留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续纤维增强3D打印复合材料工艺缺陷及其失效行为研究进展

张鑫 郑锡涛 杨甜甜 宋璐阳 闫雷雷

张鑫, 郑锡涛, 杨甜甜, 等. 连续纤维增强3D打印复合材料工艺缺陷及其失效行为研究进展[J]. 复合材料学报, 2024, 42(0): 1-24.
引用本文: 张鑫, 郑锡涛, 杨甜甜, 等. 连续纤维增强3D打印复合材料工艺缺陷及其失效行为研究进展[J]. 复合材料学报, 2024, 42(0): 1-24.
ZHANG Xin, ZHENG Xitao, YANG Tiantian, et al. Review of process defects and failure behaviors of continuous fiber-reinforced composite materials via 3D printing[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Xin, ZHENG Xitao, YANG Tiantian, et al. Review of process defects and failure behaviors of continuous fiber-reinforced composite materials via 3D printing[J]. Acta Materiae Compositae Sinica.

连续纤维增强3D打印复合材料工艺缺陷及其失效行为研究进展

基金项目: 国家自然科学基金(12372141);航空科学基金(201909053001);陕西省人工结构功能材料与器件重点实验室基本科研业务费(AFMD-KFJJ-21212);
详细信息
    通讯作者:

    闫雷雷,博士,副教授,博士生导师,研究方向为连续纤维增强复合材料多功能一体化设计、电磁隐身/承载一体化结构设计与表征(吸波、透波、频率选择、电磁屏蔽)、轻质多孔材料和结构的轻量化设计及力学行为研究 E-mail: yanleilei@nwpu.edu.cn

  • 中图分类号: TB332

Review of process defects and failure behaviors of continuous fiber-reinforced composite materials via 3D printing

Funds: National Natural Science Foundation of China (No.12372141);Aeronautical Science Foundation of China(No.201909053001);Fundamental Research Funds of Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices (AFMD-KFJJ-21212)
  • 摘要: 因设计自由度高、无需模具和快速制造等优点,连续纤维增强3D打印已成为当今最具创新性的先进复合材料成型技术之一。本文综述了连续纤维增强3D打印复合材料工艺缺陷及失效行为的最新研究进展,引入了“干/湿/干湿-混合”的概念对打印工艺进行了系统性分类阐述,重点介绍了由于工艺过程引入的三种缺陷及其特点。随后,归纳了连续纤维增强3D打印复合材料的失效力学行为,并分析了引发失效的主要原因。最后,针对如何减少工艺缺陷、改善失效模式和降本增效对连续纤维增强复合材料3D打印技术的未来进行了展望。

     

  • 图  1  综述连续纤维增强3D打印技术:工艺、缺陷与失效模式

    Figure  1.  Review of continuous fiber-reinforced 3D printing: processes, defects and failure modes

    图  2  连续纤维增强复合材料的湿法3D打印:(a)-(b)原位浸渍熔融沉积;(c)液态沉积成型;和(d)直接墨水书写

    Figure  2.  Wet 3D printing of continuous fiber-reinforced composites: (a)-(b) in-situ prepreg fused deposition; (c) liquid deposition modelling; and (d) direct ink writing.

    图  3  连续纤维增强复合材料的干法3D打印:(a)材料挤出熔融沉积和(b)激光辅助固结

    Figure  3.  Dry 3D printing of continuous fiber-reinforced composites: (a) material extrusion fused deposition; and (b) laser-assisted consolidation

    图  4  连续纤维增强复合材料的干湿混合法3D打印:(a)预浸丝束共挤出和(b)紫外光辅助固结

    Figure  4.  Dry-wet mixed 3D printing of continuous fiber-reinforced composites: (a) prepreg tow co-extrusion; and (b) UV-assisted consolidation

    图  5  连续纤维增强3D打印复合材料的工艺缺陷分类

    Figure  5.  Classification of process defects in continuous fiber reinforced 3D printing composite materials

    图  6  层间孔隙的微观形貌:(a)典型的层间孔隙SEM照片[87],(b)不同纤维体积含量构件的SEM照片[88],(c)典型的层间孔隙显微CT照片[86]和(d)编织多层复合材料中的层间孔隙显微CT照片[89]

    Figure  6.  Microscopic morphology of inter-layer voids: (a) the typical SEM picture of interlayer voids [87]; (b) the SEM photo of parts with different fiber volume contents [88]; (c) the typical micro-CT of interlayer voids snapshot [86]; and (d) the micro-CT photo of inter-layer voids in woven multilayer composites [89]

    图  7  列间孔隙的微观形貌:(a)含典型列间孔隙的横截面和界面特征[92];(b)不同的堆叠方式形成不同列间孔隙形貌[93],(c)相邻两列之间树脂的合并过程原理[93];(d)MarkForged打印机制造弯曲测试样本横截面[93];(e)3D打印连续玻璃纤维增强尼龙的样品的显微照片[94] 和(f)多列样本的横截面[95]

    Figure  7.  Microscopic morphology of inter-column voids: (a) the cross-section and interface characteristics of typical inter-column voids [92]; (b) the different inter-column pore morphologies formed by two kinds of stacking methods[93]; (c) the merging process of resin between two adjacent columns [93]; (d) the cross section of a bending test sample manufactured by MarkForged printer [93]; (e) the micrograph of a 3D printed continuous glass fiber-reinforced nylon sample [94] ; and (f) the cross-section of multi-column sample[95]

    图  8  纤维束缺陷的微观形貌:(a)一个丝束在不同放大倍数下的SEM照片[86];(b)-(d)纤维束横断面显微照片[86, 93, 96],(e)纤维束边界上的弱界面[92];(f)纤维束内部不规则孔隙[91]和(g)碳纤维和PLA树脂之间的弱界面[97]

    Figure  8.  Microscopic morphology of fiber bundle defects: (a) the SEM photos of a fiber bundle at different magnifications [86]; (b)-(d) the micrographs of fiber bundle cross-sections [86, 93, 96]; (e) the weak interface on the fiber bundle boundary [92]; (f) the irregular voids inside the fiber bundle [91]; and (g) the weak interface between carbon fiber and PLA resin [97]

