Compressive behavior of concrete-filled multi-cavity composite rectangular columns
-
摘要:
拉挤型材轻质高强,具有较好的轴压及弯曲性能。受加工工艺影响,拉挤型材脆性破坏特征明显,与混凝土的组合应用易发生局部屈曲,混凝土约束效率较低。为改善拉挤型材受力性能,提高拉挤型材混凝土约束效率,提出了一种多腔矩形复材约束混凝土组合短柱,基于格构结构和真空导入成型工艺,实现了多腔拉挤截面的制造,解决了现有多腔复材柱生产工艺复杂的问题;改善了纤维面层与拉挤型材的界面粘结强度,提高了拉挤型材混凝土约束效率。本文分别对多腔矩形复材管及其约束混凝土构件进行了轴压试验研究,研究了多腔结构和增设格构腹板对拉挤型材约束混凝土结构破坏模式、峰值承载力及其延性特征的影响。试验结果表明,多腔结构有效提高矩形拉挤型材混凝土约束效率,改善拉挤型材脆性破坏特征;增设格构腹板有效改善材料界面粘结能力,延缓约束面层局部屈曲,提高结构整体变形能力;增设格构腹板进一步提高多腔结构混凝土约束效率,结构具有更高的峰值承载力。 多腔矩形复材管及其约束混凝土构件 混凝土组合柱荷载-应变曲线 Abstract: Concrete-filled multi-cavity pultruded composite rectangular column are proposed to improve the mechanical performance of rectangular pultruded profiles and their confinement effectiveness on the concrete core. The axial compression tests were carried out on the concrete-filled multi-cavity composite rectangular columns and related multi-cavity pultruded tubes. The effects of applications of the multi-cavity structure and lattice-webs on the failure modes, bearing capacity and ductility of specimens were investigated. The results reveal that the multi-cavity structure effectively improves the brittle manner of pultruded tubes, and thus improves the mechanical performance and the confinement efficiency of pultruded profiles, with an average 53.08% increase in the peak load and an average 27.45% increase in the axial stress of confining concrete. Moreover, applications of lattice-webs have positive effects on improving the interface bonding performance and thus better deformation capacity of the structure is observed. The average ductility coefficient of concrete-filled specimens reinforced with lattice-webs is 2.23, higher than that of specimens without lattice-webs (1.88). Applications of lattice-webs further improve the confinement effectiveness of the multi-cavity structure on the concrete, thus increasing the peak load of specimens. The maximum increase in the peak load of the concrete-filled multi-cavity structure is 21.17%, which is much higher than 7.44% of specimens without lattice-webs. A simple design-oriented model was proposed to predict the peak load of concrete-filled multi-cavity specimens and related multi-cavity pultruded tubes. The results are consistent with the test data. -
表 1 构件信息
Table 1. Details of specimens
Labels Size(H×W×r)/mm Layup of lattice-webs Layup of fibre skin Concrete HF-PT-1 400×208×3 — [(±45°)2/(0, 90°)2]2 — HF-PT-2 — HL-PT-1 (±45°)2 [(0, 90°)2/ (±45°)2] — HL-PT-2 — CF-PC-1 — [(±45°)2/(0, 90°)2]2 C60 CF-PC-2 C60 CL-PC-1 (±45°)2 [(0, 90°)2/ (±45°)2] C60 CL-PC-2 C60 HPT-1 400×100×3 — — HPT-2 CPC-1 C60 CPC-2 Notes:H is the height of specimens; W is the width of specimens; r is the corner radius of specimens. The thickness of GFRP wove fabrics of (±45°) and (0, 90°) was 0.5 mm. Labels of the specimens are as follows, “H” represents the hollow specimens; “C” represents the concrete-filled specimens; “L” represents the specimens reinforced with lattice-webs; “F” represents the specimens without lattice-webs; “HPT” and “CPC” are normal pultruded tubes and related concrete-filled specimens; and the number “1” and “2” followed the labels represent two nominally identical specimens in each pair. 表 2 基本材料属性
Table 2. Material properties
Property (±45°) (0, 90°) Pultruded tubes Concrete Mean Standard deviation Mean Standard deviation Mean Standard deviation Mean Standard deviation Axial compression fxc/MPa 137.53 3.54 181.26 8.26 140.23 6.89 59.53 1.13 Exc/GPa 22.92 1.86 26.16 4.63 18.03 2.14 36.53 2.01 Transverse compression fyc/MPa 137.53 3.54 181.26 8.26 1.56 — Eyc/GPa 22.92 1.86 26.16 4.63 6.78 — Axial tension strength fxt/MPa 185.23 18.65 330.52 11.63 — Transverse tension strength fyt/MPa 185.23 18.65 330.52 11.63 18.05 1.63 Poisson’s ratio λ12 0.30 0.031 0.30 0.031 0.28 0.028 0.2 λ21 0.30 0.026 0.30 0.026 0.09 0.011 Notes: f represents stress of each kind of material, and E represents elastic modulus. 表 3 单管轴压试验结果
Table 3. Test results of single tubes
