留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多功能插层结构的高导热碳纤维复合材料制备与表征

曹洪涛 程涛 孙征昊 陈立 李瑶瑶 胡秉晟

曹洪涛, 程涛, 孙征昊, 等. 基于多功能插层结构的高导热碳纤维复合材料制备与表征[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 曹洪涛, 程涛, 孙征昊, 等. 基于多功能插层结构的高导热碳纤维复合材料制备与表征[J]. 复合材料学报, 2024, 42(0): 1-9.
CAO Hongtao, CHENG Tao, SUN Zhenghao, et al. Preparation and characterization on carbon fiber composites with high thermal conductivity based on multifunctional intercalation structures[J]. Acta Materiae Compositae Sinica.
Citation: CAO Hongtao, CHENG Tao, SUN Zhenghao, et al. Preparation and characterization on carbon fiber composites with high thermal conductivity based on multifunctional intercalation structures[J]. Acta Materiae Compositae Sinica.

基于多功能插层结构的高导热碳纤维复合材料制备与表征

基金项目: 上海市青年科技英才扬帆计划 (22YF1446900);国家自然科学基金青年科学基金(12002214)
详细信息
    通讯作者:

    曹洪涛,硕士研究生,工程师,研究方向为多尺度增强碳纤维复合材料及其界面性能研究 E-mail: caoht0811@126.com

  • 中图分类号: TB333

Preparation and characterization on carbon fiber composites with high thermal conductivity based on multifunctional intercalation structures

Funds: Shanghai Sailing Program (22YF1446900); National Natural Science Foundation Youth Science Foundation (12002214)
  • 摘要: 随着碳纤维增强树脂基复合材料在航天领域中的广泛应用,结构/功能一体化碳纤维(CF)复合材料将发挥出重要作用。本文采用功能化层间技术(Functional Interlayer Technology,FIT)制备了高导热沥青基碳纤维增强氰酸酯复合材料。在短切碳纤维薄膜表面电泳沉积石墨烯片(GNPs)和Al2O3制备薄膜材料GNPs-Al2O3/CF作为多功能插层结构,以其取代纤维层之间的富树脂层区域。后者表现出良好的导热性能,正交铺层复合材料的面内热导率和面外热导率分别提高了123.1%和77.5%,准各向同性铺层复合材料的面内热导率和面外热导率分别提高了119.0%和50.0%。此外,多功能插层结构的加入可以阻碍裂纹的扩展,改善复合材料层间韧性。因此,多功能插层结构既能在层间形成有效的导热网络结构改善复合材料面内和面外热导率,又能提高层间区域的增韧效率。

     

  • 图  1  薄膜制备技术路线图

    Figure  1.  Roadmap of thin film preparation technology

    图  2  复合材料导热性能测试试样制备示意图

    Figure  2.  Schematic diagram of sample preparation for thermal conductivity testing of composite materials

    图  3  复合材料层间增韧测试试样制备示意图

    Figure  3.  Schematic diagram of sample preparation for interlayer toughening test of composite materials

    图  4  FITin、FITOUT和FITlft复合材料层合板试样热压罐固化成型和固化工艺示意图

    Figure  4.  Schematic diagram of the curing process of FITin, FITOUT and FITlft composite laminates in a hot pressing tank

    图  5  基于SEM的TC-HC-600碳纤维表面微观形貌

    Figure  5.  Surface Micromorphology of TC-HC-600 Carbon Fibers Based on SEM

    (a) Surface contains a sizing agent; (b) Surface does not contain sizing agent; (c) Surface electrodeposition modification

    图  6  基于AFM的TC-HC-600碳纤维表面微观形貌

    Figure  6.  Surface Micromorphology of TC-HC-600 Carbon Fibers Based on AFM

    (a) Surface contains a sizing agent; (b) Surface does not contain sizing agent; (c) Surface electrodeposition modification

    图  7  CF与GNPs-Al2O3/CF薄膜的表面接触角示意图

    Figure  7.  CF and GNPs-Al2O3/CF schematic diagram of surface contact angle of thin film

    图  8  不同薄膜材料的面内(a)和面外(b)热导率

    Figure  8.  In plane (a) and out of plane (b) thermal conductivity of different thin film materials

    图  9  不同薄膜结构热传输路径示意图:(a)Al2O3热传输路径;(b)GNPs热传输路径;(c)GNPs-Al2O3热传输路径;(d)基于SEM的GNPs-Al2O3微观结构示意图

    Figure  9.  Schematic diagram of heat transfer paths for different thin film structures: (a) Heat transfer paths of Al2O3, (b) Hert transfer paths of GNPs, (c)Heat transfer paths of GNPs-Al2O3, (d) Microstructure diagram of GNPs-Al2O3 based on SEM