    图  9  纤维拔出失效模式:(a)界面性能和断裂模式的演变 [95];(b)损伤演化过程和失效机制[96];(c)纤维束边界上的弱界面[89];(d)断口的光学显微照片[96]和(e)断口的SEM照片[97]

    Figure  9.  Fiber pull-out failure mode: (a) the evolution of interface properties and fracture modes [95]; (b) the damage evolution process and failure mechanism [96]; (c) the weak interface at fiber bundle boundary [89]; (d) the optical micrograph of the fracture surface [96]; and (e) the SEM photograph of the fracture surface [97]

    图  10  纤维束缺陷的形成与纤维拔出的改善:(a)纤维束缺陷和其导致的弱界面 [101];(b)一维流动达西定律的主要参数[102-104];(c)宏观和微观浸渍现象[103];和(d)湿法和干法连续纤维3D打印的单束纱线的破坏断口[105]

    Figure  10.  Formation of fiber bundle defects and improvement of fiber pull-out: (a) fiber bundle defects and the resulting weak interfaces [101]; (b) Main parameters of Darcy’s law for one-dimensional flow [102-104]; (c) macroscopic and microscopic impregnation phenomena [103]; and (d) failure fractures of single bundle yarns for wet and dry continuous fiber 3D printing [105]

    图  11  分层失效模式:(a)演化方式与微观形貌 [107];(b)弯曲载荷下的失效模式和宏观形貌[95];(c)拉伸载荷下的失效模式、宏观和微观形貌[95]和(d)不同种类纤维增强复合材料的分层微观形貌[108]

    Figure  11.  Delamination failure mode: (a) the evolution mode and microscopic morphology [107]; (b) the failure mode and macroscopic morphology under the bending load [95]; (c) the failure mode, macroscopic and microscopic morphology under tensile loads [95]; and (d) the delamination micromorphology of different types of fiber-reinforced composite materials [108]

    图  12  层间力学性能的表征:(a) DCB试验 [109-112];(b) ENF试验 [109];(c) ILSS试验 [113];(d)纤维桥联现象[109];(e) DCB试验剥离表面的SEM照片[108];(f)ENF试验后断裂表面的SEM照片[109] ;和(g)ILSS试验中分层损伤演化的DIC云图[113]

    Figure  12.  Characterization of interlayer mechanical properties: (a) DCB testing [109-112]; (b) ENF testing [109]; (c) ILSS testing [113]; (d) fiber bridging phenomenon [109]; (e) SEM photo of peeling surface in DCB testing [108]; (f) SEM photo of fracture surface after ENF testing [109]; and (g) DIC cloud image of delamination damage evolution in ILSS testing [113]

    图  13  弯曲开裂失效模式:(a)裂纹的产生和演化过程原理 [99];(b)四级演化过程的微观照片[99]和(c)弯曲载荷下的裂纹萌生和发展过程[95]

    Figure  13.  Bending cracking failure mode: (a) the crack generation and evolution process [99]; (b) the microscopic of the fourth-level evolution process [99]; and (c) the crack initiation and development process under bending loads [95]

    图  14  工艺缺陷与弯曲开裂断口:(a)列间孔隙形成过程 [86];(b)弯曲开裂断口的SEM照片 [117];和(c)弯曲载荷下压缩区与拉伸区的SEM照片 [118]

    Figure  14.  Process defects and bending cracking fractures: (a) formation process of inter-column pores [86]; (b) SEM photos of bending cracking fractures [117]; and (c) SEM photos of compression zone and tensile zone under bending load [118]

    表  1  根据“干/湿/干湿-混合”概念分类的连续纤维增强3D打印复合材料的制备工艺

    Table  1.   Manufacturing processes of continuous fiber-reinforced 3D printing composites classified according to the concept of“dry/wet/dry-wet-mixed”

    Classification Manufacturing processes Fibers/Reinforcement Consumables/Matrix
    Wet method In-situ impregnation fused
    deposition [35-38]
    High-performance continuous dry
    fibers: carbon fibers [45], glass fibers [46], Aramid fibers [47], basalt fibers [48];
    Natural dry fibers: flax fibers [49], pineapple leave fibers [50]
    Thermoplastic resin: Polyetheretherketone [52], Polyphenylene sulfide [53], Polyamides [54], Polypropylene [55], Polycarbonate [56], Polylactic acid [57];
    Thermoplastic resins with discontinuous fibrous reinforcements [58-59]
    Liquid deposition molding [46-48] Epoxy resin [46-48]
    Direct ink writing [49-51] Acrylic ink [50];
    Liquid crystal elastomer [51]
    Dry method Material extrusion fused
    deposition [72, 75-76]
    Continuous fiber thermoplastic [67-71];
    Thermoset prepreg [72-73]
    /
    Laser-Assisted Consolidation [77-78]
    Wet-dry-mixed method Prepreg tow co-extrusion [26, 79-81] Continuous fiber thermoplastic [70-71];
    Thermoset prepreg [72-73]
    Thermoplastic resin [52-57];
    Thermoplastic resins with discontinuous fibrous reinforcements [58-59]
    UV-Assisted Consolidation [74, 84] Continuous fiber light-cured prepreg [74] Light curing resins [74];
    Light-thermal dual-cure resins [84]
    下载: 导出CSV

    表  2  连续纤维增强3D打印复合材料的失效行为、相关工艺缺陷、失效机制与改善方式

    Table  2.   Failure behavior, related process defects, failure mechanisms, and improvement methods of continuous fiber-reinforced 3D printing composite materials

