留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多腔矩形纤维增强复合材料约束混凝土组合短柱受压性能

杨来运 方海 谢红磊 李奔奔

杨来运, 方海, 谢红磊, 等. 多腔矩形纤维增强复合材料约束混凝土组合短柱受压性能[J]. 复合材料学报, 2023, 40(12): 6910-6921. doi: 10.13801/j.cnki.fhclxb.20230421.001
引用本文: 杨来运, 方海, 谢红磊, 等. 多腔矩形纤维增强复合材料约束混凝土组合短柱受压性能[J]. 复合材料学报, 2023, 40(12): 6910-6921. doi: 10.13801/j.cnki.fhclxb.20230421.001
YANG Laiyun, FANG Hai, XIE Honglei, et al. Compressive behavior of concrete-filled multi-cavity composite rectangular columns[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6910-6921. doi: 10.13801/j.cnki.fhclxb.20230421.001
Citation: YANG Laiyun, FANG Hai, XIE Honglei, et al. Compressive behavior of concrete-filled multi-cavity composite rectangular columns[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6910-6921. doi: 10.13801/j.cnki.fhclxb.20230421.001

多腔矩形纤维增强复合材料约束混凝土组合短柱受压性能

doi: 10.13801/j.cnki.fhclxb.20230421.001
基金项目: 国家自然科学基金(52078248;52208252)
详细信息
    通讯作者:

    方海,博士,教授,博士生导师,研究方向为复合材料结构 E-mail: fanghainjut@163.com

  • 中图分类号: TB332

Compressive behavior of concrete-filled multi-cavity composite rectangular columns

Funds: National Natural Science Foundation of China (52078248; 52208252)
  • 摘要: 为改善矩形拉挤型材受力性能,提高混凝土约束效率,提出一种多腔矩形纤维增强复合材料约束混凝土组合短柱。对多腔矩形纤维增强复合材料管及其约束混凝土构件进行了轴压试验,研究了多腔结构及增设格构腹板对拉挤型材约束混凝土结构破坏模式、峰值承载力及其延性特征的影响。试验结果表明,多腔结构有效改善拉挤型材脆性破坏特征,构件破坏前有明显征兆;多腔结构有效改善拉挤型材受力性能及其混凝土约束效率,其中拉挤型材承载力平均提高53.08%,约束混凝土强度平均提高约27.45%。增设格构腹板有效改善材料界面粘结性能,延缓约束面层局部屈曲,提高结构整体变形能力,其中格构增强多腔混凝土组合构件延性系数平均为2.23,远高于无格构构件的1.88;增设格构腹板进一步提高多腔结构混凝土约束效率,结构具有更高的峰值承载力,其中多腔约束混凝土构件承载力最大提高21.17%,远高于无格构构件的7.44%。此外,提出一种简易计算模型,分别对多腔矩形纤维增强复合材料管及其约束混凝土构件的峰值承载力进行了理论计算,计算结果与试验较一致。

     

  • 图  1  多腔纤维增强复合材料约束混凝土组合柱

    Figure  1.  Concrete-filled multi-cavity pultruded composite rectangular columns

    图  2  构件制作及准备

    Figure  2.  Preparation and manufacturing of composite columns

    图  3  轴压试验装置及仪器布置

    Figure  3.  Axial compression test setup and instrumentation

    LVDT—Linear variable differential transformer; SG-20—Gauge with a standard distance of 20 mm

    图  4  单管受压破坏模式

    Figure  4.  Failure models of pultruded tubes under axial load

    图  5  单管荷载-应变曲线

    Figure  5.  Load-displacement curves of single tubes

    图  6  多腔组合柱轴压破坏模式

    Figure  6.  Axial compressive failure modes of multi-cavity composite rectangular columns

    图  7  多腔组合柱荷载-应变曲线

    Figure  7.  Load-axial strain curves of multi-cavity composite rectangular columns

    图  8  多腔混凝土组合柱荷载-环向应变曲线

    Figure  8.  Load-hoop strain curves of concrete-filled multi-cavity composite rectangular columns

    图  9  多腔组合柱约束混凝土应力-应变曲线

    Figure  9.  Axial stress-strain curves of confined concrete in multi-cavity composite rectangular columns

