留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多功能插层结构的高导热碳纤维复合材料制备与表征

曹洪涛 程涛 孙征昊 陈立 李瑶瑶 胡秉晟

曹洪涛, 程涛, 孙征昊, 等. 基于多功能插层结构的高导热碳纤维复合材料制备与表征[J]. 复合材料学报, 2024, 41(8): 4094-4102. doi: 10.13801/j.cnki.fhclxb.20240229.004
引用本文: 曹洪涛, 程涛, 孙征昊, 等. 基于多功能插层结构的高导热碳纤维复合材料制备与表征[J]. 复合材料学报, 2024, 41(8): 4094-4102. doi: 10.13801/j.cnki.fhclxb.20240229.004
CAO Hongtao, CHENG Tao, SUN Zhenghao, et al. Preparation and characterization on carbon fiber composites with high thermal conductivity based on multifunctional intercalation structures[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4094-4102. doi: 10.13801/j.cnki.fhclxb.20240229.004
Citation: CAO Hongtao, CHENG Tao, SUN Zhenghao, et al. Preparation and characterization on carbon fiber composites with high thermal conductivity based on multifunctional intercalation structures[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4094-4102. doi: 10.13801/j.cnki.fhclxb.20240229.004

基于多功能插层结构的高导热碳纤维复合材料制备与表征

doi: 10.13801/j.cnki.fhclxb.20240229.004
基金项目: 上海市青年科技英才扬帆计划 (22YF1446900);国家自然科学基金青年科学基金(12002214)
详细信息
    通讯作者:

    曹洪涛,硕士,工程师,研究方向为多尺度增强碳纤维复合材料及其界面性能研究 E-mail: caoht0811@126.com

  • 中图分类号: TB333

Preparation and characterization on carbon fiber composites with high thermal conductivity based on multifunctional intercalation structures

Funds: Shanghai Sailing Program (22YF1446900); National Natural Science Foundation Youth Science Foundation (12002214)
  • 摘要: 随着碳纤维增强树脂基复合材料在航天领域中的广泛应用,结构/功能一体化碳纤维(CF)复合材料将发挥出重要作用。本文采用功能化层间技术(Functional interlayer technology,FIT)制备了高导热沥青基碳纤维增强氰酸酯复合材料。在短切碳纤维薄膜表面电泳沉积石墨烯片(GNPs)和Al2O3制备薄膜材料GNPs-Al2O3/CF作为多功能插层结构,以其取代纤维层之间的富树脂层区域。后者表现出良好的导热性能,正交铺层复合材料的面内热导率和面外热导率分别提高了123.1%和77.5%,准各向同性铺层复合材料的面内热导率和面外热导率分别提高了119.0%和50.0%。此外,多功能插层结构的加入可以阻碍裂纹的扩展,改善复合材料层间韧性。因此,多功能插层结构既能在层间形成有效的导热网络结构,改善复合材料面内和面外热导率,又能提高层间区域的增韧效率。

     

  • 图  1  薄膜制备技术路线图

    GNPs—Graphene sheets; CF—Carbon fiber; PU—Polyurethane; APAM—Anionic polyacrylamide

    Figure  1.  Roadmap of thin film preparation technology

    图  2  复合材料导热性能测试试样制备示意图

    FIT—Functional interlayer technology; CFRP—Carbon fiber reinforced polymer;FITin—The outermost layer of the specimen is CF; FITout—The outermost layer of the specimen is GNPs-Al2O3/CF

    Figure  2.  Schematic diagram of sample preparation for thermal conductivity testing of composite materials

    图  3  复合材料层间增韧测试试样制备示意图

    FITlft—Interlaminar fiber toughening based on FIT

    Figure  3.  Schematic diagram of sample preparation for interlayer toughening test of composite materials

    图  4  FITin、FITout和FITlft复合材料层合板试样成型工艺(a)和固化工艺(b)示意图

    Figure  4.  Schematic diagram of the molding process (a) and curing process (b) of FITin, FITout and FITlft composite laminates

    图  5  基于SEM的TC-HC-600碳纤维表面微观形貌:(a)表面含有上浆剂;(b)表面不含上浆剂;(c)电泳沉积修饰表面

    Figure  5.  Surface micromorphology of TC-HC-600 carbon fibers based on SEM: (a) Surface contains a sizing agent; (b) Surface does not contain sizing agent; (c) Surface electrodeposition modification

    图  6  基于AFM的TC-HC-600碳纤维表面微观形貌:(a)表面含有上浆剂;(b)表面不含上浆剂;(c)电泳沉积修饰表面

    Figure  6.  Surface micromorphology of TC-HC-600 carbon fibers based on AFM: (a) Surface contains a sizing agent; (b) Surface does not contain sizing agent; (c) Surface electrodeposition modification

    图  7  CF与GNPs-Al2O3/CF薄膜的表面接触角θ示意图

    Figure  7.  Schematic diagram of surface contact angle θ of CF and GNPs-Al2O3/CF thin film

