Adhesion properties of BFRP reinforcement and steel-PVA hybrid ECC
-
摘要: 为研究玄武岩纤维增强树脂复合材料(BFRP)筋与钢-聚乙烯醇混杂纤维增强水泥基复合材料(钢-PVA混杂ECC)的粘结性能,进行系列试验研究与分析。研究表明:在试验钢纤维掺量范围内,钢纤维掺量对试件的力学性能和界面粘结性能均为正面影响,钢-PVA混杂ECC试件的立方体抗压强度随钢纤维掺量增加而增大,增加钢纤维掺量可显著提高BFRP筋与钢-PVA混杂ECC的粘结强度;在试验BFRP筋直径及锚固长度范围内,BFRP筋直径及锚固长度对试件的界面粘结性能均为负面影响,增大BFRP筋直径及锚固长度,BFRP筋与钢-PVA混杂ECC试件的粘结强度均有不同程度的降低。中心拉拔试件粘结强度基本都在5~12 MPa之间。其中,采用0.9vol%钢纤维掺量,BFRP筋直径为8 mm及锚固长度为5d (d为 BFRP 筋的直径)的试件粘结强度最大,为16.82 MPa;而未掺加钢纤维,BFRP筋直径为12 mm及锚固长度为5d的试件粘结强度最小,为5.46 MPa。中心拉拔试件破坏模式分为BFRP筋拔出破坏和BFRP筋拔出-钢-PVA混杂ECC劈裂破坏(拔出-劈裂破坏),所有试件基本都为BFRP筋拔出破坏,仅有少量试件为拔出-劈裂破坏,且只有拔出-劈裂破坏的试件表面与BFRP筋接触部分出现破碎现象。采用四段式(微滑移段、滑移段、下降段和残余段)表达式建立的粘结-滑移模型可以较准确反映BFRP筋与钢-PVA混杂ECC的粘结滑移全过程。基于试验实测粘结强度和抗压强度值,建立了可计算BFRP筋基本锚固长度的表达式。Abstract: In order to study the adhesion properties of basalt fiber reinforced composites (BFRP) ribs and steel-polyvinyl alcohol hybrid fiber reinforced cement matrix composites (steel-PVA mixed ECC), a series of experimental studies and analysis were carried out. The results show that in the range of test steel fiber doping, the mechanical properties and interfacial adhesion properties of the steel fiber doping have a positive effect on the mechanical properties and interfacial adhesion properties of the specimen, and the cubic compressive strength of the steel-PVA hybrid ECC specimen increases with the increase of the amount of steel fiber, and the increase of the steel fiber doping can significantly improve the bonding strength of the BFRP rib and the steel-PVA hybrid ECC; In the test BFRP rib diameter and anchor length range, the diameter of the BFRP rib and the anchoring length have a negative impact on the interfacial bonding performance of the specimen, which increases the diameter of the BFRP rib and the anchoring length. The bond strength of BFRP ribs and steel-PVA hybrid ECC specimens has been reduced to varying degrees. The bond strength of the central pull specimen is basically between 5 and 12 MPa. Among them, the specimen with 0.9vol% steel fiber doping, BFRP rib diameter of 8 mm and anchor length of 5d has the largest bonding strength of 16.82 MPa, while the specimen with unaddressed steel fiber, BFRP rib diameter of 12 mm and anchor length of 5d has the smallest bonding strength, which is 5.46 MPa. The central pull specimen failure mode is divided into BFRP rib extraction failure and BFRP tendon extraction-steel-PVA mixed ECC cleavage failure (pulling-splitting failure), all specimens are basically BFRP rib extraction failure, only a small number of specimens are pulled out-cleavage failure, and only the surface of the specimen with the pull-split failure is broken in contact with the BFRP tendon. The bond-slip model established by using four-stage expressions (micro-slip section, slip section, descending section and residual section) expression can accurately reflect the bonding slip process of BFRP rib and steel-PVA mixed ECC. Based on the measured bond strength and compressive strength values of the test, an expression is established to calculate the basic anchor length of the BFRP rib.