    图  10  等效圆形及矩形截面

    Figure  10.  Equivalent circle and rectangular sections

    表  1  构件信息

    Table  1.   Details of specimens

    LabelsSize
    (H×W×r)
    /mm
    Layup of lattice-websLayup of fibre skinConcrete
    HF-PT-1400×208×3[(±45°)2/(0, 90°)2]2
    HF-PT-2
    HL-PT-1(±45°)2[(0, 90°)2/ (±45°)2]
    HL-PT-2
    CF-PC-1[(±45°)2/(0, 90°)2]2C60
    CF-PC-2C60
    CL-PC-1(±45°)2[(0, 90°)2/ (±45°)2]C60
    CL-PC-2C60
    HPT-1400×100×3
    HPT-2
    CPC-1C60
    CPC-2
    Notes: H—Height of specimens; W—Width of specimens; r is the corner radius of specimens. The thickness of GFRP wove fabrics of (±45°) and (0, 90°) was 0.5 mm. Labels of the specimens are as follows, “H”—hollow specimens; “C”—Concrete-filled specimens; “L”—Specimens reinforced with lattice-webs; “F”—Specimens without lattice-webs; “HPT” and “CPC”—Normal pultruded tubes and related concrete-filled specimens; the number “1” and “2” followed the labels represent two nominally identical specimens in each pair.
    下载: 导出CSV

    表  2  基本材料属性

    Table  2.   Material properties

    Property(±45°)(0, 90°)Pultruded tubesConcrete
    MeanStandard deviationMeanStandard deviationMeanStandard deviationMeanStandard deviation
    Axial compression fxc/MPa 137.53 3.54 181.26 8.26 140.23 6.89 59.53 1.13
    Exc/GPa 22.92 1.86 26.16 4.63 18.03 2.14 36.53 2.01
    Transverse compression fyc/MPa 137.53 3.54 181.26 8.26 1.56
    Eyc/GPa 22.92 1.86 26.16 4.63 6.78
    Axial tension strength fxt/MPa 185.23 18.65 330.52 11.63
    Transverse tension strength fyt/MPa 185.23 18.65 330.52 11.63 18.05 1.63
    Poisson’s ratio ν12 0.30 0.031 0.30 0.031 0.28 0.028 0.2
    ν21 0.30 0.026 0.30 0.026 0.09 0.011
    Notes: f—Stress of each kind of material; EElastic modulus.
    下载: 导出CSV

    表  3  单管轴压试验结果

    Table  3.   Test results of single tubes

    SpecimenH×W/mmNpp /kNεpp/10−6NppA/kNεppA/10−6
    HPT-1400×100214.865308211.655367
    HPT-2400×100208.445426
    CPC-1400×100625.003829609.744088
    CPC-2400×100618.624043
    Notes: Npp—Peak load; εpp—Corresponding strain; NppA—Average peak load; εppA—Average strain at the peak point.
    下载: 导出CSV

    表  4  拉挤型材组合柱试验结果

    Table  4.   Test results of composite pultruded columns

    Specimenσc
    /MPa
    Ny
    /kN
    εy
    /10−6
    Np
    /kN
    εp
    /10−6
    Nu
    /kN
    εu
    /10−6
    ψ
    /%
    η
    HF-PT-1 1293 5594 1323 5872 1125 6512 56.27 1.16
    HF-PT-2 1283 5987 1319 6345 1121 7115 55.80 1.19
    HL-PT-1 727 3344 1259 5606 1070 9054 48.71 2.71
    HL-PT-2 1032 4648 1283 5998 1091 6825 51.55 1.47
    CF-PC-1 74.28 2612 2951 3136 4036 2666 4750 7.44 1.61
    CF-PC-2 72.35 1973 2072 3030 3872 2576 4472 7.23 2.16
    CL-PC-1 79.29 2715 3047 3537 5011 3006 5475 21.17 1.80
    CL-PC-2 80.03 2126 2251 3457 5518 2938 5978 18.43 2.66
    Notes: σc—Compressive stress of confined concrete; Ny and εy—Yield load and corresponding strain of multi-cavity composite columns; Np and εp—Peak load and corresponding strain of multi-cavity composite columns; Nu and εu—Ultimate load and corresponding strain of multi-cavity composite columns; ψ and η—Load enhancement ratio and ductility coefficient of multi-cavity composite columns.
    下载: 导出CSV

    表  5  等效圆形及矩形截面约束混凝土计算值

    Table  5.   Theoretical results of confined concrete in equivalent circle and rectangular sections