    Failure behavior Related process defects Failure mechanisms Improvement methods
    Fiber pull-out [92, 98-100] Fiber bundle
    defects [86, 91, 96-97]
    The crack initiates at the weak interface between the fiber and the matrix and then propagates until the fiber is pulled out [99] Pre-impregnating the fibers [104], print using dry method [104], increase molding pressure [98] and fiber pretreatment using sizing agents [105]
    Delamination [95, 106-107] Inter-layer voids [87-89],
    inter-column voids [92-95],
    and fiber bundle
    defects [86, 91, 96-97]
    Weak interfaces sprout and expand rapidly along periodic distributions [106] Reduce process defects: improve
    nozzles [113], vacuum printing [90] and laser-assisted heating [77]
    Change the distribution of defects and weak interfaces to prevent rapid crack growth [114]
    Bending cracking [95, 99] Inter-column voids [92-95,115] and fiber bundle
    defects [ 96-97,116-117]
    Cracks initiate from the upper surface of the tensile side and gradually expand toward the neutral axis until the structure is completely broken [95, 99] Perform hot pressing post-processing [91], adjust printing parameter settings [117] and adopt variable stiffness structural
    design [118]
    下载: 导出CSV
  • [1] HSISSOU R, SEGHIRI R, BENZEKRI Z, et al. Polymer composite materials: A comprehensive review[J]. Composite structures, 2021, 262: 113640. doi: 10.1016/j.compstruct.2021.113640
    [2] PINHEIRO MELO S, BARKE A, CERDAS F, et al. Sustainability assessment and engineering of emerging aircraft technologies—Challenges, methods and tools[J]. Sustainability, 2020, 12(14): 5663. doi: 10.3390/su12145663
    [3] 冯志海, 李俊宁, 田跃龙, 等. 航天先进复合材料研究进展[J]. 复合材料学报, 2022, 39(9): 9.

    FENG Z, LI J, TIAN Y, et al. Research progress of aerospace advanced composite materials[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 9(in Chinese).
    [4] PARVEEZ B, KITTUR M I, BADRUDDIN I A, et al. Scientific advancements in composite materials for aircraft applications: a review[J]. Polymers, 2022, 14(22): 5007. doi: 10.3390/polym14225007
    [5] TRZEPIECIŃSKI T, BATU T, KIBRETE F, et al. Application of Composite Materials for Energy Generation Devices[J]. Journal of Composites Science, 2023, 7(2): 55. doi: 10.3390/jcs7020055
    [6] ZHANG J, LIN G, VAIDYA U, et al. Past, present and future prospective of global carbon fibre composite developments and applications[J]. Composites Part B: Engineering, 2022: 110463.
    [7] HALL W, JAVANBAKHT Z, HALL W, et al. How to make a composite—wet layup[J]. Design and Manufacture of Fibre-Reinforced Composites, 2021: 33-53.
    [8] HAN S H, OH H J, KIM S S. Evaluation of the impregnation characteristics of carbon fiber-reinforced composites using dissolved polypropylene[J]. Composites science and technology, 2014, 91: 55-62. doi: 10.1016/j.compscitech.2013.11.021
    [9] MOHAMED M, SELIM M M, NING H, et al. Effect of fiber prestressing on mechanical properties of glass fiber epoxy composites manufactured by vacuum-assisted resin transfer molding[J]. Journal of Reinforced Plastics and Composites, 2020, 39(1-2): 21-30. doi: 10.1177/0731684419868841
    [10] WANG Y, LI L, HOFMANN D, et al. Structured fabrics with tunable mechanical properties[J]. Nature, 2021, 596(7871): 238-243. doi: 10.1038/s41586-021-03698-7
    [11] GU D, SHI X, POPRAWE R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372(6545): eabg1487. doi: 10.1126/science.abg1487
    [12] CHEN J, LIU X, TIAN Y, et al. 3D-Printed anisotropic polymer materials for functional applications[J]. Advanced Materials, 2022, 34(5): 2102877. doi: 10.1002/adma.202102877
    [13] PARANDOUSH P, LIN D. A review on additive manufacturing of polymer-fiber composites[J]. Composite Structures, 2017, 182: 36-53. doi: 10.1016/j.compstruct.2017.08.088
    [14] WANG X, JIANG M, ZHOU Z, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B:Engineering, 2017, 110: 442-458. doi: 10.1016/j.compositesb.2016.11.034
    [15] BRENKEN B, BAROCIO E, FAVALORO A, et al. Fused filament fabrication of fiber-reinforced polymers: A review[J]. Additive Manufacturing, 2018, 21: 1-16. doi: 10.1016/j.addma.2018.01.002
    [16] 潘利剑. 先进复合材料成型工艺图解[M]. 化学工业出版社, 2016.

    PAN L. Advanced composite material forming process diagram[M]. Chemical Industry Publishing House, 2016. (in Chinese)
    [17] CHENG P, PENG Y, LI S, et al. 3D printed continuous fiber reinforced composite lightweight structures: a review and outlook[J]. Composites Part B: Engineering, 2022: 110450.
    [18] CHENG P, WANG K, LE DUIGOU A, et al. A novel dual-nozzle 3D printing method for continuous fiber reinforced composite cellular structures[J]. Composites Communications, 2023, 37: 101448. doi: 10.1016/j.coco.2022.101448
    [19] DONG K, LIU L, HUANG X, et al. 3D printing of continuous fiber reinforced diamond cellular structural composites and tensile properties[J]. Composite Structures, 2020, 250: 112610. doi: 10.1016/j.compstruct.2020.112610
    [20] DICKSON A N, BARRY J N, MCDONNELL K A, et al. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing[J]. Additive Manufacturing, 2017, 16: 146-152. doi: 10.1016/j.addma.2017.06.004
    [21] WANG Y, ZHANG G, REN H, et al. Fabrication strategy for joints in 3D printed continuous fiber reinforced composite lattice structures[J]. Composites Communications, 2022, 30: 101080. doi: 10.1016/j.coco.2022.101080
    [22] ZHUO P, LI S, ASHCROFT I A, et al. Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook[J]. Composites Part B:Engineering, 2021, 224: 109143. doi: 10.1016/j.compositesb.2021.109143
    [23] AZEEM M, YA H H, ALAM M A, et al. Application of filament winding technology in composite pressure vessels and challenges: a review[J]. Journal of Energy Storage, 2022, 49: 103468. doi: 10.1016/j.est.2021.103468
    [24] 占冬至. 纤维湿法缠绕过程中在线自动配胶-浸胶系统研究[D]. 南京航空航天大学, 2019.