    图  10  正交铺层(a)和准各向同性铺层(b)复合材料层合板的热导和热扩散系系数(c)

    Figure  10.  Thermal conductivit and thermal diffusion coefficient (c) of composite laminates with orthogonality (a) and quasi-isotropy (b) ply structures

    图  11  FITlft试样I型层间断裂能

    Figure  11.  Type I interlayer fracture energy of sample FITlft

    图  12  空白组FITlft试样典型的力—位移曲线(a)和R曲线(b)

    Figure  12.  Typical force displacement curves (a) and R curves (b) for blank and ssample FITlft

    表  1  用于对比实验的薄膜材料

    Table  1.   Thin film materials for comparative experiments

    Sample Sizing agent Electrophoretic deposition
    CF Yes None
    CF-1 None None
    Al2O3/CF None Al2O3
    GNPs/CF None GNPs
    GNPs-Al2O3/CF None GNPs/ Al2O3
    Notes: CF—Carbon fiber; GNPs—Graphene sheets.
    下载: 导出CSV
  • [1] WU X, TANG B, CHEN J, et al. Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks[J]. Composites Science and Technology, 2021, 203: 108610. doi: 10.1016/j.compscitech.2020.108610
    [2] HAN S, CHUANG D. Increasing the through-thickness thermal conductivity of carbon fiber polymer–matrix composite by curing pressure increase and filler incorporation[J]. Composites Science & Technology, 2011, 71(16): 1944-1952.
    [3] 雷智博, 曹建光, 董丽宁, 等. 航天器热管理高导热材料应用研究[J]. 中国材料进展, 2018, 37(12): 1039-1047. doi: 10.7502/j.issn.1674-3962.2018.12.12

    LEI Zhi-Bo, CAO Jian-guang, DONG Li-Ning, et al. Application of high thermal conductivity materials for spacecraft thermal management[J]. Materials Development in China, 2018, 37(12): 1039-1047(in Chinese). doi: 10.7502/j.issn.1674-3962.2018.12.12
    [4] LIANG X, CHEN W, JI J, et al. Synergistic effect of carbon fiber and alumina in improving the thermal conductivity of polydimethylsiloxane composite[J]. Thermochimica Acta, 2021, 703: 178980. doi: 10.1016/j.tca.2021.178980
    [5] ZHANG G, XUE S, CHEN F, et al. An efficient thermal inter face material with anisotropy orientation and high through plane thermal conductivity[J]. Composites Science and Technology, 2023, 231: 109784 doi: 10.1016/j.compscitech.2022.109784
    [6] 王函, 孙新阳, 张建岗, 等. 石墨烯/碳纤维混杂复合材料的结构功能一体化研究进展[J]. 固体火箭技, 2021, 44(6): 737-746.

    WANG Han, SUN Xin-yang, ZHANG Jian-gang, et al. Progress in structural and functional integration of graphene/carbon fiber hybrid composites[J]. Solid rocket technology, 2021, 44(6): 737-746(in Chinese).
    [7] 张媛媛, 初人庆, 郭丹, 等. 高性能沥青基碳纤维发展现状及制备工艺[J]. 当代化工, 2023, 52(2): 457-460. doi: 10.3969/j.issn.1671-0460.2023.02.041

    ZHANG Yuan-yuan, CHU Ren-Qing, GUO Dan, et al. Development status and preparation technology of high performance asphalt-based carbon fiber[J]. Contemporary Chemical Industry, 2023, 52(2): 457-460(in Chinese). doi: 10.3969/j.issn.1671-0460.2023.02.041
    [8] 田雨华, 王象东, 王辉, 等. 中间相沥青基碳纤维与t800h碳纤维复合材料性能对比[J]. 高科技纤维与应, 2022, 47(3): 30-34.

    TIAN Yu-hua, WANG Xiang-dong, WANG Hui, et al. Comparison of properties of mesophase asphaltic carbon fiber and t800h carbon fiber composites[J]. High-tech fiber and applicatio, 2022, 47(3): 30-34(in Chinese).
    [9] 江文剑, 姜恒坤, 梁云, 等. 高精确度碳纤维复合材料反射器研究进展与展望[J]. 太赫兹科学与电子信息学报, 2022, 20(10): 1064-1072. doi: 10.11805/TKYDA2021380

    JIANG Wen-jian, JIANG Heng-kun, LIANG Yun, et al. Research progress and prospect of high precision carbon fiber composite reflectors[J]. Journal of Terahertz Science and Electronic Informatio, 2022, 20(10): 1064-1072(in Chinese). doi: 10.11805/TKYDA2021380
    [10] 杨燕宁, 张亮儒, 董经经, 等. 高模量碳纤维复合材料在卫星结构上的应用[J]. 高科技纤维与应用, 2022, 47(4): 11-15. doi: 10.3969/j.issn.1007-9815.2022.04.001