    SpecimenL(D)
    /mm
    t
    /mm
    σc0
    /MPa
    εc0
    /10−6
    εhrup
    /10−6
    σcc
    /MPa
    εcu
    /10−6
    CCL-PC214 959.532600450875.237745
    CCF-PC21210515181.859372
    SCL-PC190 9166761.984869
    SCF-PC18810190563.025030
    Notes: L—Inner length; D—Inner diameter; C—Circular section specimens; "S"—Square section specimens; t—Thcikness of face sheets ; σc0—Unconfined concrete strength ; εhrup—Rupture hoop strain; σcc—Confined concrete strength ; εcu—Ultimate axial starin.of confined concrete.
    下载: 导出CSV

    表  6  多腔组合柱试验及理论结果对比

    Table  6.   Comparison of theoretical and experimental results of multi-cavity composite rectangular columns

    SpecimenExperimentalTheoretical(FpFp c)/Fp
    Peak load Fp/kNAxial strain at peak load/10−6Peak load Fp c/kNAxial strain at peak load/10−6
    HF-PT-113235872130253341.587%
    HF-PT-2131963451.288%
    HL-PT-112595606125753550.1589%
    HL-PT-2128359982.026%
    CF-PC-131364036325453343.763%
    CF-PC-2303038727.393%
    CL-PC-135375011358753551.414%
    CL-PC-2345755183.760%
    下载: 导出CSV
  • [1] 刘伟庆, 方海, 方园. 纤维增强复合材料及其结构研究进展[J]. 建筑结构学报, 2019, 40(4): 1-16.

    LIU Weiqing, FANG Hai, FANG Yuan. Research progress of fiber-reinforced composites and structures[J]. Journal of Building Structures, 2019, 40(4): 1-16(in Chinese).
    [2] NUNES F, CORREIA J R, SILVESTRE N. Structural behaviour of hybrid FRP pultruded columns. Part 1: Experimental study[J]. Composite Structures, 2016, 139: 291-303.
    [3] 沈高奎, 齐玉军, 陆建成, 等. 内置复材约束的T形截面钢管混凝土组合柱轴压力学性能试验研究[J]. 复合材料学报, 2022, 39(7): 3388-403.

    SHEN Gaokui, QI Yujun, LU Jiancheng, et al. Experimental study on axial compression performance of T-section concrete filled steel and FRP tubular composite columns[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3388-3403(in Chinese).
    [4] 黄龙男, 张东兴, 李地红, 等. 轴向受压CFRP管混凝土柱的膨胀模型及应力-应变关系[J]. 复合材料学报, 2006, 23(1): 112-116.

    HUANG Longnan, ZHANG Dongxing, LI Dihong, et al. Dilation model and stress-strain relationships of CFRP tubes confining concrete columns under axial compression[J]. Acta Materiae Compositae Sinica, 2006, 23(1): 112-116(in Chinese)).
    [5] 缪坤廷, 魏洋, 朱超, 等. 钢管混凝土-FRP管海水海砂混凝土组合柱轴压模型[J]. 复合材料学报, 2022, 39(11): 5403-5414.

    MIAO Kunting, WEI Yang, ZHU Chao, et al. Model for stress-strain curves of concrete filled steel tube-seawater and sea sand concrete filled FRP tube composite columns under axial load[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5403-5414(in Chinese).
    [6] 王高飞, 魏洋, 缪坤廷, 等. 圆形CFRP-钢复合管海水海砂珊瑚混凝土柱轴压性能试验研究[J]. 复合材料学报, 2022, 39(8): 3982-3993.

    WANG Gaofei, WEI Yang, MIAO Kunting, et al. Experimental study on axial compression performance of CFRP-steel composite tube filled circular seawater sea-sand coral concrete columns[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3982-3993(in Chinese).
    [7] 柏佳文, 魏洋, 张依睿, 等. 新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验[J]. 复合材料学报 2021, 38(9): 3076-3085.