    ZHAN D. Research on on-line automatic gluing-dipping system in wet filament winding process[D]. Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
    [25] 余木火, 王昊, 余许多等. 干法缠绕用预浸纱制备工艺优化及其性能[J]. 复合材料学报, 2022, 39(12): 5688-5698.

    YU M, WANG H, YU X, et al. Preparation process optimization and properties of prepreg yarn for dry winding[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5688-5698(in Chinese).
    [26] 龙昱, 李岩, 付昆昆. 3D打印纤维增强复合材料工艺和力学性能研究进展[J]. 复合材料学报, 2022, 39(9): 4196-4212.

    LONG Y, LI Y, FU K. Recent advances in 3D printed fiber reinforced composites: Processing technique and mechanical performance[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4196-4212(in Chinese).
    [27] 邢悦, 何鹏飞, 李竞龙, 等. 连续纤维增强聚合物复合材料增材制造工艺研究进展[J]. 复合材料学报, 2023, 40(7): 3703-3721. doi: 10.13801/j.cnki.fhclxb.20230224.001

    XING Y, HE P, LI J, et al. Additive manufacturing for continuous fiber-reinforced polymer composites: A review on processing technique[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3703-3721. doi: 10.13801/j.cnki.fhclxb.20230224.001
    [28] 赵煜, 胡海洋, 药天运, 等. 3D打印GFRP层内失效力学行为的理论模型及细观机制[J]. 复合材料学报, 2023, 41(0): 1-19.

    ZHAO Y, HU H, YAO T, et al. Theoretical models and meso-scale mechanism of in-layer failure mechanicalbehaviours of 3D printing GFRP[J]. Acta Materiae Compositae Sinica
    [29] 孟云聪, 周光明, 蔡登安. 连续碳纤维3D打印圆形增强蜂窝的面内压缩性能[J]. 复合材料学报, 2023, 41(0): 1-12.

    MENG Y, ZHOU G, CAI D. In-plane compression properties of 3D printed continuous carbon fiber circular improved honeycomb[J]. Acta Materiae Compositae Sinica.
    [30] 周子彦, 范天翔, 张慧颖, 等. 3D打印连续碳纤维/聚醚酮酮复合材料工艺及其性能调控[J]. 复合材料学报, 2023, 40(9): 5070-5084. doi: 10.13801/j.cnki.fhclxb.20221215.002

    ZHOU Z, FAN T, ZHANG H, et al. Process and performance control of 3D printed continuous carbon fiber/poly(ether ketone ketone) composites[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5070-5084. doi: 10.13801/j.cnki.fhclxb.20221215.002
    [31] 齐田宇, 杨建军, 赵佳伟, 等. 基于多材料3D打印和约束牺牲层连续功能梯度材料-结构一体化制造与性能[J]. 复合材料学报, 2022, 39(3): 1055-1067.

    QI T, YANG J, ZHAO J, et al. Integrated manufacturing and performance study of continuous functionally graded materials-structures based on multi-material 3D printing and constraint sacrifice layer[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1055-1067.
    [32] WICKRAMASINGHE S, DO T, TRAN P. FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments[J]. Polymers, 2020, 12(7): 1529. doi: 10.3390/polym12071529
    [33] FICO D, RIZZO D, CASCIARO R, et al. A review of polymer-based materials for fused filament fabrication (FFF): focus on sustainability and recycled materials[J]. Polymers, 2022, 14(3): 465. doi: 10.3390/polym14030465
    [34] LI S, CHENG P, AHZI S, et al. Advances in hybrid fibers reinforced polymer-based composites prepared by FDM: A review on mechanical properties and prospects[J]. Composites Communications, 2023: 101592.
    [35] NAMIKI M, UEDA M, TODOROKI A, et al. 3D printing of continuous fiber reinforced plastic[C]//SAMPE Tech Seattle 2014 Conference. Soc. for the Advancement of Material and Process Engineering, 2014.
    [36] MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific reports, 2016, 6(1): 23058. doi: 10.1038/srep23058
    [37] 冉旭东. 面向点阵结构的连续纤维3D打印成型技术研究[D]. 哈尔滨工业大学, 2021.

    RAN X. Reasearch On Technologies Of Continuous Fiber-Reinforced Composites 3D Printing For Lattice Structure Manufacturing[D]. Harbin Institute of Technology, 2021. (in Chinese)
    [38] 张海强, 陈晓佳, 杜俊斌, 等. 螺杆式连续纤维增强材料3D打印挤出头及使用方法: CN202011074956.8[P]. CN112477111A[2023-11-18].

