留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Y对WTaCrVTi高熵合金的组织结构与力学性能的影响

陈时杰 张世荣 薛丽红 严有为 张五星

陈时杰, 张世荣, 薛丽红, 等. Y对WTaCrVTi高熵合金的组织结构与力学性能的影响[J]. 复合材料学报, 2024, 42(0): 1-8.
引用本文: 陈时杰, 张世荣, 薛丽红, 等. Y对WTaCrVTi高熵合金的组织结构与力学性能的影响[J]. 复合材料学报, 2024, 42(0): 1-8.
CHEN Shijie, ZHANG Shirong, XUE Lihong, et al. Effect of Y on the microstructure and mechanical properties of WTaCrVTi high-entropy alloys[J]. Acta Materiae Compositae Sinica.
Citation: CHEN Shijie, ZHANG Shirong, XUE Lihong, et al. Effect of Y on the microstructure and mechanical properties of WTaCrVTi high-entropy alloys[J]. Acta Materiae Compositae Sinica.

Y对WTaCrVTi高熵合金的组织结构与力学性能的影响

基金项目: 国家磁约束核聚变能发展研究专项(项目号2018YFE0306104);材料成形与模具技术国家重点实验室开放课题研究基金(项目号P2023-024)
详细信息
    通讯作者:

    薛丽红,博士,副教授,硕士生导师,研究方向为功能/结构复合材料 E-mail: xuelh@hust.edu.cn

  • 中图分类号: TB331

Effect of Y on the microstructure and mechanical properties of WTaCrVTi high-entropy alloys

Funds: National Research Project on the Development of Magnetic Confinement Nuclear Fusion Energy (No. 2018YFE0306104); Open Research Fund of the State Key Laboratory of Materials Processing and Die & Mould Technology (No. P2023-024)
  • 摘要: WTaCrVTi高熵合金具有良好的力学性能和抗辐照性能,且各组元具有低中子活化特性,可用于核聚变堆的中子辐照环境中,因此,该合金在核聚变堆中具有潜在的应用前景。但该合金在制备过程中易发生元素偏析和富集,造成组织结构不均匀,为了提高组织结构的均匀性,采用机械合金化法结合放电等离子体烧结技术制备了WTaCrVTi6Yx高熵合金,研究了Y对合金的组织结构和力学性能的影响。结果表明:未添加Y的合金包含固溶体、TiO、Laves相和富Ta相。具有BCC结构的固溶体为基体,其中W、Ta、Cr、V的原子比趋于等原子比;TiO颗粒的平均尺寸为1.08±0.38 μm,均匀分布在基体中;Laves相和富Ta相零星分布在基体中。而添加了6 at% Y的合金主要包含BCC结构的固溶体和Y2O3颗粒,Y2O3颗粒的平均尺寸约为1.25±0.85 μm,固溶体的W、Ta、Cr、V的原子比趋于1,该合金的室温压缩屈服强度和硬度达到分别为2674 MPa和848.6±9.3 HV。

     

  • 图  1  WTaCrVTi6Yx合金粉末的XRD图谱

    Figure  1.  XRD patterns of the WTaCrVTi6Yx alloy powders.

    图  2  WTaCrVTi6Yx合金粉末的SEM图像: (a) Y0, (b) Y2, (c) Y4, (d) Y6

    Figure  2.  SEM images of WTaCrVTi6Yx alloy powders: (a) Y0,(b) Y2, (c) Y4, (d) Y6

    图  3  WTaCrVTi6Yx高熵合金的XRD图谱

    Figure  3.  XRD patterns of WTaCrVTi6Yx high-entropy alloys.

    图  4  不同Y含量合金中BCC相的平均晶粒尺寸

    Figure  4.  Average grain size of BCC phase in the alloys with different Y contents.

    图  5  WTaCrVTi6Yx高熵合金的背散射SEM图像: (a) Y0, (b) Y2, (c) Y4, (d) Y6

    Figure  5.  BSE-SEM images of WTaCrVTi6Yx high entropy alloys: (a) Y0,(b) Y2, (c) Y4, (d) Y6.

    图  6  不同Y含量WTaCrVTi6Yx高熵合金断口的SEM图像: (a) Y0, (b) Y2, (c) Y4, (d) Y6

    Figure  6.  SEM images of WTaCrVTi6Yx high entropy alloys fractures with different Y contents: (a) Y0, (b) Y2, (c) Y4, (d) Y6.

    图  7  WTaCrVTi6Yx合金的EPMA图像: (a) Y0, (b) Y4, (c) Y6

    Figure  7.  EPMA Images of the WTaCrVTi6Yx alloy: (a) Y0, (b) Y4, (c) Y6.

