留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肋板增强泡沫分区填充薄壁管横向压溃性能

张旻 杨轶凡 裴文杰 王士龙 黄志来

张旻, 杨轶凡, 裴文杰, 等. 肋板增强泡沫分区填充薄壁管横向压溃性能[J]. 复合材料学报, 2023, 40(8): 4496-4510
引用本文: 张旻, 杨轶凡, 裴文杰, 等. 肋板增强泡沫分区填充薄壁管横向压溃性能[J]. 复合材料学报, 2023, 40(8): 4496-4510
ZHANG Min, YANG Yifan, PEI Wenjie, WANG Shilong, HUANG Zhilai. Lateral crushing performance of rib-reinforced foam partition-filled thin-walled tube[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4496-4511.
Citation: ZHANG Min, YANG Yifan, PEI Wenjie, WANG Shilong, HUANG Zhilai. Lateral crushing performance of rib-reinforced foam partition-filled thin-walled tube[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4496-4511.

肋板增强泡沫分区填充薄壁管横向压溃性能

基金项目: 国家自然科学基金青年项目(11802002)
详细信息
    通讯作者:

    王士龙,博士,讲师,硕士生导师,研究方向为轻质结构的耐撞性优化设计 E-mail: wshilong2012@163.com

  • 中图分类号: TB333

Lateral crushing performance of rib-reinforced foam partition-filled thin-walled tube

Funds: National Natural Science Foundation for the Youth of China (11802002)
  • 摘要: 利用3D打印技术制备了聚乳酸(PLA)十字形肋板和基于三维Voronoi的闭孔泡沫结构,提出了一种肋板增强泡沫分区填充薄壁管结构(RFFT),研究了该结构在准静态横向荷载作用下的压溃性能。结果表明,在横向压溃中,RFFT结构组成元件的失效次序和元件之间的相互作用随横向荷载的作用区域而改变,使得结构的力-位移曲线的响应和结构的压溃性能(峰值荷载、平均压溃荷载、比吸能、荷载一致性)呈现典型的各向异性特征。针对两种典型受载情形(即横向荷载作用于结构填充区和非填充区),结构的比吸能相比于空管结构分别提高了125.16%和129.22%,而峰值荷载相比于完全填充结构降低了5.54%和31.28%。进一步,运用细观有限元模型分析了设计参数的影响规律并揭示了分区泡沫填充结构的能量吸收机制。最后,引入复合比例评估法对RFFT结构的多个耐撞性指标进行综合评估。

     

  • 图  1  肋板增强泡沫分区填充管(RFFT)的设计示意图(a)和横向加载方案(b)

    Figure  1.  Design schematic of rib-reinforced foam partition-filled thin-walled tube (RFFT) (a) and the lateral compression loading scheme (b)

    图  2  试样:(a) 空管(ET)、(b) 加肋管(RT)、(c) 泡沫填充管(FFT)、(d) 荷载作用于结构非填充区时肋板增强泡沫分区填充管(RFFT-90)

    Figure  2.  Illustration of the considered specimens: (a) Empty tube (ET), (b) Ribbed tube (RT), (c) Foam-filled tube (FFT), (d) Rib-reinforced foam partition-filled thin-walled tube with load acting on the foam-filled region (RFFT-90)

    图  3  PLA材料的拉伸应力-应变曲线

    Figure  3.  Tensile stress-strain curve of PLA material

    图  4  试样ET(a)、RT(b)、FFT(c)、RFFT-0(d)、RFFT-90(e)的变形过程

    Figure  4.  Deformation process of specimens: ET (a), RT (b), FFT (c), RFFT-0 (d), RFFT-90 (e)

    图  5  试样的荷载-位移曲线

    Figure  5.  Force-displacement curve of the specimens

    图  6  实验中所设计结构的平均压溃载荷Fm和峰值压溃载荷Fp (a)以及比质量能量吸收ES和压溃荷载效率η (b)的对比

    Figure  6.  Comparison of mean crush force Fm and peak crush force Fp (a) and specific energy absorption ES and crush force efficiency η (b) of the considered specimens