-
Key words:
- BFRP reinforcement /
- steel fibres /
- polyvinyl alcohol fibres /
- ECC /
- bonding performance /
- bonding-slip model
-
表 1 纤维各项性能指标
Table 1. Fiber performance indicators
Fiber Type Length/
mmDiameter/
μmElastic modulus/
GPaTensile strength/
MPaElongation/
%Density/
(g·cm−3)PVA fiber Bundled 12 40 42 1600 7 1.3 Steel fiber Wave type 13 200 220 3000 3-5 7.5 Note: PVA—Polyvinyl alcohol. 表 2 玄武岩纤维增强树脂复合材料(BFRP)筋基本力学性能
Table 2. Basalt fiber reinforced plastics (BFRP) muscle basic mechanics performance
Diameter/mm Tensile strength/MPa Elastic modulus/GPa Elongation/% Density/(g·cm−3) 8 1462.24±61.52 57.61±1.08 2.64±0.75 1.98±0.58 10 1248.49±102.56 54.68±2.25 2.73±0.55 2.07±0.22 12 1294.46±82.53 56.52±1.52 2.81±0.14 2.01±0.45 表 3 工程水泥基复合材料(ECC)配合比
Table 3. Engineering cementitious composites (ECC) mix ratio
Cement/(kg·m−3) Fly ash/(kg·m−3) Sand/(kg·m−3) Water reducer/(kg·m−3) Water/(kg·m−3) PVA fiber/vol% 393 865 457 5 311 1.5 表 4 中心拉拔试件编号参数汇总
Table 4. Summary of central pull specimen number parameters
BFRP bar Steel fiber doping/vol% Diameter/mm Anchorage length/mm 0 0.3 0.6 0.9 8 5d S0-8-5d S0.3-8-5d S0.6-8-5d S0.9-8-5d 10 2.5d S0-10-2.5d S0.3-10-2.5d S0.6-10-2.5d S0.9-10-2.5d 5d S0-10-5d S0.3-10-5d S0.6-10-5d S0.9-10-5d 7.5d S0-10-7.5d S0.3-10-7.5d S0.6-10-7.5d S0.9-10-7.5d 12 5d S0-12-5d S0.3-12-5d S0.6-12-5d S0.9-12-5d Notes: S0, S0.3, S0.6 and S0.9—0vol%, 0.3vol%, 0.6vol% and 0.9vol% of the volume of the steel fiber, respectively; 8, 10 and 12—BFRP rib diameters of 8 mm, 10 mm and 12 mm, respectively; 2.5d, 5d and 7.5d—2.5 times, 5 times and 7.5 times the diameter of the BFRP rib anchorage length, respectively. 表 5 BFRP筋增强钢-PVA混杂ECC粘结-滑移曲线拟合参数
Table 5. Bonding-slip curves fitting parameters of BFRP reinforced steel-PVA hybrid ECC
Specimen number CMR model BSP model GFRP model BSP model BSP model full curve α β R2 R2 α R2 R2 α β R2 S0-10-2.5d 1.686 2.080 0.963 0.973 0.346 0.943 0.989 0.760 1.372 0.976 S0-10-5d 2.388 1.364 0.971 0.968 0.614 0.928 0.973 0.721 1.319 0.972 S0-10-7.5d 2.730 1.212 0.975 0.977 0.924 0.950 0.962 0.692 1.146 0.975 S0-12-5d 2.651 1.041 0.943 0.981 0.658 0.941 0.939 0.873 1.111 0.966 S0-8-5d 1.827 0.846 0.973 0.985 0.352 0.990 0.988 0.697 1.002 0.983 S0.3-10-2.5d 1.921 1.559 0.961 0.979 0.719 0.961 0.953 0.792 1.082 0.975 S0.3-10-5d 1.806 0.855 0.972 0.984 0.360 0.994 0.982 0.600 0.874 0.982 S0.3-10-7.5d 5.054 1.362 0.975 0.982 1.210 0.934 0.938 0.804 1.042 0.962 S0.3-12-5d 2.146 1.355 0.974 0.954 0.677 0.981 0.959 0.683 0.896 0.960 S0.3-8-5d 1.816 1.230 0.970 0.982 0.617 0.993 0.979 0.684 0.897 0.968 S0.6-10-2.5d 1.132 1.080 0.983 0.979 0.622 0.954 0.943 0.577 1.062 0.954 S0.6-10-5d 1.995 1.516 0.953 0.959 0.389 0.946 0.986 0.753 0.726 0.955 S0.6-10-7.5d 1.926 1.691 0.957 0.962 0.516 0.947 0.943 0.750 0.967 0.960 S0.6-12-5d 2.527 2.351 0.972 0.972 1.247 0.937 0.935 0.810 0.950 0.966 S0.6-8-5d 2.370 1.343 0.981 0.986 0.836 0.957 0.951 0.679 0.956 0.973 S0.9-10-2.5d 1.693 1.391 0.961 0.974 0.511 0.973 0.966 0.639 1.037 0.973 S0.9-10-5d 1.812 1.174 0.974 0.963 0.405 0.929 0.957 0.605 1.264 0.964 S0.9-10-7.5d 2.933 1.302 0.984 0.974 0.596 0.958 0.973 0.604 1.075 0.963 S0.9-12-5d 1.863 1.128 0.963 0.979 0.440 0.940 0.975 0.764 1.274 0.976 S0.9-8-5d 1.765 2.118 0.968 0.969 0.700 0.944 0.970 0.769 1.187 0.969 Notes: α and β—Coefficients to be determined; R2—Correlation coefficient obtained by fitting the bond-slip model; CMR—Cosenza-Manfredi-Realfonzo; BSP—BFRP bars and steel-PVA hybrid ECC; GFRP—GFRP/steel strand fiber composite bars. 表 6 BFRP筋基本锚固长度粘结系数K
