Effect of graphene reinforcement on strengthening of grapheme/Al composites at different compression stages
-
摘要: 利用分子动力学(MD)方法探究了石墨烯纳米片(GNs)层数和每层片数对GNs/Al复合材料不同压缩阶段力学增强效果的影响。结果发现:GNs层和片数越多,复合材料弹性模量、屈服强度和最大应力强度的增强效果越显著,且增强层由3片及以上GNs构成时,压缩曲线会出现双最大应力峰值。压缩后期,GNs的断裂造成复合材料的各向异性,使复合材料在GNs锯齿形方向上的横向变形大于扶手椅方向。与MD结果对比分析发现,当金属层厚不足3 nm时,限制层滑模型不再适用。
-
关键词:
- 分子动力学 /
- 石墨烯/Al复合材料 /
- 压缩阶段 /
- 位错结构 /
- 限制层滑模型
Abstract: Molecular dynamics (MD) method was used to investigate the effect of the number of graphene nanosheets (GNs) layers and the number of sheets in each layer on the mechanical reinforcement of GNs/Al composite at different compression stages. The results show that the increase of GNs layers and the number of GNs sheets increases the enhancement effect of elastic modulus, yield strength and maximum stress strength of the composite. When the reinforcement layer is composed of 3 or more GNs sheets, double maximum stress peaks appear in the compression curve. At the late compression stage, the fracture of GNs results in the anisotropy of the composite, and the transverse deformation of the composite in the zigzag direction of GNs is larger than that in the armchair direction. When the thickness of metal layer is less than 3 nm, the confined layer slip model is not applicable. -
表 1 不同GNs层数复合材料的弹性模量、屈服强度和最大应力强度
Table 1. Elastic modulus, yield strength and maximum stress strength of composites with different GNs layers
Number
of GNs
layersThickness of periodic layer/nm Elasticity modulus/
GPaYield strength/GPa Maximum stress/
GPa0 16.20 69.9 5.41 − 1 8.27 71.7 6.96 9.08 2 5.51 72.2 8.09 17.49 3 4.13 75.8 9.12 30.05 4 3.31 79.4 10.03 44.46 5 2.76 82.9 10.74 54.21 -
[1] MORTENSEN A, LLORCA J. Metal matrix composites[J]. Annual Review of Materials Research,2010,40:243-270. doi: 10.1146/annurev-matsci-070909-104511 [2] CHAWLA N, SHEN Y L. Mechanical behavior of particle reinforced metal matrix composites[J]. Advanced Engineering Materials,2001,3(6):357-370. doi: 10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.0.CO;2-I [3] CASATI R, VEDANI M. Metal matrix composites reinforced by nano-particles—A review[J]. Metals,2014,4(1):65-83. doi: 10.3390/met4010065 [4] ZHANG Z, CHEN D L. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites[J]. Materials Science and Engineering: A,2008,483:148-152. [5] ZHANG Z, CHEN D. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength[J]. Scripta Materialia,2006,54(7):1321-1326. doi: 10.1016/j.scriptamat.2005.12.017 [6] SANATY-ZADEH A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect[J]. Materials Science and Engineering: A,2012,531:112-118. doi: 10.1016/j.msea.2011.10.043 [7] BARTOLUCCI S F, PARAS J, RAFIEE M A, et al. Graphene–aluminum nanocomposites[J]. Materials Science and Engi-neering: A,2011,528(27):7933-7937. doi: 10.1016/j.msea.2011.07.043 [8] HU Z, TONG G, LIN D, et al. Graphene-reinforced metal matrix nanocomposites–A review[J]. Materials Science and Technology,2016,32(9):930-953. doi: 10.1080/02670836.2015.1104018 [9] DIXIT S, MAHATA A, MAHAPATRA D R, et al. Multi-layer graphene reinforced aluminum-manufacturing of high strength composite by friction stir alloying[J]. Composites Part B: Engineering,2018,136:63-71. doi: 10.1016/j.compositesb.2017.10.028 [10] 王娟, 张法明, 商彩云, 等. 石墨烯/钛基复合材料的界面反应控制、微观组织和压缩性能[J]. 