    图  7  RFFT-90的有限元模型

    Figure  7.  Finite element model of RFFT-90

    图  8  ET结构的实验和数值模拟的变形模式(a)和荷载-位移曲线(b)对比

    Figure  8.  Comparison of deformation process (a) and force-displacement curves (b) of ET obtained from experiment and simulation

    图  10  RFFT-90结构的实验和数值模拟的变形模式(a)和荷载-位移曲线(b)对比

    Figure  10.  Comparison of deformation process (a) and force-displacement curves (b) of RFFT-90 obtained from experiment and simulation

    图  9  RT结构的实验和数值模拟的变形模式(a)和荷载-位移曲线(b)对比

    Figure  9.  Comparison of deformation process (a) and force-displacement curves (b) of RT obtained from experiment and simulation

    图  11  结构ET、RT的荷载-位移曲线(a)和能量曲线(b)

    Figure  11.  Comparison between ET and RT: Force-displacement curve (a); Energy curve (b)

    图  12  结构ET和RFFT-90的荷载-位移曲线(a)和能量-位移曲线(b)

    Figure  12.  Comparison between ET and RFFT-90: Force-displacement curve (a); Energy curve (b)

    图  13  具有不同增强肋板角度和厚度的泡沫分区填充薄壁管变形模式(εN=0.6)

    Figure  13.  Deformation patterns of specimens with different foam ratios, rib angles and thicknesses at εN=0.6

    图  14  具有不增强肋板角度和厚度的泡沫分区填充薄壁管的横向压缩荷载-位移曲线

    Figure  14.  Force-displacement curves for specimens with different foam ratios, rib angles and thicknesses

    图  15  具有不同肋板角度和厚度的RFFT-90峰值荷载Fp(a)、平均压溃荷载Fm(b)、比吸能ES(c)以及载荷一致性η(d)

    Figure  15.  Fp (a), Fm (b), ES (c) and η (d) for RFFT-90 with different rib angles and thicknesses

    图  16  RFFT-90的量化效用U随设计参数的变化

    Figure  16.  Variation of quantitative utility U for RFFT-90 with design parameter

    表  1  肋板增强泡沫分区填充管各项相关指标对应的权重系数Wj

    Table  1.   Corresponding weight coefficients Wj for each relevant indicators of rib-reinforced foam partition-filled thin-walled tube

    Performance indicatorsNumber of comparison sets,
    N=4*(4−1)/2=6
    $ \displaystyle\sum\nolimits_{i = 1}^m {{N_{ij}}} $$ {W_{ij}} $
    123456
    E22377/24=0.291
    Fp22377/24=0.291
    ES22377/24=0.291
    η11133/24=0.125
    Total,$ \displaystyle\sum\nolimits_{j = 1}^n {\displaystyle\sum\nolimits_{i = 1}^m {{N_{ij}}} } $241
    下载: 导出CSV

    表  2  用COPRAS方法得到的所有肋板增强泡沫分区填充管试样的加权归一化值:有益属性S+i、非有益属性S-i、相对优先级Qi、量化效用Ui

    Table  2.   Weighted normalized values: beneficial attributes S+i, non-beneficial attributes S-i, relative priorities Qi, quantitative utility Ui for all specimens obtained by the COPRAS method

