Preparation and characterization on carbon fiber composites with high thermal conductivity based on multifunctional intercalation structures
-
摘要: 随着碳纤维增强树脂基复合材料在航天领域中的广泛应用,结构/功能一体化碳纤维(CF)复合材料将发挥出重要作用。本文采用功能化层间技术(Functional interlayer technology,FIT)制备了高导热沥青基碳纤维增强氰酸酯复合材料。在短切碳纤维薄膜表面电泳沉积石墨烯片(GNPs)和Al2O3制备薄膜材料GNPs-Al2O3/CF作为多功能插层结构,以其取代纤维层之间的富树脂层区域。后者表现出良好的导热性能,正交铺层复合材料的面内热导率和面外热导率分别提高了123.1%和77.5%,准各向同性铺层复合材料的面内热导率和面外热导率分别提高了119.0%和50.0%。此外,多功能插层结构的加入可以阻碍裂纹的扩展,改善复合材料层间韧性。因此,多功能插层结构既能在层间形成有效的导热网络结构,改善复合材料面内和面外热导率,又能提高层间区域的增韧效率。Abstract: With the extensive application of carbon fiber reinforced resin matrix composites in aerospace field, structure/function integrated composites will play a crucial part. In this paper, asphalt based carbon fiber (CF) reinforced cyanate ester composites with high thermal conductivity were prepared by functional interlayer technology (FIT). The film material graphene sheets (GNPs)-Al2O3/CF prepared by electrophoretic deposition of GNPs and Al2O3 on the surface of the short-cut carbon fiber film was used as the functional interlayer film to replace the resin-rich layer region between the fiber layers. The in-plane thermal conductivity and through-plane thermal conductivity of orthogonal lamination composites are increased by 123.1% and 77.5%. The in-plane thermal conductivity and through-plane thermal conductivity of quasi-anisotropic lamination composites are increased by 119.0% and 50.0%, respectively. In addition, the addition of multifunctional intercalation structure can prevent the propagation of cracks and improve the interlaminar toughness of composites. Therefore, the multifunctional intercalation structure can not only form an effective thermal network structure between the layers to improve the in-plane and out-of-plane thermal conductivity of the composite, but also improve the toughening efficiency of the interlayer region.
-
图 2 复合材料导热性能测试试样制备示意图
FIT—Functional interlayer technology; CFRP—Carbon fiber reinforced polymer;FITin—The outermost layer of the specimen is CF; FITout—The outermost layer of the specimen is GNPs-Al2O3/CF
Figure 2. Schematic diagram of sample preparation for thermal conductivity testing of composite materials
图 9 不同薄膜结构热传输路径示意图:(a) Al2O3热传输路径;(b) GNPs热传输路径;(c) GNPs-Al2O3热传输路径;(d)基于SEM的GNPs-Al2O3微观结构示意图
Figure 9. Schematic diagram of heat transfer paths for different thin film structures: (a) Heat transfer paths of Al2O3; (b) Heat transfer paths of GNPs; (c) Heat transfer paths of GNPs-Al2O3; (d) Microstructure diagram of GNPs-Al2O3 based on SEM
表 1 用于对比实验的薄膜材料
Table 1. Thin film materials for comparative experiments
Sample Sizing agent Electrophoretic deposition CF Yes None CF-1 None None Al2O3/CF None Al2O3 GNPs/CF None GNPs GNPs-Al2O3/CF None GNPs/Al2O3 -
[1] WU X, TANG B, CHEN J, et al. Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks[J]. Composites Science and Technology, 2021, 203: 108610. doi: 10.1016/j.compscitech.2020.108610 [2] HAN S, CHUANG D. Increasing the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation[J]. Composites Science & Technology, 2011, 71(16): 1944-1952. [3] 雷智博, 曹建光, 董丽宁, 等. 航天器热管理高导热材料应用研究[J]. 中国材料进展, 2018, 37(12): 1039-1047. doi: 10.7502/j.issn.1674-3962.2018.12.12LEI Zhibo, CAO Jianguang, DONG lining, et al. Application of high thermal conductivity materials for spacecraft thermal management[J]. Materials Development in China, 2018, 37(12): 1039-1047(in Chinese). doi: 10.7502/j.issn.1674-3962.2018.12.12 [4] LIANG X, CHEN W, JI J, et al. Synergistic effect of carbon fiber and alumina in improving the thermal conductivity of polydimethylsiloxane composite[J]. Thermochimica Acta, 2021, 703: 178980. doi: 10.1016/j.tca.2021.178980 [5] ZHANG G, XUE S, CHEN F, et al. An efficient thermal interface material with anisotropy orientation and high through plane thermal conductivity[J]. Composites Science and Technology, 2023, 231: 109784. doi: 10.1016/j.compscitech.2022.109784 [6] 王函, 孙新阳, 张建岗, 等. 石墨烯/碳纤维混杂复合材料的结构功能一体化研究进展[J]. 固体火箭技术, 2021, 44(6): 737-746.WANG Han, SUN Xinyang, ZHANG Jiangang, et al. Progress in structural and functional integration of graphene/carbon fiber hybrid composites[J]. Solid Rocket Technology, 2021, 44(6): 737-746(in Chinese). [7] 张媛媛, 初人庆, 郭丹, 等. 高性能沥青基碳纤维发展现状及制备工艺[J]. 