Table 6. Bonding coefficients K for the basic anchor length of BFRP ribs
Steel fiber doping/vol% Compressive strength/MPa K Average value 10-2.5d 8-5d 10-5d 12-5d 10-7.5d 0 29.50 0.00268 0.00385 0.00265 0.00210 0.00264 0.00278 0.3 30.22 0.00307 0.00427 0.00300 0.00210 0.00295 0.00308 0.6 31.90 0.00292 0.00470 0.00291 0.00232 0.00252 0.00307 0.9 32.48 0.00335 0.00503 0.00323 0.00233 0.00291 0.00337 Average value — 0.00300 0.00446 0.00295 0.00221 0.00275 — -
[1] 王吉忠, 杨俊龙, 崔文佳. 盐溶液干湿循环对CFRP-混凝土界面粘结性能的影响[J]. 复合材料学报, 2018, 35(8):2055-2064. doi: 10.13801/j.cnki.fhclxb.20170829.003WANG Jizhong, YANG Junlong, CUI Wenjia. Effect of wet and dry cycle of salt solution on bonding performance of CFRP-concrete interface[J]. Acta Materiae Compositea Sinica,2018,35(8):2055-2064(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170829.003 [2] 肖时辉, 苏光明, 唐孟雄, 等. 氯盐和硫酸盐环境下混凝土耐久性研究综述[J]. 混凝土, 2022(1):41-45. doi: 10.3969/j.issn.1002-3550.2022.01.010XIAO Shihui, SU Guangming, TANG Mengxiong, et al. A review on the durability of concrete under chloride and sulfate environment[J]. Concrete,2022(1):41-45(in Chinese). doi: 10.3969/j.issn.1002-3550.2022.01.010 [3] 缪昌文, 顾祥林, 张伟平, 等. 环境作用下混凝土结构性能演化与控制研究进展[J]. 建筑结构学报, 2019, 40(1):1-10. doi: 10.14006/j.jzjgxb.2019.01.001MIAO Changwen, GU Xianglin, ZHANG Weiping, et al. Research progress on performance evolution and control of concrete structures under environmental action[J]. Journal of Building Structures,2019,40(1):1-10(in Chinese). doi: 10.14006/j.jzjgxb.2019.01.001 [4] DO T D D, YEN K J, YEN C H, et al. Impact of tension stiffening on the tensile and flexural behavior of ECC ferrocement[J]. Construction and Building Materials,2022,329:127201. doi: 10.1016/j.conbuildmat.2022.127201 [5] ZHU M Z, CHEN B, WU M, et al. Effects of different mixing ratio parameters on mechanical properties of cost-effective green engineered cementitious composites (ECC)[J]. Construction and Building Materials,2022,328:127093. doi: 10.1016/j.conbuildmat.2022.127093 [6] HUANG B T, ZHU J X, WENG K F, et al. Ultra-high-strength engineered/strain-hardening cementitious composites (ECC/SHCC): Material design and effect of fiber hybridization[J]. Cement and Concrete Composites, 2022, 129: 104464. [7] 管品武, 尚佳琦, 范家俊, 等. CFRP片材-ECC-混凝土复合界面单面剪切试验研究[J]. 