    θ/(°)t /mmEFpESη$ {S}_{+i} $$ {S}_{-i} $QiUiRank
    600.40.004850.005720.006680.005140.016660.005720.044180.7051614
    0.80.005090.006200.006530.004990.016610.006200.042000.6703617
    1.20.005150.006520.006160.004790.016100.006520.040260.6425119
    1.60.005770.006850.006480.005110.017360.006850.040360.6441818
    2.00.005780.007040.006120.004990.016890.007040.039260.6266320
    900.40.010280.008010.012630.007790.030710.008010.050370.8038610
    0.80.010030.009760.011520.006240.027790.009760.043920.7009915
    1.20.010340.010180.011150.006160.027650.010180.043120.6882216
    1.60.012240.010440.012470.007120.031830.010440.046910.7486512
    2.00.012600.011330.012160.006750.031510.011330.045400.7245913
    1200.40.013840.010340.015640.008130.037600.010340.052840.843268
    0.80.014630.010900.015510.008150.038290.010900.052750.841869
    1.20.016540.017800.016490.005640.038660.017800.047510.7582611
    1.60.021780.022960.020500.005760.048030.022960.054900.876136
    2.00.025450.026830.023020.005760.054230.026830.060100.959164
    1500.40.019560.013570.020250.008750.048570.013570.060180.960423
    0.80.019720.015140.019330.007910.046960.015140.057370.915525
    1.20.021870.027010.020310.004920.047090.027010.052920.844557
    1.60.026410.027000.023400.006190.055600.027010.061830.986762
    2.00.029070.037410.024670.004720.058460.037410.062671.000261
    下载: 导出CSV
  • [1] BAROUTAJI A, SAJJIA M, OLABI A. On the crashworthiness performance of thin-walled energy absorbers: recent advances and future developments[J]. Thin-Walled Structures,2017,118:137-163. doi: 10.1016/j.tws.2017.05.018
    [2] BAROUTAJI A, GILCHRIST M, OLABI A. Quasi-static, impact and energy absorption of internally nested tubes subjected to lateral loading[J]. Thin-Walled Structures,2016,98:337-350. doi: 10.1016/j.tws.2015.10.001
    [3] RAHI A. Controlling energy absorption capacity of combined bitubular tubes under axial loading[J]. Thin-Walled Structures,2018,123:222-231. doi: 10.1016/j.tws.2017.11.032
    [4] 宋涛, 余许多, 江晟达, 等. 变刚度碳纤维/环氧树脂复合材料薄壁圆管轴向压溃响应与破坏机制[J]. 复合材料学报, 2021, 38(11):3586-3600. doi: 10.13801/j.cnki.fhclxb.20210126.002

    SONG Tao, YU Xuduo, JIANG Shengda, et al. Axial crush response and damage mechanism of thin-walled circular tubes of carbon fiber/epoxy composites with variable stiffness[J]. Acta Materiae Compositae Sinica,2021,38(11):3586-3600(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210126.002
    [5] DING X, TONG Z, LIU Y, et al. Dynamic axial crush analysis and design optimization of a square multi-cell thin-walled tube with lateral variable thickness[J]. International Journal of Mechanical Sciences,2018,140:13-26. doi: 10.1016/j.ijmecsci.2018.02.034
    [6] ZHANG X, LENG K, ZHANG H. Axial crushing of embedded multi-cell tubes[J]. International Journal of Mechanical Sciences,2017,131-132:459-470. doi: 10.1016/j.ijmecsci.2017.07.019
    [7] 邓亚斌, 任毅如, 蒋宏勇. 复合材料吸能圆管在半圆凹槽触发机制下的斜向压溃失效行为[J]. 复合材料学报, 2022, 39(4):1790-1797.