    图  8  不同薄膜材料的面内(a)和面外(b)热导率

    Figure  8.  In plane (a) and out of plane (b) thermal conductivity of different thin film materials

    图  9  不同薄膜结构热传输路径示意图:(a) Al2O3热传输路径;(b) GNPs热传输路径;(c) GNPs-Al2O3热传输路径;(d)基于SEM的GNPs-Al2O3微观结构示意图

    Figure  9.  Schematic diagram of heat transfer paths for different thin film structures: (a) Heat transfer paths of Al2O3; (b) Heat transfer paths of GNPs; (c) Heat transfer paths of GNPs-Al2O3; (d) Microstructure diagram of GNPs-Al2O3 based on SEM

    图  10  正交铺层(a)和准各向同性铺层(b)复合材料层合板的热导和热扩散系数(c)

    Figure  10.  Thermal conductivity of composite laminates with orthogonality (a) and quasi-isotropy (b) ply structures and thermal diffusion coefficient (c)

    图  11  FITlft试样I型层间断裂能GIc

    GIc-ini—Initial energy of type I fracture; GIc-prop—Propagation energy of type I fracture

    Figure  11.  Type I interlayer fracture energy GIc of sample FITlft

    图  12  空白组FITlft试样典型的力-位移曲线(a)和R曲线(b)

    Figure  12.  Typical force-displacement curves (a) and R curves (b) for blank and sample FITlft

    表  1  用于对比实验的薄膜材料

    Table  1.   Thin film materials for comparative experiments

    Sample Sizing agent Electrophoretic deposition
    CF Yes None
    CF-1 None None
    Al2O3/CF None Al2O3
    GNPs/CF None GNPs
    GNPs-Al2O3/CF None GNPs/Al2O3
    下载: 导出CSV
  • [1] WU X, TANG B, CHEN J, et al. Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks[J]. Composites Science and Technology, 2021, 203: 108610. doi: 10.1016/j.compscitech.2020.108610
    [2] HAN S, CHUANG D. Increasing the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation[J]. Composites Science & Technology, 2011, 71(16): 1944-1952.
    [3] 雷智博, 曹建光, 董丽宁, 等. 航天器热管理高导热材料应用研究[J]. 中国材料进展, 2018, 37(12): 1039-1047. doi: 10.7502/j.issn.1674-3962.2018.12.12

    LEI Zhibo, CAO Jianguang, DONG lining, et al. Application of high thermal conductivity materials for spacecraft thermal management[J]. Materials Development in China, 2018, 37(12): 1039-1047(in Chinese). doi: 10.7502/j.issn.1674-3962.2018.12.12
    [4] LIANG X, CHEN W, JI J, et al. Synergistic effect of carbon fiber and alumina in improving the thermal conductivity of polydimethylsiloxane composite[J]. Thermochimica Acta, 2021, 703: 178980. doi: 10.1016/j.tca.2021.178980
    [5] ZHANG G, XUE S, CHEN F, et al. An efficient thermal interface material with anisotropy orientation and high through plane thermal conductivity[J]. Composites Science and Technology, 2023, 231: 109784. doi: 10.1016/j.compscitech.2022.109784
    [6] 王函, 孙新阳, 张建岗, 等. 石墨烯/碳纤维混杂复合材料的结构功能一体化研究进展[J]. 固体火箭技术, 2021, 44(6): 737-746.

    WANG Han, SUN Xinyang, ZHANG Jiangang, et al. Progress in structural and functional integration of graphene/carbon fiber hybrid composites[J]. Solid Rocket Technology, 2021, 44(6): 737-746(in Chinese).
    [7] 张媛媛, 初人庆, 郭丹, 等. 高性能沥青基碳纤维发展现状及制备工艺[J]. 当代化工, 2023, 52(2): 457-460. doi: 10.3969/j.issn.1671-0460.2023.02.041

    ZHANG Yuanyuan, CHU Renqing, GUO Dan, et al. Development status and preparation technology of high performance asphalt-based carbon fiber[J]. Contemporary Chemical Industry, 2023, 52(2): 457-460(in Chinese). doi: 10.3969/j.issn.1671-0460.2023.02.041
    [8] 田雨华, 王象东, 王辉, 等. 中间相沥青基碳纤维与T800H碳纤维复合材料性能对比[J]. 高科技纤维与应用, 2022, 47(3): 30-34.