复合材料学报, 2022, 39(6): 2810-2820.GUAN Pinwu, SHANG Jiaqi, FAN Jiajun, et al. Single-sided shear test study of CFRP sheet-ECC-concrete composite interface[J]. Acta Compositea Materiae Sinica, 2022, 39(6): 2810-2820(in Chinese). [8] HU X L, XIAO J Z, ZHANG K J, et al. The state-of-the-art study on durability of FRP reinforced concrete with seawater and sea sand[J]. Journal of Building Engineering,2022,51:104294. doi: 10.1016/j.jobe.2022.104294 [9] ZENG J J, ZHUGE Y, LIANG S D, et al. Durability assessment of PEN/PET FRP composites based on accelerated aging in alkaline solution/seawater with different temperatures[J]. Construction and Building Materials,2022,327:126992. doi: 10.1016/j.conbuildmat.2022.126992 [10] ALI M, SOLIMAN A, NEHDI M. Hybrid-fiber reinforced engineered cementitious composite under tensile and impact loading[J]. Materials& Design,2017,117:139-149. [11] NGUYEN W J, BANDELT M, TRONO W, et al. Mechanics and failure characteristics of hybrid fiber-reinforced concrete (HyFRC) composites with longitudinal steel reinforcement[J]. Engineering Structures,2019,183:243-254. doi: 10.1016/j.engstruct.2018.12.087 [12] 郑宇宙, 杨星, 王文炜, 等. 纤维增强复合筋与混凝土黏结性能试验及黏结-滑移本构关系模型[J]. 工业建筑, 2015, 45(6):1-6. doi: 10.13204/j.gyjz201506001ZHENG Yuzhou, YANG Xing, WANG Wenwei, et al. Adhesion performance test of fiber reinforced composite rib and concrete and bonding-slip constitutive relationship model[J]. Industrial Construction,2015,45(6):1-6(in Chinese). doi: 10.13204/j.gyjz201506001 [13] 刘生纬, 张家玮, 赵建昌, 等. 硫酸盐干湿交替对碳纤维增强环氧树脂-混凝土界面粘结性能的影响[J]. 复合材料学报, 2018, 35(1):16-23. doi: 10.13801/j.cnki.fhclxb.20170315.003LIU Shengwei, ZHANG Jiawei, ZHAO Jianchang, et al. Effect of alternating wet and dry sulfate on bonding performance of carbon fiber-reinforced epoxy resin-concrete interface[J]. Acta Composites Sinica Sinica,2018,35(1):16-23(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170315.003 [14] HUANG H, YUAN Y J, ZHANG W, et al. Bond properties between GFRP bars and hybrid fiber-reinforced concrete containing three types of artificial fibers[J]. Construction and Building Materials,2020,250(C):118857. [15] WANG H L, SUN X Y, PENG G Y, et al. Experimental study on bond behaviour between BFRP bar and engineered cementitious composite[J]. Construction and Building Materials,2015,95:448-456. doi: 10.1016/j.conbuildmat.2015.07.135 [16] 滕晓丹, 姚淇耀, 陆宸宇, 等. BFRP筋与分级粒径河砂ECC粘结滑移性能试验研究[J]. 硅酸盐通报, 2022, 41(4):1264-1275.TENG Xiaodan, YAO Qiyao, LU Chenyu, et al. Experimental study on the adhesion slip performance of BFRP tendon and graded river sand ECC[J]. Bulletin of the Chinese Ceramic Society,2022,41(4):1264-1275(in Chinese). [17] 单炜, 张绍逸. BFRP筋与混凝土的粘结-滑移本构关系[J]. 建筑科学与工程学报, 2013, 30(2):15-20. doi: 10.3969/j.issn.1673-2049.2013.02.003SHAN Wei, ZHANG Shaoyi. Bonding-slip constitutive relationship between BFRP reinforcement and concrete[J]. Journal of Building Science and Engineering,2013,30(2):15-20(in Chinese). doi: 10.3969/j.issn.1673-2049.2013.02.003 [18] 吴智深, 汪昕, 史健喆. 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37(5):1-14.WU Zhishen, WANG Xin, SHI Jianzhe. Performance improvement of basalt fiber composites and their novel structures[J]. Engineering Mechanics,2020,37(5):1-14(in Chinese). [19] ZHANG Z G, QIAN S Z, LIU H Z, et al. Ductile concrete material with self-healing capacity for jointless concrete pavement use[J]. Transportation Research Record,2017,2640(1):78-83. doi: 10.3141/2640-09 [20] 赵军, 王帅斌, 王自柯, 等. BFRP筋与地聚物混凝土黏结性能试验研究[J]. 