    YANG Yan-ning, ZHANG Liang-Ru, DONG Jing-jing, et al. Application of high-modulus carbon fiber composites to satellite structures[J]. High-tech fiber and applicatio, 2022, 47(4): 11-15(in Chinese). doi: 10.3969/j.issn.1007-9815.2022.04.001
    [11] ABBAS F A, ALHAMDO M H. Thermal performance of asphalt solar colctor by improving tube and slab characteristics[J]. International Journal of Thermofluid, 2023, 17: 100293. doi: 10.1016/j.ijft.2023.100293
    [12] FENG C-P, CHEN L-B, TIAN G-L, et al. Robust polymer-based paper-like thermal interface materials with a through-plane thermal conductivity over 9 wm−1k−1[J]. Chemical Engineering Journa, 2020, 392: 123784. doi: 10.1016/j.cej.2019.123784
    [13] 葛瑛, 杨东元, 高超锋, 等. 高导热石墨烯复合材料研究进展[J]. 上海塑料, 2022, 50(5): 1-7.

    GE Ying, YANG Dong-yuan, GAO Chao-feng, et al. Research progress of graphene composites with high thermal conductivity[J]. Shanghai Plastic, 2022, 50(5): 1-7(in Chinese).
    [14] ZHANG X, ZHANG J, XIA L, et al. Achieving high-efficiency and robust 3d thermally conductive while electrically insulating hybrid filler network with high orientation and ordered distribution[J]. Chemical Engineering Journal, 2018, 334: 247-256. doi: 10.1016/j.cej.2017.10.037
    [15] LI M, ALI Z, WEI X, et al. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites[J]. Composites Part B:Engineerin, 2021, 208: 108599. doi: 10.1016/j.compositesb.2020.108599
    [16] GUO H, LI X, LI B, et al. Thermal conductivity of graphene/poly(vinylidene fluoride) nanocomposite membrane[J]. Materials & design, 2017, 114: 355-363.
    [17] YUAN J, QIAN X, MENG Z, et al. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17915-17924.
    [18] 陈海斌, 陈瑞, 刘美琪, 等. 基于外力诱导取向的高导热聚合物基复合材料研究进展[J]. 复合材料学, 2022, 39(4): 1486-1497.

    CHEN Haibin, CHEN Rui, LIU Meiqi, et al. Research progress of polymer matrix composites with high thermal conductivity based on external force induced orientation[J]. Journal of Composite Materials, 2022, 39(4): 1486-1497(in Chinese).
    [19] HAO M, HU Z, HUANG Y, et al. Enhanced both in-plane and through-thickness thermal conductivity of carbon fiber/epoxy composites by fabricating high thermal conductive coaxial PAN/PBO carbon fibers[J]. Composites, Part B. Engineering, 2022, 229: 109468. doi: 10.1016/j.compositesb.2021.109468
    [20] JIAO T, HAN B, ZHAO L, et al. Pie-rolling-inspired construction of vertical carbon fiber high thermal conductivity hybrid networks[J]. Applied Surface Science, 2023, 618: 156711. doi: 10.1016/j.apsusc.2023.156711
    [21] NIU H, GUO H, KANG L , et al. Vertical Alignment of Anisotropic Fillers Assisted by Expansion Flow in Polymer Composites[J]. Nano-Micro Letters, 2022, 14(9): 153.
    [22] 全国耐火材料标准化技术委员会. GB/T 22588—2008 闪光法测量热扩散系数或导热系数[S]. 北京: 中国标准出版社, 2008.

    National Technical Committee for Standardization of refractory materials. GB/T 22588—2008 Determination of thermal conductivity by the flash method[S]. Beijing, China: Standards Press of China, 2008(in Chinese).
    [23] 全国纤维增强塑料标准化技术委员会. GB/T 28891—2012 纤维增强塑料复合材料单向增强材料Ⅰ型层间断裂韧性Gic的测定[S]. 北京: 中国标准出版社, 2012.

    National fiber-reinforced plastics standardization Technical Committee. GB/T 288891—2012 Fiber-reinforced plastic composite-Determination of mode I interlaminar fracture toughness Gic for unidirectionally reinforced materials[S]. Beijing, China: Standards Press of China, 2012(in Chinese).
    [24] CHEN H, GINZBURG V V, YANG J , et al. Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications[J]. Progress in Polymer Science, 2016: 41-85.
    [25] FENG C P, WAN S S, WU W C, et al. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown volage[J]. Composites Science and Technology, 2018, 167(20): 456-462.
  • 加载中
计量
  • 文章访问数:  85
  • HTML全文浏览量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-17
  • 修回日期:  2024-01-14
  • 录用日期:  2024-01-29
  • 网络出版日期:  2024-03-15

目录

    /

    返回文章
    返回