Acta Metallurgica et Materialia,1994,42(6):2051-2056. doi: 10.1016/0956-7151(94)90030-2
    [52] MISRA A, HIRTH J, HOAGLAND R. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites[J]. Acta Materialia,2005,53(18):4817-4824. doi: 10.1016/j.actamat.2005.06.025
    [53] ZHU Y, LI Z, HUANG M, et al. Strengthening mechanisms of the nanolayered polycrystalline metallic multilayers assisted by twins[J]. International Journal of Plasticity,2015,72:168-184. doi: 10.1016/j.ijplas.2015.05.014
    [54] DAW M S, BASKES M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B, 1984, 29(12): 6443-6453.
    [55] STUART S, HARRISON J, TUTEIN A. A reactive potential for hydrocarbons with intermolecular interactions[J]. The Journal of Chemical Physics,2000,112(14):6472-6486. doi: 10.1063/1.481208
    [56] LENNARD-JONES J E. Cohesion[J]. Proceedings of the Physical Society (1926-1948),1931,43(5):461. doi: 10.1088/0959-5309/43/5/301
    [57] SILVESTRE N, FARIA B, LOPES J N C. Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics[J]. Composites Science and Technology,2014,90:3842-3844.
    [58] KUTANA A, GIAPIS K P. Transient deformation regime in bending of single-walled carbon nanotubes[J]. Physical Review Letters,2006,97(24):245-501.
    [59] MUNILLA J, CASTRO M, CARNICERO A. Surface effects in atomistic mechanical simulations of Al nanocrystals[J]. Physical Review B,2009,80(2):024109. doi: 10.1103/PhysRevB.80.024109
    [60] LI Z, GAO Y, ZHAN S, et al. Molecular dynamics study on temperature and strain rate dependences of mechanical properties of single crystal Al under uniaxial loading[J]. AIP Advances,2020,10(7):075321. doi: 10.1063/1.5086903
    [61] LIU Y, SHAO D, ZENG Y, et al. Molecular dynamics study of the tensile deformation on aluminum nanorod[J]. Advanced Intelligent Systems,2016,136:139-146.
    [62] REZAEI R, TAVAKOLI-ANBARAN H, SHARIATI M. Mechanical characteristics and failure mechanism of nano-single crystal aluminum based on molecular dynamics simulations: Strain rate and temperature effects[J]. Jour-nal of Solid Mechanics,2017,9(4):794-801.
    [63] GRAVELL J D, RYU I. Latent hardening/softening behavior in tension and torsion combined loadings of single crystal FCC micropillars[J]. Acta Materialia,2020,190:58-69. doi: 10.1016/j.actamat.2020.02.030
    [64] YAMAKOV V, WOLF D, PHILLPOT S R, et al. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation[J]. Nature Materials,2002,1(1):45-49. doi: 10.1038/nmat700
    [65] WANG X, XIAO W, WANG L, et al. Investigation on mechanical behavior of multilayer graphene reinforced aluminum composites[J]. Physica E: Low-Dimensional Systems and Nanostructures,2020,123:114172. doi: 10.1016/j.physe.2020.114172
    [66] KALAPRASAD G, JOSEPH K, THOMAS S, et al. Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites[J]. Journal of Materials Science,1997,32(16):4261-4267. doi: 10.1023/A:1018651218515
    [67] HOAGLAND R G, KURTZ R J, HENAGER J R C. Slip resistance of interfaces and the strength of metallic multilayer composites[J]. Scripta Materialia,2004,50(6):775-779. doi: 10.1016/j.scriptamat.2003.11.059
    [68] BAKER S P, ZHANG L, GAO H. Effect of dislocation core spreading at interfaces on strength of thin-films[J]. Jour-nal of Materials Research,2002,17(7):1808-1813. doi: 10.1557/JMR.2002.0268
    [69] CAMMARATA R, SIERADZKI K, SPAEPEN F. Simple model for interface stresses with application to misfit dislocation generation in epitaxial thin films[J]. Journal of Applied Physics,2000,87(3):1227-1234. doi: 10.1063/1.372001
    [70] REINHART W, ASAY J, CHHABILDAS L, et al. Investigation of 6061-T6 aluminum strength pproperties to 160 GPa[C]//APS Shock Compression of Condensed Matter Meeting Abstracts. Nashville: American Institute of Physics, 2009: 977-980.
    [71] 侯日立, 彭建祥, 经福谦. 一种计算金属剪切模量的本构模型: 以Al为例[J]. 物理学报, 2009, 58(9):6413-6418. doi: 10.3321/j.issn:1000-3290.2009.09.086

    HOU R L, PENG J X, JING F Q. A constitutive model for calculating shear modulus of metal: A case study of Al[J]. Acta Physica Sinica,2009,58(9):6413-6418(in Chinese). doi: 10.3321/j.issn:1000-3290.2009.09.086
    [72] GAO Y, HAO P. Mechanical properties of monolayer graphene under tensile and compressive loading[J]. Physica E: Low-dimensional Systems and Nanostructures,2009,41(8):1561-1566. doi: 10.1016/j.physe.2009.04.033
    [73] SAKHAEE-POUR A. Elastic properties of single-layered graphene sheet[J]. Solid State Communications,2009,149(1-2):91-95. doi: 10.1016/j.ssc.2008.09.050
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  800
  • HTML全文浏览量:  367
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 修回日期:  2022-08-17
  • 录用日期:  2022-08-29
  • 网络出版日期:  2022-09-14
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回