建筑结构学报, 2022, 43(6):245-256.ZHAO Jun, WANG Shuaibin, WANG Zike, et al. Experimental study on adhesion performance of BFRP reinforcement and ground polymer concrete[J]. Journal of Building Structures,2022,43(6):245-256(in Chinese). [21] 全国水泥制品标准化技术委员会. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461—2018[S]. 北京: 中国建材工业出版社, 2018.National Technical Committee for Standardization of Cement Products. Test method for mechanical properties of cement matrix composites reinforced with high ductility fiber: JC/T 2461—2018[S]. Beijing: China Building Materials Industry Press, 2018(in Chinese). [22] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Physical and mechanical properties test method standard for concrete: GB/T 50081—2019[S]. Beijing: China Architecture and Building Press, 2019(in Chinese). [23] 全国纤维增强塑料标准化技术委员会土木工程用复合材料及纤维分技术委员会. 纤维增强复合材料筋基本力学性能试验方法: GB/T 30022—2013[S]. 北京: 中国标准出版社, 2013.National Technical Committee for Standardization of Fiber Reinforced Plastics Composites and Fibers Sub-technical Committee for Civil Engineering. Test method for basic mechanical properties of fiber reinforced composite reinforcement reinforcement: GB/T 30022—2013[S]. Beijing: China Standards Press, 2013(in Chinese). [24] 全国试验机标准化技术委员会. 液压式万能试验机: GB/T 3159—2008[S]. 北京: 中国标准出版社, 2008.National Testing Machine Standardization Technical Committee. Hydraulic universal testing machine: GB/T 3159—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [25] HAMDI A, RAHIMAH M, PHILLIP V, et al. Mechanical properties and bond stress-slip behaviour of fly ash geopolymer concrete[J]. Construction and Building Materials,2022,327:126909. doi: 10.1016/j.conbuildmat.2022.126909 [26] 赵秋红, 董硕, 谢萌. 钢纤维增强地聚物再生混凝土单轴受压全曲线试验[J]. 建筑结构学报, 2022, 43(11):255-265.ZHAO Qiuhong, DONG Shuo, XIE Meng. Uniaxial compression full curve test of steel fiber reinforced geopolymer regenerated concrete[J]. Journal of Building Structures,2022,43(11):255-265(in Chinese). [27] LIU Y W, SHI C J, ZHANG Z H, et al. Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume[J]. Cement and Concrete Composites, 2020, 112: 103665. [28] ZHAO D B, ZHOU Y W, XING F, et al. Bond behavior and failure mechanism of fiber-reinforced polymer bar-engineered cementitious composite interface[J]. Engineering Structures,2021,243:112520. doi: 10.1016/j.engstruct.2021.112520 [29] WANG W J, WANG Y, LI D D, et al. Bond-slip behavior between basalt fiber reinforced plastic bars and recycled aggregate concrete[J]. Construction and Building Materials,2021,302:124360. doi: 10.1016/j.conbuildmat.2021.124360 [30] 高丹盈, BRAHIM B. 纤维聚合物筋与混凝土粘结性能的影响因素[J]. 工业建筑, 2001(2):9-14. doi: 10.3321/j.issn:1000-8993.2001.02.004GAO Danying, BRAHIM B. Influencing factors of bonding properties of fiber polymer ribs and concrete[J]. Industrial Construction,2001(2):9-14(in Chinese). doi: 10.3321/j.issn:1000-8993.2001.02.004 [31] MARANAN G, MANALO A, KARUNASENA K, et al. Bond stress-slip behavior: Case of GFRP bars in geopolymer concrete[J]. Journal of Materials in Civil Engineering,2015,27(1):04014116. doi: 10.1061/(ASCE)MT.1943-5533.0001046 [32] HOSSAIN K M A. Bond strength of GFRP bars embedded in engineered cementitious composite using RILEM beam testing[J]. International Journal of Concrete Structures and Materials,2018,12(1):101-115. [33] 徐世烺, 王洪昌. 