Effect of Y on the microstructure and mechanical properties of WTaCrVTi high-entropy alloys
-
摘要: WTaCrVTi高熵合金具有良好的力学性能和抗辐照性能,且各组元具有低中子活化特性,可用于核聚变堆的中子辐照环境中,因此,该合金在核聚变堆中具有潜在的应用前景。但该合金在制备过程中易发生元素偏析和富集,造成组织结构不均匀,为了提高组织结构的均匀性,采用机械合金化法结合放电等离子体烧结技术制备了WTaCrVTi6Yx高熵合金,研究了Y对合金的组织结构和力学性能的影响。结果表明:未添加Y的合金包含固溶体、TiO、Laves相和富Ta相。具有BCC结构的固溶体为基体,其中W、Ta、Cr、V的原子比趋于等原子比;TiO颗粒的平均尺寸为1.08±0.38 μm,均匀分布在基体中;Laves相和富Ta相零星分布在基体中。而添加了6 at% Y的合金主要包含BCC结构的固溶体和Y2O3颗粒,Y2O3颗粒的平均尺寸约为1.25±0.85 μm,固溶体的W、Ta、Cr、V的原子比趋于1,该合金的室温压缩屈服强度和硬度达到分别为
2674 MPa和848.6±9.3 HV。Abstract: WTaCrVTi high entropy alloys have excellent mechanical properties and irradiation resistance, and the individual components have low neutron activity, which can be used in the neutron irradiation environment of nuclear fusion reactors. Thus, they have potential applications in nuclear fusion reactors. However, elemental segregation and enrichment exist in the alloys during the preparation process, resulting in an inhomogeneous microstructure. In order to improve the homogeneity of the microstructures, mechanical alloying combined with spark plasma sintering was adopted to prepare WTaCrVTi6Yx high entropy alloys. The effects of Y content on the microstructure and mechanical properties of high-entropy alloys were explored. It is found that the alloys without Y addition include the solid solution, TiO particles, laves phases and Ta-rich phases. The solid solution with BCC structure is the matrix, and the atomic ratios of W, Ta, Cr and V are close to be equal. The TiO particles are uniformly distributed in the matrix with an average particle size of 1.08±0.38 μm. The laves and the Ta-rich phases are sporadically distributed in the matrix. While, the alloys with the addition of 6 at% Y is mainly composed of the solid solution with BCC structure and Y2O3 particles. The average size of Y2O3 particles is about 1.25 ± 0.85 μm. And the atomic ratios of W, Ta, Cr, and V in the BCC phase tend to be 1. The room-temperature compressive yield strength and hardness of this alloy reach2674 MPa and 848.6 ± 9.3 HV, respectively. -
表 1 WTaCrVTi6Yx高熵合金中各个相的元素含量
Table 1. Elemental content of individual phases in WTaCrVTi6Yx high-entropy alloys
Alloy Area Element content (at%) Phase W Ta Cr V Ti Y O Y0 A 24.49 24.36 24.54 24.55 2.06 0 0 Solid solution B 9.16 26.94 41.57 17.99 0.79 0 3.55 Laves C 1.08 1.42 2.98 6.81 38.11 0 49.60 TiO D 1.95 91.68 0.89 1.91 0.47 0 3.10 Ta Y2 A 43.90 25.29 14.90 12.56 3.35 0 0 Solid solution B 8.47 34.01 36.47 18.93 2.12 0 0 Laves C 0 0 0 0 17.49 17.40 65.11 (Ti/Y)-O Y4 A 30.84 28.21 19.27 16.26 5.42 0 0 Solid solution B 8.13 33.75 39.25 15.07 3.79 0 0 Laves C 0 0 0 0 0 38.86 61.14 Y2O3 Y6 A 25.12 24.94 22.03 23.66 4.25 0 0 Solid solution C 0 0 0 0 0 39.14 60.85 Y2O3 表 2 WTaCrVTi6Yx合金的密度
Table 2. Density of the WTaCrVTi6Yx alloys
Alloy Y0 Y2 Y4 Y6 Actual density /(g/cm-3) 12.398 12.026 11.706 11.399 Theoretical density /(g/cm-3) 12.407 12.056 11.722 11.402 Relative density /(%) 99.9 99.8 99.8 99.9 -
[1] 包宏伟, 李燕, 马飞. 金属钨辐照缺陷与氢/氦作用的计算模拟研究进展[J]. 稀有金属材料与工程, 2022, 51(3): 1100-1110. doi: 10.12442/j.issn.1002-185X.20210160BAO Hongwei, LI Yan, MA Fei. Interaction of Radiation Defects in Tungsten and Helium/Hydrogen: A Review of Computation and Simulation[J]. Rare Metal Materials and Engineering, 2022, 51(3): 1100-1110(in Chinese). doi: 10.12442/j.issn.1002-185X.20210160 [2] 赵乙椤, 雷鸣, 张旭, 等. 聚变反应堆钨基等离子体材料研究进展[J]. 稀有金属材料与工程. 2021, 50(9): 3399-3407.ZHAO Yiluo, LEI Ming, ZHANG Xu, et al. Research Progress of Tungsten-Based Plasma Materials in Fusion Reactors[J]. 2021, 50(9): 3399-3407(in Chinese). [3] 陈时杰, 叶超, 柳炜, 等. 球磨时间对自钝化钨合金的组织结构和抗氧化性能的影响[J]. 复合材料学报, 2023, 40(8): 4531-4538.CHEN Shijie, YE Chao, LIU Wei, et al. Effect of ball milling time on microstructure and oxidation resistance of self-passivating W alloys[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4531-4538(in Chinese). [4] YEH J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. doi: 10.1002/adem.200300567 [5] ERDOGAN A, DOLEKER K M, ZEYTIN S. Effect of Al and Ti on high-temperature oxidation behavior of CoCrFeNi-based high-entropy alloys[J]. Jom, 2019, 71(10): 3499-3510. doi: 10.1007/s11837-019-03679-2 [6] CHEN Minrui, LIN Sujien, YEH Jienwei, Chen Swekai, et al. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy[J]. Metallurgical and Materials Transactions, 2006, (37A): 1363-1369. [7] CAO Y, LIU Y, LIU B, et al. Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(7): 1476-1483. doi: 10.1016/S1003-6326(19)65054-5 [8] LI Z, FU L, PENG J, et al. Improving mechanical properties of an fcc high-entropy alloy by γ′ and b2 precipitates strengthening[J]. Materials Characterization, 2020, 159: 109989. doi: 10.1016/j.matchar.2019.109989 [9] SADEGHILARIDJANI M, AYYAGARI A, MUSKERI S, et al. Ion irradiation response and mechanical behavior of reduced activity high entropy alloy[J]. Journal of Nuclear Materials, 2020, 529: 151955. doi: 10.1016/j.jnucmat.2019.151955 [10] MA Xianneng, HU Yifei, WANG Kai, et al. Microstructure and mechanical properties of a low activation cast WTaHfTiZr refractory high-entropy alloy[J]. China Foundry, 2022, 19(6): 489-494. doi: 10.1007/s41230-022-1230-z [11] EL-ATWANI O, LI N, LI M, DEVARAJ A, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys[J]. Sci Adv, 2019, 5(3): eaav2002. doi: 10.1126/sciadv.aav2002 [12] WASEEM O A, LEE J, LEE H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials[J]. Materials Chemistry and Physics, 2018, 210: 87-94. doi: 10.1016/j.matchemphys.2017.06.054 [13] SHEN Wanjui, TSAI Minghung, YEH Jienwei. Machining performance of sputter-deposited (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride coatings[J]. Coatings, 2015, (5): 312-325. [14] 李荣斌, 黄天, 蒋春霞, 等. TaWTiVCr高熵合金薄膜制备及微观结构、力学性能研究[J]. 表面技术, 2020, 49(6): 159-167.LI Rongbin, HUANG Tian, JIANG Chunxia, et al. Study on Preparation, Microstructure and Mechanical Properties of TaWTiVCr High Entropy Alloy Thin Film[J]. Surface Technology, 2020, 49(6): 159-167(in Chinese). [15] SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706. doi: 10.1016/j.intermet.2011.01.004 [16] KIM I H, OH H S, LEE K S, et al. Optimization of conflicting properties via engineering compositional complexity in refractory high entropy alloys[J]. Scripta Materialia, 2021, 199: 113839. doi: 10.1016/j.scriptamat.2021.113839 [17] YANG T, XIA S, LIU S, et al. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation[J]. Sci Rep, 2016, 6: 32146 doi: 10.1038/srep32146 [18] SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9): 1758-1765. doi: 10.1016/j.intermet.2010.05.014 [19] CHEN W, FU Z, FANG S, et al. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy[J]. Materials & Design, 2013, 51: 854-860. [20] FANG S, CHEN W, FU Z. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering[J]. Materials & Design (1980-2015), 2014, 54: 973-979. [21] PAN J, DAI T, LU T, Et al. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering[J]. Materials Science and Engineering: A, 2018, 738: 362-366. doi: 10.1016/j.msea.2018.09.089 [22] LIU R, ZHOU Y, HAO T, et al. Microwave synthesis and properties of fine-grained oxides dispersion strengthened tungsten[J]. Journal of Nuclear Materials, 2012, 424(1-3): 171-175. doi: 10.1016/j.jnucmat.2012.03.008 [23] 吕永齐, 范景莲, 韩勇, 等. 微量Y弥散强化细晶W的烧结组织和性能[J]. 稀有金属材料与工程, 2017, 46(6): 1704-1708.LV Yongqi, FAN Jinglian, HAN Yong, et al. Study on Sintering Behavior, Microstructure and Property of trace yttrium enhanced fine-grained W alloy[J]. Rare Metal Materials and Engineering, 2017, 46(6): 1704-1708(in Chinese). [24] 柳炜. 面向等离子体自钝化W-Si合金的制备与性能研究 [D]. 武汉: 华中科技大学, 2020.LIU Wei. Preparation and properties of self-passivating tungsten-silicon alloys for plasma facing materials [D]. Wuhan: Huazhong University of Science and Technology, 2020(in Chinese). [25] 王晓春, 张希艳, 卢利平. 材料现代分析与测试技术[M]. 北京: 国防工业出版社, 2010.WANG Xiaochun, ZHANG Xiyan, LU Liping. Modern analysis and testing techniques for materials[M]. Beijing: National Defense Industry Press, 2010. [26] YURCHENKO N Y, STEPANOV N D, GRIDNEVA A O, et al. Effect of Cr and Zr on phase stability of refractory Al-Cr-Nb-Ti-V-Zr high-entropy alloys[J]. Journal of Alloys and Compounds, 2018, 757: 403-414. doi: 10.1016/j.jallcom.2018.05.099 [27] SHI Z, LIU S, WANG X, et al. Effects of Cr content on microstructure and mechanical properties of single crystal superalloy[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(3): 776-782. doi: 10.1016/S1003-6326(15)63663-9 [28] STEIN F, LEINEWEBER A. Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties[J]. Journal of Materials Science, 2021, 56(9): 5321-5427. doi: 10.1007/s10853-020-05509-2
计量
- 文章访问数: 35
- HTML全文浏览量: 20
- 被引次数: 0