    图  8  WTaCrVTi6Yx高熵合金力学性能: (a) 室温压缩性能, (b) 显微硬度

    Figure  8.  The mechanical properties of WTaCrVTi6Yx high entropy alloy: (a) room temperature compression properties, (b) microhardness.

    表  1  WTaCrVTi6Yx高熵合金中各个相的元素含量

    Table  1.   Elemental content of individual phases in WTaCrVTi6Yx high-entropy alloys

    Alloy Area Element content (at%) Phase
    W Ta Cr V Ti Y O
    Y0 A 24.49 24.36 24.54 24.55 2.06 0 0 Solid solution
    B 9.16 26.94 41.57 17.99 0.79 0 3.55 Laves
    C 1.08 1.42 2.98 6.81 38.11 0 49.60 TiO
    D 1.95 91.68 0.89 1.91 0.47 0 3.10 Ta
    Y2 A 43.90 25.29 14.90 12.56 3.35 0 0 Solid solution
    B 8.47 34.01 36.47 18.93 2.12 0 0 Laves
    C 0 0 0 0 17.49 17.40 65.11 (Ti/Y)-O
    Y4 A 30.84 28.21 19.27 16.26 5.42 0 0 Solid solution
    B 8.13 33.75 39.25 15.07 3.79 0 0 Laves
    C 0 0 0 0 0 38.86 61.14 Y2O3
    Y6 A 25.12 24.94 22.03 23.66 4.25 0 0 Solid solution
    C 0 0 0 0 0 39.14 60.85 Y2O3
    下载: 导出CSV

    表  2  WTaCrVTi6Yx合金的密度

    Table  2.   Density of the WTaCrVTi6Yx alloys

    AlloyY0Y2Y4Y6
    Actual density /(g/cm-3)12.39812.02611.70611.399
    Theoretical density /(g/cm-3)12.40712.05611.72211.402
    Relative density /(%)99.999.899.899.9
    下载: 导出CSV
  • [1] 包宏伟, 李燕, 马飞. 金属钨辐照缺陷与氢/氦作用的计算模拟研究进展[J]. 稀有金属材料与工程, 2022, 51(3): 1100-1110. doi: 10.12442/j.issn.1002-185X.20210160

    BAO Hongwei, LI Yan, MA Fei. Interaction of Radiation Defects in Tungsten and Helium/Hydrogen: A Review of Computation and Simulation[J]. Rare Metal Materials and Engineering, 2022, 51(3): 1100-1110(in Chinese). doi: 10.12442/j.issn.1002-185X.20210160
    [2] 赵乙椤, 雷鸣, 张旭, 等. 聚变反应堆钨基等离子体材料研究进展[J]. 稀有金属材料与工程. 2021, 50(9): 3399-3407.

    ZHAO Yiluo, LEI Ming, ZHANG Xu, et al. Research Progress of Tungsten-Based Plasma Materials in Fusion Reactors[J]. 2021, 50(9): 3399-3407(in Chinese).
    [3] 陈时杰, 叶超, 柳炜, 等. 球磨时间对自钝化钨合金的组织结构和抗氧化性能的影响[J]. 复合材料学报, 2023, 40(8): 4531-4538.

    CHEN Shijie, YE Chao, LIU Wei, et al. Effect of ball milling time on microstructure and oxidation resistance of self-passivating W alloys[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4531-4538(in Chinese).
    [4] YEH J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. doi: 10.1002/adem.200300567
    [5] ERDOGAN A, DOLEKER K M, ZEYTIN S. Effect of Al and Ti on high-temperature oxidation behavior of CoCrFeNi-based high-entropy alloys[J]. Jom, 2019, 71(10): 3499-3510. doi: 10.1007/s11837-019-03679-2
    [6] CHEN Minrui, LIN Sujien, YEH Jienwei, Chen Swekai, et al. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy[J]. Metallurgical and Materials Transactions, 2006, (37A): 1363-1369.
    [7] CAO Y, LIU Y, LIU B, et al. Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(7): 1476-1483. doi: 10.1016/S1003-6326(19)65054-5
    [8] LI Z, FU L, PENG J, et al. Improving mechanical properties of an fcc high-entropy alloy by γ′ and b2 precipitates strengthening[J]. Materials Characterization, 2020, 159: 109989. doi: 10.1016/j.matchar.2019.109989
    [9] SADEGHILARIDJANI M, AYYAGARI A, MUSKERI S, et al. Ion irradiation response and mechanical behavior of reduced activity high entropy alloy[J]. Journal of Nuclear Materials, 2020, 529: 151955. doi: 10.1016/j.jnucmat.2019.151955
    [10] MA Xianneng, HU Yifei, WANG Kai, et al. Microstructure and mechanical properties of a low activation cast WTaHfTiZr refractory high-entropy alloy[J]. China Foundry, 2022, 19(6): 489-494. doi: 10.1007/s41230-022-1230-z
    [11] EL-ATWANI O, LI N, LI M, DEVARAJ A, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys[J]. Sci Adv, 2019, 5(3): eaav2002. doi: 10.1126/sciadv.aav2002
    [12] WASEEM O A, LEE J, LEE H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials[J]. Materials Chemistry and Physics, 2018, 210: 87-94. doi: 10.1016/j.matchemphys.2017.06.054
    [13] SHEN Wanjui, TSAI Minghung, YEH Jienwei. Machining performance of sputter-deposited (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 high-entropy nitride coatings[J]. Coatings, 2015, (5): 312-325.
    [14] 李荣斌, 黄天, 蒋春霞, 等. TaWTiVCr高熵合金薄膜制备及微观结构、力学性能研究[J]. 表面技术, 2020, 49(6): 159-167.