    TIAN Yuhua, WANG Xiangdong, WANG Hui, et al. Comparison of properties of mesophase asphaltic carbon fiber and T800H carbon fiber composites[J]. High-Tech Fiber and Application, 2022, 47(3): 30-34(in Chinese).
    [9] 江文剑, 姜恒坤, 梁云, 等. 高精确度碳纤维复合材料反射器研究进展与展望[J]. 太赫兹科学与电子信息学报, 2022, 20(10): 1064-1072. doi: 10.11805/TKYDA2021380

    JIANG Wenjian, JIANG Hengkun, LIANG Yun, et al. Research progress and prospect of high precision carbon fiber composite reflectors[J]. Journal of Terahertz Science and Electronic Information, 2022, 20(10): 1064-1072(in Chinese). doi: 10.11805/TKYDA2021380
    [10] 杨燕宁, 张亮儒, 董经经, 等. 高模量碳纤维复合材料在卫星结构上的应用[J]. 高科技纤维与应用, 2022, 47(4): 11-15. doi: 10.3969/j.issn.1007-9815.2022.04.001

    YANG Yanning, ZHANG Liangru, DONG Jingjing, et al. Application of high-modulus carbon fiber composites to satellite structures[J]. High-Tech Fiber and Application, 2022, 47(4): 11-15(in Chinese). doi: 10.3969/j.issn.1007-9815.2022.04.001
    [11] ABBAS F A, ALHAMDO M H. Thermal performance of asphalt solar colctor by improving tube and slab characteristics[J]. International Journal of Thermofluid, 2023, 17: 100293. doi: 10.1016/j.ijft.2023.100293
    [12] FENG C P, CHEN L B, TIAN G L, et al. Robust polymer-based paper-like thermal interface materials with a through-plane thermal conductivity over 9 W·m−1·K−1[J]. Chemical Engineering Journal, 2020, 392: 123784. doi: 10.1016/j.cej.2019.123784
    [13] 葛瑛, 杨东元, 高超锋, 等. 高导热石墨烯复合材料研究进展[J]. 上海塑料, 2022, 50(5): 1-7.

    GE Ying, YANG Dongyuan, GAO Chaofeng, et al. Research progress of graphene composites with high thermal conductivity[J]. Shanghai Plastic, 2022, 50(5): 1-7(in Chinese).
    [14] ZHANG X, ZHANG J, XIA L, et al. Achieving high-efficiency and robust 3D thermally conductive while electrically insulating hybrid filler network with high orientation and ordered distribution[J]. Chemical Engineering Journal, 2018, 334: 247-256. doi: 10.1016/j.cej.2017.10.037
    [15] LI M, ALI Z, WEI X, et al. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites[J]. Composites Part B: Engineering, 2021, 208: 108599. doi: 10.1016/j.compositesb.2020.108599
    [16] GUO H, LI X, LI B, et al. Thermal conductivity of graphene/poly(vinylidene fluoride) nanocomposite membrane[J]. Materials & Design, 2017, 114: 355-363.
    [17] YUAN J, QIAN X, MENG Z, et al. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17915-17924.
    [18] 陈海斌, 陈瑞, 刘美琪, 等. 基于外力诱导取向的高导热聚合物基复合材料研究进展[J]. 复合材料学报, 2022, 39(4): 1486-1497.

    CHEN Haibin, CHEN Rui, LIU Meiqi, et al. Research progress of polymer matrix composites with high thermal conductivity based on external force induced orientation[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1486-1497(in Chinese).
    [19] HAO M, HU Z, HUANG Y, et al. Enhanced both in-plane and through-thickness thermal conductivity of carbon fiber/epoxy composites by fabricating high thermal conductive coaxial PAN/PBO carbon fibers[J]. Composites Part B: Engineering, 2022, 229: 109468. doi: 10.1016/j.compositesb.2021.109468
    [20] JIAO T, HAN B, ZHAO L, et al. Pie-rolling-inspired construction of vertical carbon fiber high thermal conductivity hybrid networks[J]. Applied Surface Science, 2023, 618: 156711. doi: 10.1016/j.apsusc.2023.156711
    [21] NIU H, GUO H, KANG L, et al. Vertical alignment of anisotropic fillers assisted by expansion flow in polymer composites[J]. Nano-Micro Letters, 2022, 14(9): 153.
    [22] 全国耐火材料标准化技术委员会. 闪光法测量热扩散系数或导热系数: GB/T 22588—2008[S]. 北京: 中国标准出版社, 2008.

    Refractory. Determination of thermal conductivity by the flash method: GB/T 22588—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [23] 全国纤维增强塑料标准化技术委员会. 纤维增强塑料复合材料单向增强材料I型层间断裂韧性GIc的测定: GB/T 28891—2012[S]. 北京: 中国标准出版社, 2012.

    National Fiber Reinforced Plastics. Fiber-reinforced plastic composite—Determination of mode I interlaminar fracture toughness GIc for unidirectionally reinforced materials: GB/T 28891—2012[S]. Beijing: Standards Press of China, 2012(in Chinese).
    [24] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science, 2016, 59: 41-85.
    [25] FENG C P, WAN S S, WU W C, et al. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown volage[J]. Composites Science and Technology, 2018, 167(20): 456-462.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  161
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-17
  • 修回日期:  2024-01-14
  • 录用日期:  2024-01-29
  • 网络出版日期:  2024-03-02
  • 刊出日期:  2024-08-15

目录

    /

    返回文章
    返回