    ZHANG H, CHEN X, DU J, et al. Screw continuous fiber reinforced material 3D printing extrusion head and use method: CN202011074956.8[P]. CN112477111A [2023-11-18]. (in Chinese)
    [39] MALAKHOV A V, TIAN X, ZHENG Z, et al. Three-dimensional printing of biomimetic variable stiffness composites with controlled orientations and volume fraction of fibers[J]. Composite Structures, 2022, 299: 116091. doi: 10.1016/j.compstruct.2022.116091
    [40] CHENG Y, LI J, QIAN X, et al. 3D printed recoverable honeycomb composites reinforced by continuous carbon fibers[J]. Composite Structures, 2021, 268: 113974. doi: 10.1016/j.compstruct.2021.113974
    [41] HOU Z, TIAN X, ZHANG J, et al. 3D printed continuous fibre reinforced composite corrugated structure[J]. Composite Structures, 2018, 184: 1005-1010. doi: 10.1016/j.compstruct.2017.10.080
    [42] ZENG C, LIU L, BIAN W, et al. Bending performance and failure behavior of 3D printed continuous fiber reinforced composite corrugated sandwich structures with shape memory capability[J]. Composite Structures, 2021, 262: 113626. doi: 10.1016/j.compstruct.2021.113626
    [43] WANG Z, LUAN C, LIAO G, et al. Mechanical and self-monitoring behaviors of 3D printing smart continuous carbon fiber-thermoplastic lattice truss sandwich structure[J]. Composites Part B:Engineering, 2019, 176: 107215. doi: 10.1016/j.compositesb.2019.107215
    [44] LIU S, LI Y, LI N. A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures[J]. Materials & Design, 2018, 137: 235-244.
    [45] DOU H, YE W, ZHANG D, et al. Three-Point Bending Properties of 3D-Printed Continuous Carbon Fiber Reinforced Heterogeneous Composites Based on Fiber Content Gradients[J]. Advanced Engineering Materials, 2023, 25(1): 2200829. doi: 10.1002/adem.202200829
    [46] FARROKHABADI A, VEISI H, GHAREHBAGHI H, et al. Investigation of the energy absorption capacity of foam-filled 3D-printed glass fiber reinforced thermoplastic auxetic honeycomb structures[J]. Mechanics of Advanced Materials and Structures, 2023, 30(4): 758-769. doi: 10.1080/15376494.2021.2023919
    [47] SHI K, YAN Y, MEI H, et al. 3D printing Kevlar fiber layer distributions and fiber orientations into nylon composites to achieve designable mechanical strength[J]. Additive Manufacturing, 2021, 39: 101882. doi: 10.1016/j.addma.2021.101882
    [48] ZHANG H, SUN W. Mechanical properties and failure behavior of 3D printed thermoplastic composites using continuous basalt fiber under high-volume fraction[J]. Defence Technology, 2023, 27: 237-250. doi: 10.1016/j.dt.2022.07.010
    [49] LE DUIGOU A, BARBÉ A, GUILLOU E, et al. 3D printing of continuous flax fibre reinforced biocomposites for structural applications[J]. Materials & Design, 2019, 180: 107884.
    [50] SUTEJA J, FIRMANTO H, SOESANTI A, et al. Properties investigation of 3D printed continuous pineapple leaf fiber-reinforced PLA composite[J]. Journal of Thermoplastic Composite Materials, 2022, 35(11): 2052-2061. doi: 10.1177/0892705720945371
    [51] BALLA V K, KATE K H, SATYAVOLU J, et al. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects[J]. Composites Part B:Engineering, 2019, 174: 106956. doi: 10.1016/j.compositesb.2019.106956
    [52] WANG P, ZOU B, DING S, et al. Functionally graded polyetheretherketone-based composites additively manufactured by material extrusion using a transition interface design method[J]. Composites Part A:Applied Science and Manufacturing, 2022, 158: 106977. doi: 10.1016/j.compositesa.2022.106977
    [53] SHUTO R, NORIMATSU S, AROLA D D, et al. Effect of the nozzle temperature on the microstructure and interlaminar strength in 3D printing of carbon fiber/polyphenylene sulfide composites[J]. Composites Part C:Open Access, 2022, 9: 100328. doi: 10.1016/j.jcomc.2022.100328
    [54] PENG Y, WU Y, LI S, et al. Tailorable rigidity and energy-absorption capability of 3D printed continuous carbon fiber reinforced polyamide composites[J]. Composites Science and Technology, 2020, 199: 108337. doi: 10.1016/j.compscitech.2020.108337
    [55] KABIRI A, LIAGHAT G, ALAVI F, et al. Glass fiber/polypropylene composites with potential of bone fracture fixation plates: manufacturing process and mechanical characterization[J]. Journal of Composite Materials, 2020, 54(30): 4903-4919. doi: 10.1177/0021998320940367
    [56] SHUTO R, NORIMATSU S, AROLA D D, et al. Effect of the nozzle temperature on the microstructure and interlaminar strength in 3D printing of carbon fiber/polyphenylene sulfide composites[J]. Composites Part C:Open Access, 2022, 9: 100328. doi: 10.1016/j.jcomc.2022.100328
    [57] LI N, LI Y, LIU S. Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing[J]. Journal of Materials Processing Technology, 2016, 238: 218-225. doi: 10.1016/j.jmatprotec.2016.07.025
    [58] PENG Y, WU Y, WANG K, et al. Synergistic reinforcement of polyamide-based composites by combination of short and continuous carbon fibers via fused filament fabrication[J]. Composite Structures, 2019, 207: 232-239. doi: 10.1016/j.compstruct.2018.09.014
    [59] DONG K, PANAHI-SARMAD M, CUI Z, et al. Electro-induced shape memory effect of 4D printed auxetic composite using PLA/TPU/CNT filament embedded synergistically with continuous carbon fiber: A theoretical & experimental analysis[J]. Composites Part B:Engineering, 2021, 220: 108994. doi: 10.1016/j.compositesb.2021.108994
    [60] VALINO A D, DIZON J R C, ESPERA JR A H, et al. Advances in 3D printing of thermoplastic polymer composites and nanocomposites[J]. Progress in Polymer Science, 2019, 98: 101162. doi: 10.1016/j.progpolymsci.2019.101162
    [61] HAO W, LIU Y, ZHOU H, ET AL. Preparation and characterization of 3D printed continuous carbon fiber reinforced thermosetting composites[J]. Polymer Testing, 2018, 65: 29-34. doi: 10.1016/j.polymertesting.2017.11.004
    [62] MING Y, ZHANG S, HAN W, et al. Investigation on process parameters of 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites[J]. Additive Manufacturing, 2020, 33: 101184. doi: 10.1016/j.addma.2020.101184
    [63] MING Y, DUAN Y, ZHANG S, et al. Self-heating 3D printed continuous carbon fiber/epoxy mesh and its application in wind turbine deicing[J]. Polymer Testing, 2020, 82: 106309. doi: 10.1016/j.polymertesting.2019.106309
    [64] SAADI M, MAGUIRE A, POTTACKAL N T, et al. Direct ink writing: a 3D printing technology for diverse materials[J]. Advanced Materials, 2022, 34(28): 2108855. doi: 10.1002/adma.202108855
    [65] ABDULLAH A M, DING Y, HE X, et al. Direct-write 3D printing of UV-curable composites with continuous carbon fiber[J]. Journal of Composite Materials, 2023, 57(4): 851-863. doi: 10.1177/00219983221127182
    [66] WANG Q, TIAN X, ZHANG D, et al. Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites[J]. Nature Communications, 2023, 14(1): 3869. doi: 10.1038/s41467-023-39566-3
    [67] WANG Y, ZHANG Q, WANG Q, et al. Preparation of Continuous Glass Fiber Reinforced Polylactic Acid by Means of a Melt Impregnation Method and Application as a 3D Printing Consumable[J]. Chemistry Select, 2021, 6(35): 9535-9539.
    [68] YU L, CHEN K, XUE P, et al. Impregnation modeling and preparation optimization of continuous glass fiber reinforced polylactic acid filament for 3D printing[J]. Polymer Composites, 2021, 42(11): 5731-5742. doi: 10.1002/pc.26255
    [69] 杨来侠, 刘波, 刘腾飞, 等. 3D打印连续纤维增强聚碳酸酯复合材料预浸丝制备与性能[J]. 复合材料学报, 2023, 40(10): 5654-5665.