当代化工, 2023, 52(2): 457-460. doi: 10.3969/j.issn.1671-0460.2023.02.041ZHANG Yuanyuan, CHU Renqing, GUO Dan, et al. Development status and preparation technology of high performance asphalt-based carbon fiber[J]. Contemporary Chemical Industry, 2023, 52(2): 457-460(in Chinese). doi: 10.3969/j.issn.1671-0460.2023.02.041 [8] 田雨华, 王象东, 王辉, 等. 中间相沥青基碳纤维与T800H碳纤维复合材料性能对比[J]. 高科技纤维与应用, 2022, 47(3): 30-34.TIAN Yuhua, WANG Xiangdong, WANG Hui, et al. Comparison of properties of mesophase asphaltic carbon fiber and T800H carbon fiber composites[J]. High-Tech Fiber and Application, 2022, 47(3): 30-34(in Chinese). [9] 江文剑, 姜恒坤, 梁云, 等. 高精确度碳纤维复合材料反射器研究进展与展望[J]. 太赫兹科学与电子信息学报, 2022, 20(10): 1064-1072. doi: 10.11805/TKYDA2021380JIANG Wenjian, JIANG Hengkun, LIANG Yun, et al. Research progress and prospect of high precision carbon fiber composite reflectors[J]. Journal of Terahertz Science and Electronic Information, 2022, 20(10): 1064-1072(in Chinese). doi: 10.11805/TKYDA2021380 [10] 杨燕宁, 张亮儒, 董经经, 等. 高模量碳纤维复合材料在卫星结构上的应用[J]. 高科技纤维与应用, 2022, 47(4): 11-15. doi: 10.3969/j.issn.1007-9815.2022.04.001YANG Yanning, ZHANG Liangru, DONG Jingjing, et al. Application of high-modulus carbon fiber composites to satellite structures[J]. High-Tech Fiber and Application, 2022, 47(4): 11-15(in Chinese). doi: 10.3969/j.issn.1007-9815.2022.04.001 [11] ABBAS F A, ALHAMDO M H. Thermal performance of asphalt solar colctor by improving tube and slab characteristics[J]. International Journal of Thermofluid, 2023, 17: 100293. doi: 10.1016/j.ijft.2023.100293 [12] FENG C P, CHEN L B, TIAN G L, et al. Robust polymer-based paper-like thermal interface materials with a through-plane thermal conductivity over 9 W·m−1·K−1[J]. Chemical Engineering Journal, 2020, 392: 123784. doi: 10.1016/j.cej.2019.123784 [13] 葛瑛, 杨东元, 高超锋, 等. 高导热石墨烯复合材料研究进展[J]. 上海塑料, 2022, 50(5): 1-7.GE Ying, YANG Dongyuan, GAO Chaofeng, et al. Research progress of graphene composites with high thermal conductivity[J]. Shanghai Plastic, 2022, 50(5): 1-7(in Chinese). [14] ZHANG X, ZHANG J, XIA L, et al. Achieving high-efficiency and robust 3D thermally conductive while electrically insulating hybrid filler network with high orientation and ordered distribution[J]. Chemical Engineering Journal, 2018, 334: 247-256. doi: 10.1016/j.cej.2017.10.037 [15] LI M, ALI Z, WEI X, et al. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites[J]. Composites Part B: Engineering, 2021, 208: 108599. doi: 10.1016/j.compositesb.2020.108599 [16] GUO H, LI X, LI B, et al. Thermal conductivity of graphene/poly(vinylidene fluoride) nanocomposite membrane[J]. Materials & Design, 2017, 114: 355-363. [17] YUAN J, QIAN X, MENG Z, et al. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17915-17924. [18] 陈海斌, 陈瑞, 刘美琪, 等. 基于外力诱导取向的高导热聚合物基复合材料研究进展[J]. 复合材料学报, 2022, 39(4): 1486-1497.CHEN Haibin, CHEN Rui, LIU Meiqi, et al. Research progress of polymer matrix composites with high thermal conductivity based on external force induced orientation[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1486-1497(in Chinese). [19] HAO M, HU Z, HUANG Y, et al. Enhanced both in-plane and through-thickness thermal conductivity of carbon fiber/epoxy composites by fabricating high thermal conductive coaxial PAN/PBO carbon fibers[J]. Composites Part B: Engineering, 2022, 229: 109468. doi: 10.1016/j.compositesb.2021.109468 [20] JIAO T, HAN B, ZHAO L, et al. Pie-rolling-inspired construction of vertical carbon fiber high thermal conductivity hybrid networks[J]. Applied Surface Science, 2023, 618: 156711. doi: 10.1016/j.apsusc.2023.156711 [21] NIU H, GUO H, KANG L, et al. Vertical alignment of anisotropic fillers assisted by expansion flow in polymer composites[J]. Nano-Micro Letters, 2022, 14(9): 153. [22] 全国耐火材料标准化技术委员会. 闪光法测量热扩散系数或导热系数: GB/T 22588—2008[S]. 北京: 中国标准出版社, 2008.Refractory. Determination of thermal conductivity by the flash method: GB/T 22588—2008[S]. Beijing: Standards Press of China, 2008(in Chinese). [23] 全国纤维增强塑料标准化技术委员会. 纤维增强塑料复合材料单向增强材料I型层间断裂韧性GIc的测定: GB/T 28891—2012[S]. 北京: 中国标准出版社, 2012.National Fiber Reinforced Plastics. Fiber-reinforced plastic composite—Determination of mode I interlaminar fracture toughness GIc for unidirectionally reinforced materials: GB/T 28891—2012[S]. Beijing: Standards Press of China, 2012(in Chinese). [24] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science, 2016, 59: 41-85. [25] FENG C P, WAN S S, WU W C, et al. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown volage[J]. Composites Science and Technology, 2018, 167(20): 456-462.