复合材料学报, 2020, 37(12):3137-3148. doi: 10.13801/j.cnki.fhclxb.20200421.001WANG J, ZHANG F M, SHANG C Y, et al. Interfacial reaction control, microstructure and compression properties of graphene/titanium matrix composites[J]. Acta Materiae Compositae Sinica,2020,37(12):3137-3148(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200421.001 [11] 冯俊俊, 张会, 李亚鹏, 等. 石墨烯负载铜增强铜基块体复合材料制备及其性能[J]. 复合材料学报, 2023, 40(1):485-498. doi: 10.13801/j.cnki.fhclxb.20220307.003FENG J J, ZHANG H, LI Y P, et al. Preparation and properties of graphene-supported copper reinforced copper matrix composites[J]. Acta Materiae Compositae Sinica,2023,40(1):485-498(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220307.003 [12] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896 [13] TJONG S C. Recent progress in the development and pro-perties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering: R: Reports,2013,74(10):281-350. doi: 10.1016/j.mser.2013.08.001 [14] LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996 [15] CHAE H K, SIBERIO-PÉREZ D Y, JAHEON K, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,427(6974):523-527. doi: 10.1038/nature02311 [16] MORTAZAVI B, RÉMOND Y, AHZI S, et al. Thickness and chirality effects on tensile behavior of few-layer graphene by molecular dynamics simulations[J]. Computational Materials Science,2012,53(1):298-302. doi: 10.1016/j.commatsci.2011.08.018 [17] 程有亮, 赵维娜, 方长青, 等. 石墨烯量子点/纤维素复合气凝胶材料的制备及其吸附性能研究[J]. 包装工程, 2020, 41(5):114-120. doi: 10.19554/j.cnki.1001-3563.2020.05.016CHENG Y L, ZHAO W N, FANG C Q, et al. Preparation and adsorption properties of graphene quantum dots/cellulose composite aerogels[J]. Packaging Engineering,2020,41(5):114-120(in Chinese). doi: 10.19554/j.cnki.1001-3563.2020.05.016 [18] 陈鹏, 徐朝阳. 对苯二酚增强纤维素/石墨烯电极的制备[J]. 包装工程, 2019, 40(15):92-97. doi: 10.19554/j.cnki.1001-3563.2019.15.015CHEN P, XU C Y. Preparation of hydroquinone reinforced cellulose/graphene electrode[J]. Packaging Engineering,2019,40(15):92-97(in Chinese). doi: 10.19554/j.cnki.1001-3563.2019.15.015 [19] ZHAO C. Enhanced strength in reduced graphene oxide/nickel composites prepared by molecular-level mixing for structural applications[J]. Applied Physics A,2015,118(2):409-416. doi: 10.1007/s00339-014-8909-y [20] BOOSTANI A F, TAHAMTAN S, JIANG Z, et al. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles[J]. Composites Part A: Applied Science and Manufacturing,2015,68:155-163. doi: 10.1016/j.compositesa.2014.10.010 [21] RASHAD M, PAN F, HU H, et al. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets[J]. Materials Science and Engineering: A,2015,630:36-44. doi: 10.1016/j.msea.2015.02.002 [22] LIU G, ZHAO N, SHI C, et al. In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061 Al matrix composites[J]. Materials Science and Engineering: A,2017,699:185-193. [23] ZENG X, YU J, FU D, et al. Wear characteristics of hybrid aluminum-matrix composites reinforced with well-dispersed reduced graphene oxide nanosheets and silicon carbide particulates[J]. Vacuum,2018,155:364-375. doi: 10.1016/j.vacuum.2018.06.033 [24] ZARE Y. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties[J]. Composites Part A: Applied Science and Manufacturing,2016,84:158-164. doi: 10.1016/j.compositesa.2016.01.020 [25] ALGUL H, TOKUR M, OZCAN S, et al. The effect of graphene content and sliding speed on the wear mecha-nism of nickel-graphene nanocomposites[J]. Applied Surface Science,2015,359:340-348. doi: 10.1016/j.apsusc.2015.10.139 [26] QI S, LI X, ZHANG Z, et al. Fabrication and characterisation of electro-brush plated nickel-graphene oxide nano-composite coatings[J]. Thin Solid Films,2017,644:106-114. doi: 10.1016/j.tsf.2017.06.064 [27] ZHANG H, XU C, XIAO W, et al. Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion[J]. Materials Science and Engineering: A,2016,658:8-15. doi: 10.1016/j.msea.2016.01.076 [28] 张家宝, 李志鹏, 杨鲁岩, 等. FCC金属中位错与孪晶界交互作用的原子机制[J]. 电子显微学报, 2020, 39(6):731-743. doi: 10.3969/j.issn.1000-6281.2020.06.016ZHANG J B, LI Z P, YANG L Y, et al. Atomic mechanism of interaction between dislocation and twin boundary in FCC metal[J]. Journal of Chinese Electron Microscopy Society,2020,39(6):731-743(in Chinese). doi: 10.3969/j.issn.1000-6281.2020.06.016 [29] 陈玉丽, 马勇, 潘飞, 等. 多尺度复合材料力学研究进展[J]. 固体力学学报, 2018, 39(1):1-68. doi: 10.19636/j.cnki.cjsm42-1250/o3.2017.030CHEN Y L, MA Y, PAN F, et al. Advances in mechanics research of multi-scale composites[J]. Chinese Journal of Solid Mechanics,2018,39(1):1-68(in Chinese). doi: 10.19636/j.cnki.cjsm42-1250/o3.2017.030 [30] 俞洋, 苏益士, YANN B, 等. 颗粒增强金属基复合材料的结构建模与力学模拟研究进展[J]. 中国材料进展, 2020, 39(3):214-225. doi: 10.7502/j.issn.1674-3962.201811010YU Y, SU Y S, YANN B, et al. Progress in structural modeling and mechanical simulation of particle reinforced metal matrix composites[J]. Materials China,2020,39(3):214-225(in Chinese). doi: 10.7502/j.issn.1674-3962.201811010 [31] RAO L, LIU H, LIU S, et al. Interface relationship between TiN and Ti substrate by first-principles calculation[J]. Computational Materials Science,2018,155:36-47. doi: 10.1016/j.commatsci.2018.08.028 [32] LIU R, YIN X, FENG K, et al. First-principles calculations on Mg/TiB2 interfaces[J]. Computational Materials Science,2018,149:373-378. doi: 10.1016/j.commatsci.2018.03.045 [33] WANG F, LI J, SHI C, et al. Orientation relationships and interface structure in MgAl2O4 and MgAlB4 co-reinforced Al matrix composites[J]. ACS Applied Materials & Interfaces,2019,11(45):42790-42800. [34] DONG A, FU Q, WEI M, et al. Graphene-metal interaction and its effect on the interface stability under ambient conditions[J]. Applied Surface Science,2017,412:262-270. doi: 10.1016/j.apsusc.2017.03.240 [35] PENG W, SUN K. Effects of Cu/graphene interface on the mechanical properties of multilayer Cu/graphene compo-sites[J]. Mechanics of Materials,2020,141:103270. doi: 10.1016/j.mechmat.2019.103270 [36] LIN J, JIANG F, XU X, et al. Molecular dynamics simulation of nanoindentation on c-plane sapphire[J]. Mechanics of Materials,2021,154:103716. doi: 10.1016/j.mechmat.2020.103716 [37] MA Y, ZHANG S, XU Y, et al. Effects of temperature and grain size on deformation of polycrystalline copper-graphene nanolayered composites[J]. Physical Chemistry Chemical Physics,2020,22(8):4741-4748. doi: 10.1039/C9CP06830A [38] TANG W, ZHANG J, WU J, et al. Mechanical properties and enhancement mechanisms of titanium-graphene nanocomposites[J]. Acta Mechanica Sinica,2020,36(4):855-865. doi: 10.1007/s10409-020-00968-x [39] 郭俊贤, 王波, 杨振宇. 石墨烯/Cu复合材料力学性能的分子动力学模拟[J]. 复合材料学报, 2014, 31(1):152-157. doi: 10.3969/j.issn.1000-3851.2014.01.022GUO J X, WANG B, YANG Z Y. Molecular dynamics simulation of mechanical properties of graphene/Cu composites[J]. Acta Materiae Compositae Sinica,2014,31(1):152-157(in Chinese). doi: 10.3969/j.issn.1000-3851.2014.01.022 [40] 湛家铭, 姚小虎, 李旺辉, 等. 基于分子动力学的石墨烯/碳化硅复合材料力学性能研究[J]. 华南理工大学学报:自然科学版, 2017, 45(5):135-140.ZHAN J M, YAO X H, LI W H, et al. Mechanical properties of graphene/Silicon carbide composites based on molecular dynamics[J]. Journal of South China University of Technology (Natural Science Edition),2017,45(5):135-140(in Chinese). [41] 陈生辉, 吕强, 郭继成, 等. 