    YANG L, LIU B, LIU T, et al. Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5654-5665(in Chinese).
    [70] KIM H, OH Y, HWANG J Y, et al. High-performance continuous carbon fiber composite filament via solution process[J]. Journal of Industrial and Engineering Chemistry, 2022, 115: 466-475. doi: 10.1016/j.jiec.2022.08.033
    [71] 张帆, 陈港, 贵树峰, 等. PC/CCF制备工艺对浸渍程度的影响及3D打印性能分析[J]. 工程塑料应用, 2023, 51(3): 7.

    ZHANG F, CHEN G, GUI S, et al. Influence of PC/CCF Preparation Process on Impregnation Degree and 3D Printing Performance Analysis[J]. Engineering Plastics Application, 2023, 51(3): 7(in Chinese).
    [72] MING Y, DUAN Y, WANG B, et al. A novel route to fabricate high-performance 3D printed continuous fiber-reinforced thermosetting polymer composites[J]. Materials, 2019, 12(9): 1369. doi: 10.3390/ma12091369
    [73] ZHANG H, ZHANG K, LI A, et al. 3D printing of continuous carbon fibre reinforced powder-based epoxy composites[J]. Composites Communications, 2022, 33: 101239. doi: 10.1016/j.coco.2022.101239
    [74] RAHMAN M A, ISLAM M Z, GIBBON L, et al. 3D printing of continuous carbon fiber reinforced thermoset composites using UV curable resin[J]. Polymer Composites, 2021, 42(11): 5859-5868. doi: 10.1002/pc.26266
    [75] CHEN Y, YE L. Topological design for 3D-printing of carbon fibre reinforced composite structural parts[J]. Composites Science and Technology, 2021, 204: 108644. doi: 10.1016/j.compscitech.2020.108644
    [76] WANG B, MING Y, ZHOU J, et al. Fabrication of triangular corrugated structure using 3D printed continuous carbon fiber-reinforced thermosetting epoxy composites[J]. Polymer Testing, 2022, 106: 107469. doi: 10.1016/j.polymertesting.2021.107469
    [77] PARANDOUSH P, TUCKER L, ZHOU C, et al. Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites[J]. Materials & Design, 2017, 131: 186-195.
    [78] EICHENHOFER M, WONG J C H, ERMANNI P. Continuous lattice fabrication of ultra-lightweight composite structures[J]. Additive Manufacturing, 2017, 18: 48-57. doi: 10.1016/j.addma.2017.08.013
    [79] ZHUO P, LI S, ASHCROFT I A, et al. Continuous fibre composite 3D printing with pultruded carbon/PA6 commingled fibres: Processing and mechanical properties[J]. Composites Science and Technology, 2022, 221: 109341. doi: 10.1016/j.compscitech.2022.109341
    [80] NAKAGAWA Y, MORI K, MAENO T. 3D printing of carbon fibre-reinforced plastic parts[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91: 2811-2817. doi: 10.1007/s00170-016-9891-7
    [81] ZHANG Y, QIAO J, ZHANG G, et al. Prediction of deformation and failure behavior of continuous fiber reinforced composite fabricated by additive manufacturing[J]. Composite Structures, 2021, 265: 113738. doi: 10.1016/j.compstruct.2021.113738
    [82] FEDULOV B, FEDORENKO A, KHAZIEV A, et al. Optimization of parts manufactured using continuous fiber three-dimensional printing technology[J]. Composites Part B:Engineering, 2021, 227: 109406. doi: 10.1016/j.compositesb.2021.109406
    [83] AZAROV A V, ANTONOV F K, GOLUBEV M V, et al. Composite 3D printing for the small size unmanned aerial vehicle structure[J]. Composites Part B:Engineering, 2019, 169: 157-163. doi: 10.1016/j.compositesb.2019.03.073
    [84] INVERNIZZI M, NATALE G, LEVI M, et al. UV-assisted 3D printing of glass and carbon fiber-reinforced dual-cure polymer composites[J]. Materials, 2016, 9(7): 583. doi: 10.3390/ma9070583
    [85] KABIR S M F, MATHUR K, SEYAM A F M. A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties[J]. Composite Structures, 2020, 232: 111476. doi: 10.1016/j.compstruct.2019.111476
    [86] HE Q, WANG H, FU K, et al. 3D printed continuous CF/PA6 composites: Effect of microscopic voids on mechanical performance[J]. Composites Science and Technology, 2020, 191: 108077. doi: 10.1016/j.compscitech.2020.108077
    [87] van de WERKEN N, HURLEY J, KHANBOLOUKI P, et al. Design considerations and modeling of fiber reinforced 3D printed parts[J]. Composites Part B:Engineering, 2019, 160: 684-692. doi: 10.1016/j.compositesb.2018.12.094