超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究[J]. 工程力学, 2008(11):53-61.XU Shilang, WANG Hongchang. Experimental study on the constitutive relationship between ultra-high toughness cement matrix composites and steel reinforcement bonding[J]. Engineering Mechanics,2008(11):53-61(in Chinese). [34] 潘宇, 刘锋. FRP筋与混凝土粘结性能研究综述 [C]//第十六届全国现代结构工程学术研讨会论文集. 聊城: 2016: 1255-1265.PAN Yu, LIU Feng. A review on the adhesion properties of FRP reinforcement and concrete[C]//Proceedings of the 16th National Symposium on Modern Structural Engineering. Liaocheng: 2016: 1255-1265(in Chinese). [35] 李雨珊, 尹世平, 刘运超. FRP筋与全珊瑚骨料海水混凝土界面粘结-滑移本构关系[J]. 复合材料学报, 2022, 39(8): 3950-3964.LI Yushan, YIN Shiping, LIU Yunchao. Interfacial bonding-slip constitutive relationship between FRP rib and whole coral aggregate seawater concrete [J]. Acta Composites Materiae Sinica, 2022, 39(8): 3950-3964(in Chinese). [36] 尤志国, 陶志强, 徐国强, 等. 混杂纤维自密实混凝土轴心抗拉强度试验研究[J]. 结构工程师, 2019, 35(1):198-204. doi: 10.3969/j.issn.1005-0159.2019.01.026YOU Zhiguo, TAO Zhiqiang, XU Guoqiang, et al. Experimental study on tensile strength of hybrid fiber self-compacting concrete[J]. Structural Engineer,2019,35(1):198-204(in Chinese). doi: 10.3969/j.issn.1005-0159.2019.01.026 [37] 徐礼华, 邓方茜, 徐浩然, 等. 钢-聚丙烯混杂纤维混凝土柱抗震性能试验研究[J]. 土木工程学报, 2016, 49(1):3-13. doi: 10.15951/j.tmgcxb.2016.01.002XU Lihua, DENG Fangqian, XU Haoran, et al. Experimental study on seismic performance of steel-polypropylene hybrid fiber concrete column[J]. Chinese Journal of Civil Engineering,2016,49(1):3-13(in Chinese). doi: 10.15951/j.tmgcxb.2016.01.002 [38] SAIKALI R E, PANTAZOPOULOU S J, PALERMO D. Local bond-slip behavior of reinforcing bars in high-performance steel fiber-reinforced concrete beams[J]. ACI Structural Journal,2022,119(2):139-153. [39] FENG Q, WEI P, ZHAO K X, et al. Experimental investigation of stirrup confinement effects on bond-slip responses for corner and middle bars[J]. Construction and Building Materials,2022,314(PA):125629. [40] 肖良丽, 刘彦, 雷梦琦, 等. 玻璃纤维复材筋与混杂纤维混凝土黏结性能研究[J]. 工业建筑, 2019, 49(3):18-23. doi: 10.13204/j.gyjz201903004XIAO Liangli, LIU Yan, LEI Mengqi, et al. Study on the adhesion properties of glass fiber composite reinforcement and mixed fiber concrete[J]. Industrial Construction,2019,49(3):18-23(in Chinese). doi: 10.13204/j.gyjz201903004 [41] ROLLAND A, ARGOUL P, BENZARTI K, et al. Analytical and numerical modeling of the bond behavior between FRP reinforcing bars and concrete[J]. Construction and Building Materials,2020,231(C):117160. [42] 郝庆多, 王言磊, 侯吉林, 等. GFRP/钢绞线复合筋与混凝土粘结滑移本构关系模型[J]. 工程力学, 2009, 26(5):62-72.HAO Qingduo, WANG Yanlei, HOU Jilin, et al. GFRP/steel strand composite rib and concrete bond slip constitutive relationship model[J]. Engineering Mechanics,2009,26(5):62-72(in Chinese). [43] 尹世平, 华云涛, 徐世烺. FRP配筋混凝土结构研究进展及其应用[J]. 建筑结构学报, 2021, 42(1):134-150. doi: 10.14006/j.jzjgxb.2019.0349YIN Shiping, HUA Yuntao, XU Shilang. Research progress and application of FRP reinforced concrete structure[J]. Journal of Building Structures,2021,42(1):134-150(in Chinese). doi: 10.14006/j.jzjgxb.2019.0349 -