石墨烯/聚乙烯复合材料及其拉伸性能的分子动力学模拟[J]. 高分子学报, 2017(4):716-726. doi: 10.11777/j.issn1000-3304.2017.16201CHEN S H, LV Q, GUO J C, et al. Molecular dynamics simulation of graphene/polyethylene composites and their tensile properties[J]. Acta Polymerica Sinica,2017(4):716-726(in Chinese). doi: 10.11777/j.issn1000-3304.2017.16201 [42] 魏宁, 赵思涵, 李志辉, 等. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响[J]. 物理学报, 2022, 71(13):134702.WEI N, ZHAO S H, LI Z H, et al. Effects of graphene size and distribution on crack propagation in graphene/aluminum matrix composites[J]. Acta Physica Sinica,2022,71(13):134702(in Chinese). [43] SHUANG F, AIFANTIS K E. Dislocation-graphene interactions in Cu/graphene composites and the effect of boundary conditions: A molecular dynamics study[J]. Carbon,2021,172:50-70. doi: 10.1016/j.carbon.2020.09.043 [44] WENG S, NING H, FU T, et al. Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression[J]. Scientific Reports,2018,8(1):1-10. [45] 华军, 宋郴, 段志荣, 等. 石墨烯/铜复合材料剪切性能的分子动力学模拟[J]. 复合材料学报, 2018, 35(3):632-639. doi: 10.13801/j.cnki.fhclxb.20170504.001HUA J, SONG C, DUAN Z R, et al. Molecular dynamics simulation of shear properties of graphene/copper composites[J]. Acta Materiae Compositae Sinica,2018,35(3):632-639(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170504.001 [46] PENG W, SUN K, ZHANG M, et al. Effects of graphene coating on the plastic deformation of single crystal copper nano-cuboid under different nanoindentation modes[J]. Materials Chemistry and Physics,2019,225:1-7. doi: 10.1016/j.matchemphys.2018.12.028 [47] GAO Y, RUESTES C J, URBASSEK H M. Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions[J]. Computational Materials Science,2014,90:232-240. doi: 10.1016/j.commatsci.2014.04.027 [48] LIU X, WANG F, WANG W, et al. Interfacial strengthening and self-healing effect in graphene-copper nanolayered composites under shear deformation[J]. Carbon,2016,107:680-688. doi: 10.1016/j.carbon.2016.06.071 [49] ZHANG J, ZHANG X, LIU G, et al. Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films[J]. Scripta Materialia,2010,63(1):101-104. doi: 10.1016/j.scriptamat.2010.03.024 [50] SONG H, XU J, ZHANG Y, et al. Molecular dynamics study of deformation behavior of crystalline Cu/amorphous Cu50Zr50 nanolaminates[J]. Materials & Design,2017,127:173-182. [51] EMBURY J, HIRTH J. On dislocation storage and the mechanical response of fine scale microstructures[J]. Acta Metallurgica et Materialia,1994,42(6):2051-2056. doi: 10.1016/0956-7151(94)90030-2 [52] MISRA A, HIRTH J, HOAGLAND R. Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites[J]. Acta Materialia,2005,53(18):4817-4824. doi: 10.1016/j.actamat.2005.06.025 [53] ZHU Y, LI Z, HUANG M, et al. Strengthening mechanisms of the nanolayered polycrystalline metallic multilayers assisted by twins[J]. International Journal of Plasticity,2015,72:168-184. doi: 10.1016/j.ijplas.2015.05.014 [54] DAW M S, BASKES M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B, 1984, 29(12): 6443-6453. [55] STUART S, HARRISON J, TUTEIN A. A reactive potential for hydrocarbons with intermolecular interactions[J]. The Journal of Chemical Physics,2000,112(14):6472-6486. doi: 10.1063/1.481208 [56] LENNARD-JONES J E. Cohesion[J]. Proceedings of the Physical Society (1926-1948),1931,43(5):461. doi: 10.1088/0959-5309/43/5/301 [57] SILVESTRE N, FARIA B, LOPES J N C. Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics[J]. Composites Science and Technology,2014,90:3842-3844. [58] KUTANA A, GIAPIS K P. Transient deformation regime in bending of single-walled carbon nanotubes[J]. Physical Review Letters,2006,97(24):245-501. [59] MUNILLA J, CASTRO M, CARNICERO A. Surface effects in atomistic mechanical simulations of Al nanocrystals[J]. Physical Review B,2009,80(2):024109. doi: 10.1103/PhysRevB.80.024109 [60] LI Z, GAO Y, ZHAN S, et al. Molecular dynamics study on temperature and strain rate dependences of mechanical properties of single crystal Al under uniaxial loading[J]. AIP Advances,2020,10(7):075321. doi: 10.1063/1.5086903 [61] LIU Y, SHAO D, ZENG Y, et al. Molecular dynamics study of the tensile deformation on aluminum nanorod[J]. Advanced Intelligent Systems,2016,136:139-146. [62] REZAEI R, TAVAKOLI-ANBARAN H, SHARIATI M. Mechanical characteristics and failure mechanism of nano-single crystal aluminum based on molecular dynamics simulations: Strain rate and temperature effects[J]. Jour-nal of Solid Mechanics,2017,9(4):794-801. [63] GRAVELL J D, RYU I. Latent hardening/softening behavior in tension and torsion combined loadings of single crystal FCC micropillars[J]. Acta Materialia,2020,190:58-69. doi: 10.1016/j.actamat.2020.02.030 [64] YAMAKOV V, WOLF D, PHILLPOT S R, et al. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation[J]. Nature Materials,2002,1(1):45-49. doi: 10.1038/nmat700 [65] WANG X, XIAO W, WANG L, et al. Investigation on mechanical behavior of multilayer graphene reinforced aluminum composites[J]. Physica E: Low-Dimensional Systems and Nanostructures,2020,123:114172. doi: 10.1016/j.physe.2020.114172 [66] KALAPRASAD G, JOSEPH K, THOMAS S, et al. Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites[J]. Journal of Materials Science,1997,32(16):4261-4267. doi: 10.1023/A:1018651218515 [67] HOAGLAND R G, KURTZ R J, HENAGER J R C. Slip resistance of interfaces and the strength of metallic multilayer composites[J]. Scripta Materialia,2004,50(6):775-779. doi: 10.1016/j.scriptamat.2003.11.059 [68] BAKER S P, ZHANG L, GAO H. Effect of dislocation core spreading at interfaces on strength of thin-films[J]. Jour-nal of Materials Research,2002,17(7):1808-1813. doi: 10.1557/JMR.2002.0268 [69] CAMMARATA R, SIERADZKI K, SPAEPEN F. Simple model for interface stresses with application to misfit dislocation generation in epitaxial thin films[J]. Journal of Applied Physics,2000,87(3):1227-1234. doi: 10.1063/1.372001 [70] REINHART W, ASAY J, CHHABILDAS L, et al. Investigation of 6061-T6 aluminum strength pproperties to 160 GPa[C]//APS Shock Compression of Condensed Matter Meeting Abstracts. Nashville: American Institute of Physics, 2009: 977-980. [71] 侯日立, 彭建祥, 经福谦. 一种计算金属剪切模量的本构模型: 以Al为例[J]. 物理学报, 2009, 58(9):6413-6418. doi: 10.3321/j.issn:1000-3290.2009.09.086HOU R L, PENG J X, JING F Q. A constitutive model for calculating shear modulus of metal: A case study of Al[J]. Acta Physica Sinica,2009,58(9):6413-6418(in Chinese). doi: 10.3321/j.issn:1000-3290.2009.09.086 [72] GAO Y, HAO P. Mechanical properties of monolayer graphene under tensile and compressive loading[J]. Physica E: Low-dimensional Systems and Nanostructures,2009,41(8):1561-1566. doi: 10.1016/j.physe.2009.04.033 [73] SAKHAEE-POUR A. Elastic properties of single-layered graphene sheet[J]. Solid State Communications,2009,149(1-2):91-95. doi: 10.1016/j.ssc.2008.09.050 -

计量
- 文章访问数: 258
- HTML全文浏览量: 163
- 被引次数: 0