    [88] UŞUN A, GÜMRÜK R. The mechanical performance of the 3D printed composites produced with continuous carbon fiber reinforced filaments obtained via melt impregnation[J]. Additive Manufacturing, 2021, 46: 102112. doi: 10.1016/j.addma.2021.102112
    [89] DICKSON A N, DOWLING D P. Enhancing the bearing strength of woven carbon fibre thermoplastic composites through additive manufacturing[J]. Composite Structures, 2019, 212: 381-388. doi: 10.1016/j.compstruct.2019.01.050
    [90] LI H, LIU B, GE L, et al. Mechanical performances of continuous carbon fiber reinforced PLA composites printed in vacuum[J]. Composites Part B:Engineering, 2021, 225: 109277. doi: 10.1016/j.compositesb.2021.109277
    [91] MEI H, ALI Z, YAN Y, et al. Influence of mixed isotropic fiber angles and hot press on the mechanical properties of 3D printed composites[J]. Additive Manufacturing, 2019, 27: 150-158. doi: 10.1016/j.addma.2019.03.008
    [92] YANG C, TIAN X, LIU T, et al. 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance[J]. Rapid Prototyping Journal, 2017, 23(1): 209-215. doi: 10.1108/RPJ-08-2015-0098
    [93] BLOK L G, LONGANA M L, YU H, et al. An investigation into 3D printing of fibre reinforced thermoplastic composites[J]. Additive Manufacturing, 2018, 22: 176-186. doi: 10.1016/j.addma.2018.04.039
    [94] JUSTO J, TÁVARA L, GARCÍA-GUZMÁN L, et al. Characterization of 3D printed long fibre reinforced composites[J]. Composite Structures, 2018, 185: 537-548. doi: 10.1016/j.compstruct.2017.11.052
    [95] GOH G D, DIKSHIT V, NAGALINGAM A P, et al. Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics[J]. Materials & Design, 2018, 137: 79-89.
    [96] TEREKHINA S, EGOROV S, TARASOVA T, et al. In-nozzle impregnation of continuous textile flax fiber/polyamide 6 composite during FFF process[J]. Composites Part A:Applied Science and Manufacturing, 2022, 153: 106725. doi: 10.1016/j.compositesa.2021.106725
    [97] LIU S, LI Y, LI N. A novel free-hanging 3D printing method for continuous carbon fiber reinforced thermoplastic lattice truss core structures[J]. Materials & Design, 2018, 137: 235-244.
    [98] LIU T, TIAN X, ZHANG M, et al. Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites[J]. Composites Part A:Applied Science and Manufacturing, 2018, 114: 368-376. doi: 10.1016/j.compositesa.2018.09.001
    [99] ZHANG X, ZHENG X, SONG L, et al. Compressive properties and failure mechanisms of 3D-printed continuous carbon fiber-reinforced auxetic structures[J]. Composites Communications, 2023, 43: 101744. doi: 10.1016/j.coco.2023.101744
    [100] PARANDOUSH P, ZHOU C, LIN D. 3D printing of ultrahigh strength continuous carbon fiber composites[J]. Advanced Engineering Materials, 2019, 21(2): 1800622. doi: 10.1002/adem.201800622
    [101] MOSLEH N, REZADOUST A M, DARIUSHI S. Determining process-window for manufacturing of continuous carbon fiber-reinforced composite Using 3D-printing[J]. Materials and Manufacturing Processes, 2021, 36(4): 409-418. doi: 10.1080/10426914.2020.1843664
    [102] GAROFALO J, WALCZYK D. In situ impregnation of continuous thermoplastic composite prepreg for additive manufacturing and automated fiber placement[J]. Composites Part A:Applied Science and Manufacturing, 2021, 147: 106446. doi: 10.1016/j.compositesa.2021.106446
    [103] MAYER C, WANG X, NEITZEL M. Macro-and micro-impregnation phenomena in continuous manufacturing of fabric reinforced thermoplastic composites[J]. Composites Part A:Applied Science and Manufacturing, 1998, 29(7): 783-793. doi: 10.1016/S1359-835X(98)00056-6
    [104] KACZMAREK D, WALCZYK D, GAROFALO J, et al. An investigation of in situ impregnation for additive manufacturing of thermoplastic composites[J]. Journal of Manufacturing Processes, 2021, 64: 972-981. doi: 10.1016/j.jmapro.2021.02.018
    [105] AEGERTER N, VOLK M, MAIO C, et al. Pultrusion of hybrid bicomponent fibers for 3D printing of continuous fiber reinforced thermoplastics[J]. Advanced Industrial and Engineering Polymer Research, 2021, 4(4): 224-234. doi: 10.1016/j.aiepr.2021.07.004
    [106] 张曼玉, 刘腾飞, 田小永, 等. 面向3D打印的连续碳纤维上浆工艺及其对复合材料性能的影响[J]. 中国材料进展, 2020, 39(5): 7.