    BAI Jiawen, WEI Yang, ZHANG Yirui, et al. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3076-3085(in Chinese).
    [8] GUO Z, XIA L J, LIN Q, et al. Test on mechanical behavior of pultruded concrete-filled GFRP tubular short columns after elevated temperature [J]. Composite Structures, 2021, 257: 113163.
    [9] TABATABAEIAN M, KHALOO A, AZIZMOHAMMADI M. The effects of elevated temperatures on the performance of concrete-filled pultruded GFRP tubular columns[J]. Thin-Walled Structures, 2021, 169: 108404.
    [10] ALHAWAMDEH M, ALAJARMEH O, ARAVINTHAN T, et al. Modelling hollow pultruded FRP profiles under axial compression: Local buckling and progressive failure[J]. Composite Structures, 2021, 262: 113650.
    [11] TENG J G, CHEN J F, SMITH S T, et al. FRP strengthened RC structures[M]. New Jersey: John Wiley& Sons Ltd, 2002:57-71.
    [12] WANG L M, WU Y F. Effect of corner radius on the performance of CFRP-confined square concrete columns: Test[J]. Engineering Structures, 2008, 30(2): 493-505.
    [13] QIU N, GAO Y K, FANG J G, et al. Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases[J]. Finite Elementsin Analysis and Design, 2015, 104: 89-101.
    [14] HUANG L, YU T, ZHANG S S, et al. FRP-confined concrete-encased cross-shaped steel columns: Concept and behaviour[J]. Engineering Structures, 2017, 152: 348-358.
    [15] HUANG L, YU T, ZHANG S S. FRP-Confined concrete-encased cross-shaped steel columns: Effects of key parameters[J]. Composite Structures, 2021, 272: 114252.
    [16] OZBAKKALOGLU T. Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters[J]. Engineering Structures, 2013, 51: 188-199.
    [17] VINCENT T, OZBAKKALOGLU T. Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete[J]. Constructionand Building Materials, 2013, 47: 814-826.
    [18] AL-SAADI A U, ARAVINTHAN T, LOKUGE W. Effects of fibre orientation and layup on the mechanical properties of the pultruded glass fibre reinforced polymer tubes[J]. Engineering Structures, 2019, 198: 109448.
    [19] GUO Z, XUE X L, YE M Y, et al. Experimental research on pultruded concrete-filled GFRP tubular short columns externally strengthened with CFRP[J]. Composite Structures, 2021, 255: 112943.
    [20] ZHANG X Y, CHEN Y, YE M Y. Research on square concrete filled GFRP tube columns strengthened with CFRP sheet[J]. Composite Structures, 2021, 275: 114407.
    [21] WU Z M, LIU W Q, WANG L, et al. Theoretical and experimental study of foam-filled lattice composite panels under quasi-static compression loading[J]. Composites Part B: Engineering, 2014, 60: 329-340.
    [22] SHI H Y, LIU W Q, FANG H, et al. Flexural responses and pseudo-ductile performance of lattice-web reinforced GFRP-wood sandwich beams[J]. Composites Part B: Engi-neering, 2017, 108: 364-376.
    [23] WANG L, LIU W Q, WAN L, et al. Mechanical performance of foam-filled lattice composite panels in four-point bending: Experimental investigation and analytical modeling[J]. Composites Part B: Engineering, 2014, 67: 270-279.
    [24] YANG L Y, LI X L, FANG H, et al. Compressive behaviour of wood-filled GFRP square columns with lattice-web reinforcements[J]. Constructionand Building Materials, 2021, 310: 125129.
    [25] ASTM. Standard test method for compressive properties of polymer matrix composite materials with unsupported gage section by shear loading: ASTM D3410/D3410 M-16[S]. West Conshohocken: ASTM, 2016.
    [26] ASTM. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D 3039 M–14[S]. West Conshohocken: ASTM, 2014.
    [27] ASTM. Standard test method for compressive strength of cylindrical concrete specimens: ASTM C39/C39 M[S]. West Conshohocken: ASTM, 2018.
    [28] LAM L, TENG J G. Ultimate condition of fiber reinforced polymer-confined concrete[J]. Journal of Composites for Construction, 2004, 8(6):539-548.
    [29] TAO Z, HAN L H, WANG D Y. Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete[J]. Thin-Walled Structures, 2008, 46(10):1113-1128.
    [30] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学 2017, 34(3): 36-46.

    FENG Peng, QIANG Hanlin, YE Lieping. Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34(3): 36-46(in Chinese).
    [31] LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete in rectangular columns[J]. Journal of Reinforced Plastics and Composites, 2003, 22(13): 1149-1186.
    [32] LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete[J]. Constructionand Building Materials, 2003, 17(6-7): 471-489.
    [33] QIAO P Z, SHAN L Y. Explicit local buckling analysis and design of fiber-reinforced plastic composite structural shapes[J]. Composite Structures, 2005, 70(4): 468-483.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  199
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-20
  • 修回日期:  2023-03-27
  • 录用日期:  2023-04-15
  • 网络出版日期:  2023-04-23
  • 刊出日期:  2023-12-01

目录

    /

    返回文章
    返回