    LI Rongbin, HUANG Tian, JIANG Chunxia, et al. Study on Preparation, Microstructure and Mechanical Properties of TaWTiVCr High Entropy Alloy Thin Film[J]. Surface Technology, 2020, 49(6): 159-167(in Chinese).
    [15] SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706. doi: 10.1016/j.intermet.2011.01.004
    [16] KIM I H, OH H S, LEE K S, et al. Optimization of conflicting properties via engineering compositional complexity in refractory high entropy alloys[J]. Scripta Materialia, 2021, 199: 113839. doi: 10.1016/j.scriptamat.2021.113839
    [17] YANG T, XIA S, LIU S, et al. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation[J]. Sci Rep, 2016, 6: 32146 doi: 10.1038/srep32146
    [18] SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9): 1758-1765. doi: 10.1016/j.intermet.2010.05.014
    [19] CHEN W, FU Z, FANG S, et al. Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy[J]. Materials & Design, 2013, 51: 854-860.
    [20] FANG S, CHEN W, FU Z. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering[J]. Materials & Design (1980-2015), 2014, 54: 973-979.
    [21] PAN J, DAI T, LU T, Et al. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering[J]. Materials Science and Engineering: A, 2018, 738: 362-366. doi: 10.1016/j.msea.2018.09.089
    [22] LIU R, ZHOU Y, HAO T, et al. Microwave synthesis and properties of fine-grained oxides dispersion strengthened tungsten[J]. Journal of Nuclear Materials, 2012, 424(1-3): 171-175. doi: 10.1016/j.jnucmat.2012.03.008
    [23] 吕永齐, 范景莲, 韩勇, 等. 微量Y弥散强化细晶W的烧结组织和性能[J]. 稀有金属材料与工程, 2017, 46(6): 1704-1708.

    LV Yongqi, FAN Jinglian, HAN Yong, et al. Study on Sintering Behavior, Microstructure and Property of trace yttrium enhanced fine-grained W alloy[J]. Rare Metal Materials and Engineering, 2017, 46(6): 1704-1708(in Chinese).
    [24] 柳炜. 面向等离子体自钝化W-Si合金的制备与性能研究 [D]. 武汉: 华中科技大学, 2020.

    LIU Wei. Preparation and properties of self-passivating tungsten-silicon alloys for plasma facing materials [D]. Wuhan: Huazhong University of Science and Technology, 2020(in Chinese).
    [25] 王晓春, 张希艳, 卢利平. 材料现代分析与测试技术[M]. 北京: 国防工业出版社, 2010.

    WANG Xiaochun, ZHANG Xiyan, LU Liping. Modern analysis and testing techniques for materials[M]. Beijing: National Defense Industry Press, 2010.
    [26] YURCHENKO N Y, STEPANOV N D, GRIDNEVA A O, et al. Effect of Cr and Zr on phase stability of refractory Al-Cr-Nb-Ti-V-Zr high-entropy alloys[J]. Journal of Alloys and Compounds, 2018, 757: 403-414. doi: 10.1016/j.jallcom.2018.05.099
    [27] SHI Z, LIU S, WANG X, et al. Effects of Cr content on microstructure and mechanical properties of single crystal superalloy[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(3): 776-782. doi: 10.1016/S1003-6326(15)63663-9
    [28] STEIN F, LEINEWEBER A. Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties[J]. Journal of Materials Science, 2021, 56(9): 5321-5427. doi: 10.1007/s10853-020-05509-2
  • 加载中
计量
  • 文章访问数:  35
  • HTML全文浏览量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-19
  • 修回日期:  2024-08-27
  • 录用日期:  2024-08-28
  • 网络出版日期:  2024-09-18

目录

    /

    返回文章
    返回