    ZHANG M, LIU T, TIAN X, et al. Sizing Process of Continuous Carbon Fiber for 3D Printing and Its Influence on the Properties of Composites[J]. MATERIALS CHINA, 2020, (05): 349-355.
    [107] LUO M, TIAN X, SHANG J, et al. Impregnation and interlayer bonding behaviours of 3D-printed continuous carbon-fiber-reinforced poly-ether-ether-ketone composites[J]. Composites Part A:Applied Science and Manufacturing, 2019, 121: 130-138. doi: 10.1016/j.compositesa.2019.03.020
    [108] CAMINERO M A, CHACÓN J M, GARCÍA-MORENO I, et al. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling[J]. Polymer Testing, 2018, 68: 415-423. doi: 10.1016/j.polymertesting.2018.04.038
    [109] KONG X, LUO J, LUO Q, et al. Experimental study on interface failure behavior of 3D printed continuous fiber reinforced composites[J]. Additive Manufacturing, 2022, 59: 103077. doi: 10.1016/j.addma.2022.103077
    [110] DANG Z, CAO J, PAGANI A, et al. Fracture toughness determination and mechanism for mode-I interlaminar failure of 3D-printed carbon-Kevlar composites[J]. Composites Communications, 2023, 39: 101532. doi: 10.1016/j.coco.2023.101532
    [111] POLYZOS E, KATALAGARIANAKIS A, VAN HEMELRIJCK D, et al. Delamination analysis of 3D-printed nylon reinforced with continuous carbon fibers[J]. Additive Manufacturing, 2021, 46: 102144. doi: 10.1016/j.addma.2021.102144
    [112] TOUCHARD F, CHOCINSKI-ARNAULT L, FOURNIER T, et al. Interfacial adhesion quality in 3D printed continuous CF/PA6 composites at filament/matrix and interlaminar scales[J]. Composites Part B:Engineering, 2021, 218: 108891. doi: 10.1016/j.compositesb.2021.108891
    [113] YAVAS D, ZHANG Z, LIU Q, et al. Interlaminar shear behavior of continuous and short carbon fiber reinforced polymer composites fabricated by additive manufacturing[J]. Composites Part B:Engineering, 2021, 204: 108460. doi: 10.1016/j.compositesb.2020.108460
    [114] WANG Y, WANG Q, KONG D, et al. Research on Heating Zone Length of Continuous Fiber Reinforced Composites 3D Printing Nozzle[J]. ChemistrySelect, 2021, 6(41): 11293-11298. doi: 10.1002/slct.202103230
    [115] DAMODARAN V, CASTELLANOS A G, MILOSTAN M, et al. Improving the Mode-II interlaminar fracture toughness of polymeric matrix composites through additive manufacturing[J]. Materials & Design, 2018, 157: 60-73.
    [116] WANG F, MING Y, YANG F, et al. Improving delamination resistance of 3D printed continuous fiber-reinforced thermoset composites by multi-scale synergistic toughening of mono-component polyetherketone-cardo[J]. Composites Science and Technology, 2024, 245: 110358. doi: 10.1016/j.compscitech.2023.110358
    [117] WU S, SHAN Z, CHEN K, et al. Investigation of bending performance of printed continuous carbon fiber reinforced polylactic acid using acoustic emission[J]. Polymer Composites, 2023, 44(2): 863-872. doi: 10.1002/pc.27137
    [118] LI L, LIU W, SUN L. Mechanical characterization of 3D printed continuous carbon fiber reinforced thermoplastic composites[J]. Composites Science and Technology, 2022, 227: 109618. doi: 10.1016/j.compscitech.2022.109618
    [119] TIAN X, LIU T, YANG C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A:Applied Science and Manufacturing, 2016, 88: 198-205. doi: 10.1016/j.compositesa.2016.05.032
    [120] YIN B, HE Q, YE L. Effects of deposition speed and extrusion temperature on fusion between filaments in single-layer polymer films printed with FFF[J]. Advanced Industrial and Engineering Polymer Research, 2021, 4(4): 270-276. doi: 10.1016/j.aiepr.2021.07.002
    [121] DOU H, YE W, ZHANG D, et al. Three-Point Bending Properties of 3D-Printed Continuous Carbon Fiber Reinforced Heterogeneous Composites Based on Fiber Content Gradients[J]. Advanced Engineering Materials, 2023, 25(1): 2200829. doi: 10.1002/adem.202200829
    [122] MELENKA G W, CHEUNG B K O, SCHOFIELD J S, et al. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures[J]. Composite Structures, 2016, 153: 866-875. doi: 10.1016/j.compstruct.2016.07.018
    [123] AL ABADI H, THAI H T, PATON-COLE V, et al. Elastic properties of 3D printed fibre-reinforced structures[J]. Composite Structures, 2018, 193: 8-18. doi: 10.1016/j.compstruct.2018.03.051
    [124] LUPONE F, PADOVANO E, VENEZIA C, et al. Experimental Characterization and Modeling of 3D Printed Continuous Carbon Fibers Composites with Different Fiber Orientation Produced by FFF Process[J]. Polymers, 2022, 14(3): 426. doi: 10.3390/polym14030426
    [125] HOU Z, TIAN X, ZHENG Z, et al. A constitutive model for 3D printed continuous fiber reinforced composite structures with variable fiber content[J]. Composites Part B:Engineering, 2020, 189: 107893. doi: 10.1016/j.compositesb.2020.107893
    [126] WANG S, YAN X, CHANG B, et al. Atomistic Modeling of the Effect of Temperature on Interfacial Properties of 3D-Printed Continuous Carbon Fiber-Reinforced Polyamide 6 Composite: From Processing to Loading[J]. ACS Applied Materials & Interfaces, 2023.
    [127] FU Y, YAO X. Multi-scale analysis for 3D printed continuous fiber reinforced thermoplastic composites[J]. Composites Science and Technology, 2021, 216: 109065. doi: 10.1016/j.compscitech.2021.109065
    [128] ZHANG J, YANG W, LI Y. Process-dependent multiscale modeling for 3D printing of continuous fiber-reinforced composites[J]. Additive Manufacturing, 2023, 73: 103680. doi: 10.1016/j.addma.2023.103680
    [129] WANG F, ZHANG Z, NING F, et al. A mechanistic model for tensile property of continuous carbon fiber reinforced plastic composites built by fused filament fabrication[J]. Additive Manufacturing, 2020, 32: 101102. doi: 10.1016/j.addma.2020.101102
    [130] WANG X, ZHENG T, LI Z, et al. Influence of realistic microscopic fiber misalignments on compressive damage mechanisms of 3D angle-interlock woven composites: In-situ measurements and numerical simulations[J]. Composites Science and Technology, 2024, 245: 110317. doi: 10.1016/j.compscitech.2023.110317
    [131] WU T, LI G, XUE Y, et al. Electromechanical behavior and damage index system of 3D carbon fiber angle-interlock woven composites with FEA and data processing tools[J]. Composites Science and Technology, 2023, 244: 110318. doi: 10.1016/j.compscitech.2023.110318
  • 加载中
计量
  • 文章访问数:  222
  • HTML全文浏览量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2024-01-07
  • 录用日期:  2024-01-12
  • 网络出版日期:  2024-02-24

目录

    /

    返回文章
    返回