Specimen H×W/mm Npp /kN εpp/10−6 NppA/kN εppA/10−6 HPT-1 400×100 214.86 5308 211.65 5367 HPT-2 400×100 208.44 5426 CPC-1 400×100 625.00 3829 609.74 4088 CPC-2 400×100 618.62 4043 Notes:H is the height of specimens; W is the width of specimens; Npp is the peak load and εpp is the corresponding strain; NppA is the average peak load and εppA is the average strain at the peak point. 表 4 拉挤型材组合柱试验结果
Table 4. Test results of composite pultruded columns
Specimen σc/MPa Ny/kN εy/10−6 Np/kN εp/10−6 Nu/kN εu/10−6 ψ/% η HF-PT-1 — 1293 5594 1323 5872 1125 6512 56.27 1.16 HF-PT-2 — 1283 5987 1319 6345 1121 7115 55.80 1.19 HL-PT-1 — 727 3344 1259 5606 1070 9054 48.71 2.71 HL-PT-2 — 1032 4648 1283 5998 1091 6825 51.55 1.47 CF-PC-1 74.28 2612 2951 3136 4036 2666 4750 7.44 1.61 CF-PC-2 72.35 1973 2072 3030 3872 2576 4472 7.23 2.16 CL-PC-1 79.29 2715 3047 3537 5011 3006 5475 21.17 1.80 CL-PC-2 80.03 2126 2251 3457 5518 2938 5978 18.43 2.66 Notes: σc is the compressive stress of confined concrete; Ny and εy are the yield load and corresponding strain of multi-cavity composite columns; Np and εp are the peak load and corresponding strain of multi-cavity composite columns; Nu and εu is the ultimate load and corresponding strain of multi-cavity composite columns; ψ and η are the load enhancement ratio and ductility coefficient of multi-cavity composite columns. 表 5 等效圆形及矩形截面约束混凝土计算值
Table 5. Theoretical results of confined concrete in equivalent circle and rectangular sections
Specimen L(D)/mm t/mm σc0/MPa εc0/10−6 εhrup/10−6 σcc/MPa εcu/10−6 CCL-PC 214 9 59.53 2600 4508 75.23 7745 CCF-PC 212 10 5151 81.85 9372 SCL-PC 190 9 1667 61.98 4869 SCF-PC 188 10 1905 63.02 5030 表 6 多腔组合柱试验及理论结果对比
Table 6. Comparison of theoretical and experimental results of multi-cavity composite rectangular columns
Specimen Experimental Theoretical (Fp−Fpc)/Fp Peak loadFp/kN Axial strain at peak load/10−6 Peak loadFcp/kN Axial strain at peak load/10−6 HF-PT-1 1323 5872 1302 5334 1.587% HF-PT-2 1319 6345 1.288% HL-PT-1 1259 5606 1257 5355 0.1589% HL-PT-2 1283 5998 2.026% CF-PC-1 3136 4036 3254 5334 3.763% CF-PC-2 3030 3872 7.393% CL-PC-1 3537 5011 3587 5355 1.414% CL-PC-2 3457 5518 3.760% -
[1] 刘伟庆, 方海, 方园. 纤维增强复合材料及其结 构研究进展[J]. 建筑结构学报2019, 40(4): 1–16.LIU W Q, FANG H, FANG Y. Research progress of fiber-reinforced composites and structures [J]. Journal of Building Structures 2019, 40(4): 1–16(in Chinese). [2] NUNES F, CORREIA J R, SILVESTRE N. Structural behaviour of hybrid FRP pultruded columns. Part 1: Experimental study[J]. Compos Struct 2016, 139: 291–303. [3] 沈高奎, 齐玉军, 陆建成, 等. 内置复材约束的T形截面钢管混凝土组合柱轴压力学性能试验研究. 复合材料学报 2022, 39(7): 3388–403.SHEN G K, QI Yujun, LU J C, et al. Experimental study on axial compression performance of T-section concrete filled steel and FRP tubular composite columns [J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3388–403(in Chinese)). [4] 黄龙男, 张东兴, 李地红, 等. 轴向受压CFRP管混凝土柱的膨胀模型及应力-应变关系[J]. 复合材料学报 2006, 23(1): 112-116.HUANG L N, ZHANG D X, LI D H, et al. Dilation model and stress-strain relationships of CFRP tubes confining concrete columns under axial compression [J]. Acta Materiae Compositae Sinica, 2006, 23(1): 112-116(in Chinese)). [5] 缪坤廷, 魏洋, 朱超, 等. 钢管混凝土-FRP管海水海砂混凝土组合柱轴压模型[J]. 复合材料学报 2022, 39(11): 5403–14.MIAO K T, WEI Y, ZHU C, et al. Model for stress-strain curves of concrete filled steel tube-seawater and sea sand concrete filled FRP tube composite columns under axial load [J]. Acta Materiae Compositae Sinica, 2022;39(11): 5403–14 (in Chinese)). [6] 王高飞, 魏洋, 缪坤廷, 等. 圆形CFRP-钢复合管海水海砂珊瑚混凝土柱轴压性能试验研究[J]. 复合材料学报 2022, 39(8): 3982-3993.WANG G F, WEI Y , MIAO Kunting, et al. Experimental study on axial compression performance of CFRP-steel composite tube filled circular seawater sea-sand coral concrete columns [J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3982-3993. (in Chinese)). [7] 柏佳文, 魏洋, 张依睿, 等. 新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验[J]. 复合材料学报 2021, 38(9): 3084-3093.BAI J W, WEI Y, ZHANG Y R, et al. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns [J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3084-3093 (in Chinese)). [8] GUO Z, XIA L, LIN Q, et al. Test on mechanical behavior of pultruded concrete-filled GFRP tubular short columns after elevated temperatures [J]. Compos Struct 2021, 257: 113163. [9] TABATABAEIAN M, KHALOO A, AZIZMOHAMMADI M. The effects of elevated temperatures on the performance of concrete-filled pultruded GFRP tubular columns [J]. Thin-Walled Struct 2021, 169: 108404. [10] ALHAWAMDEH M, ALAJARMEH O, ARAVINTHAN T, et al. Modelling hollow pultruded FRP profiles under axial compression: Local buckling and progressive failure [J]. Compos Struct 2021, 262: 113650. [11] TENG J G, CHEN J F, SMITH S T, et al. FRP strengthened RC structures [M]. John Wiley& Sons, Ltd; 2002. [12] WANG L M, WU Y F. Effect of corner radius on the performance of CFRP-confined square concrete columns: Test [J]. Eng Struct 2008, 30: 493–505. [13] QIU N, GAO Y, FANG J, et al. Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases [J]. Finite Elem Anal Des 2015, 104: 89–101. [14] HUANG L, YU T, ZHANG S S, et al. FRP-confined concrete-encased cross-shaped steel columns: Concept and behaviour [J]. Eng Struct 2017, 152: 348–58. [15] HUANG L, YU T, ZHANG S S. FRP-Confined concrete-encased cross-shaped steel columns: Effects of key parameters [J]. Compos Struct 2021, 272: 114252. [16] OZBAKKALOGLU T. Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters [J]. Eng Struct 2013, 51: 188–99. [17] VINCENT T, OZBAKKALOGLU T. Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete [J]. Constr Build Mater 2013, 47: 814–26. [18] AL-SAADI AU, ARAVINTHAN T, LOKUGE W. Effects of fibre orientation and layup on the mechanical properties of the pultruded glass fibre reinforced polymer tubes [J]. Eng Struct 2019, 198. [19] GUO Z, XUE X, YE M, et al. Experimental research on pultruded concrete-filled GFRP tubular short columns externally strengthened with CFRP [J]. Compos Struct 2021, 255: 112943. [20] ZHANG X, CHEN Y, YE M. Research on square concrete filled GFRP tube columns strengthened with CFRP sheet [J]. Compos Struct 2021, 275: 114407. [21] WU Z, LIU W, WANG L, et al. Theoretical and experimental study of foam-filled lattice composite panels under quasi-static compression loading [J]. Compos Part B Eng 2014, 60: 329–40. [22] SHI H Y, LIU W Q, FANG H, et al. Flexural responses and pseudo-ductile performance of lattice-web reinforced GFRP-wood sandwich beams [J]. Compos Part B Eng 2017, 108: 364–76. [23] WANG L, LIU W Q, WAN L, et al. Mechanical performance of foam-filled lattice composite panels in four-point bending: Experimental investigation and analytical modeling [J]. Compos Part B Eng 2014, 67: 270–9. [24] YANG L Y, LI X L, FANG H, et al. Compressive behaviour of wood-filled GFRP square columns with lattice-web reinforcements [J]. Constr Build Mater 2021, 310: 125129. [25] ASTM D3410/D3410 M-16, Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading [S]. PA, USA, ASTM: 2016. [26] ASTM D3039/D 3039 M–14, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials [S]. PA, USA, ASTM: 2014. [27] ASTM C39/C39 M, Standard test method for compressive strength of cylindrical concrete specimens [S]. PA, USA, ASTM: 2018. [28] LAM L, TENG J G. Ultimate Condition of Fiber Reinforced Polymer-Confined Concrete. J Compos Constr 2004, 8: 539–48. [29] TAO Z, HAN L H, WANG D Y. Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete [J]. Thin-Walled Struct 2008, 46: 1113–28. [30] 冯鹏, 强翰霖, 叶列平. 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学 2017, 34(3): 36-46.FENG P, QIANG H L, YE L P. Discussion and definition on yield points of materials, members and structures [J]. Engineering Mechanics 2017, 34(3): 36-46(in Chinese)). [31] LAM L, TENG J G. Design-Oriented Stress-Strain Model for FRP-Confined Concrete in Rectangular Columns [J]. J Reinf Plast Compos 2003, 22: 1149–86. [32] LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete [J]. Constr Build Mater 2003, 17: 471–89. [33] QIAO P, SHAN L. Explicit local buckling analysis and design of fiber-reinforced plastic composite structural shapes [J]. Compos Struct 2005, 70: 468–83. -

计量
- 文章访问数: 63
- HTML全文浏览量: 30
- 被引次数: 0