    DENG Yabin, REN Yiru, JIANG Hongyong. Oblique crush failure behavior of composite energy-absorbing circular tubes under semicircular notch triggering mechanism[J]. Acta Materiae Compositae Sinica,2022,39(4):1790-1797(in Chinese).
    [8] YIN H, XIAO Y, WEN G, et al. Multiobjective optimization for foam-filled multi-cell thin-walled structures under lateral impact[J]. Thin-Walled Structures,2015,94:1-12. doi: 10.1016/j.tws.2015.03.031
    [9] WANG Z, LI Z, ZHANG X. Bending resistance of thin-walled multi-cell square tubes[J]. Thin-Walled Structures,2016,107:287-299. doi: 10.1016/j.tws.2016.06.017
    [10] ZHANG X, ZHANG H, LENG K. Experimental and numerical investigation on bending collapse of embedded multi-cell tubes[J]. Thin-Walled Structures,2018,127:728-740. doi: 10.1016/j.tws.2018.03.011
    [11] ZHANG X, ZHANG H. Static and dynamic bending collapse of thin-walled square beams with tube filler[J]. International Journal of Impact Engineering,2018,112:165-179. doi: 10.1016/j.ijimpeng.2017.11.001
    [12] ALGHAMDI A. Collapsible impact energy absorbers: an overview[J]. Thin-Walled Structures,2001,39(2):189-213. doi: 10.1016/S0263-8231(00)00048-3
    [13] PANDARKAR A, GOEL M, HORA M. Axial crushing of hollow and foam filled tubes: An overview[J]. Sādhanā,2016,41:909-921.
    [14] TRAN T, TON T. Lateral crushing behaviour and theoretical prediction of thin-walled rectangular and square tubes[J]. Composite Structures,2016,154:374-384. doi: 10.1016/j.compstruct.2016.07.068
    [15] ROUZEGAR J, ASSAEE H, NIKNEJAD A, et al. Geometrical discontinuities effects on lateral crushing and energy absorption of tubular structures[J]. Materials and Design,2015,65:343-359. doi: 10.1016/j.matdes.2014.09.041
    [16] FAN Z, SHEN J, LU G, et al. Dynamic lateral crushing of empty and sandwich Tubes[J]. International Journal of Impact Engineering,2013,53:3-16. doi: 10.1016/j.ijimpeng.2012.09.006
    [17] KUMAR P. Influence of plain end-cap on the energy absorption characteristics of cylindrical tubular structures for lateral impact vehicle collisions[J]. Thin-Walled Structures,2019,138:32-45. doi: 10.1016/j.tws.2019.01.036
    [18] LIU J, LIU H, YANG J. Lateral crushing and energy absorption behavior of hexagonal tubes with non-uniform thickness distributions[J]. Composite Structures,2022,285:115196. doi: 10.1016/j.compstruct.2022.115196
    [19] EYVAZIAN A, NAJAFIAN S, MOZAFARI H, et al. Crashworthiness Analysis of a Novel Aluminum Bi-tubular Corrugated Tube-Experimental Study[J]. Advances in Manufacturing Processes,2019:599-607.
    [20] SUN G, LI S, LIU Q, et al. Experimental study on crashworthiness of empty/aluminum foam/honeycomb-filled CFRP tubes[J]. Composite Structures,2016,152:969-993. doi: 10.1016/j.compstruct.2016.06.019
    [21] LIU Z, HUANG Z, QIN Q. Experimental and theoretical investigations on lateral crushing of aluminum foam-filled circular tubes[J]. Composite structures,2017,175:19-27. doi: 10.1016/j.compstruct.2017.05.004
    [22] ELAHI S, ROUZEGAR J, NIKNEJAD A, et al. Theoretical study of absorbed energy by empty and foam-filled composite tubes under lateral compression[J]. Thin-Walled Structures,2017,114:1-10. doi: 10.1016/j.tws.2017.01.029
    [23] MA W, LI Z, XIE S. Crashworthiness analysis of thin-walled bio-inspired multi-cell corrugated tubes under quasi-static axial loading[J]. Engineering Structures,2019,204:110069.
    [24] JUSUF A, DIRGANTARA T, GUNAWAN L, et al. Crashworthiness analysis of multi-cell prismatic structures[J]. International Journal of Impact Engineering,2015,78:34-50. doi: 10.1016/j.ijimpeng.2014.11.011
    [25] ZHANG X, ZHANG H. Some problems on the axial crushing of multi-cells[J]. International Journal of Mechanical Sciences,2015,103:30-39. doi: 10.1016/j.ijmecsci.2015.08.026
    [26] ZHENG D, ZHANG J, LU B, et al. Energy absorption of fully clamped multi-cell square tubes under transverse loading[J]. Thin-Walled Structures,2021,169:108334. doi: 10.1016/j.tws.2021.108334
    [27] ALBAK E. Optimization for multi-cell thin-walled tubes under quasi-static three-point bending[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2022,44:207. doi: 10.1007/s40430-022-03525-8
    [28] ZHU G, WANG Z, HUO X, et al. Experimental and numerical investigation into axial compressive behaviour of thin-walled structures filled with foams and composite skeleton[J]. International Journal of Mechanical Sciences,2017,122:104-119. doi: 10.1016/j.ijmecsci.2016.12.019
    [29] ZHU G, ZHAO Z, HU P, et al. On energy-absorbing mechanisms and structural crashworthiness of laterally crushed thin-walled structures filled with aluminum foam and CFRP skeleton[J]. Thin-Walled Structures,2021,160:107390. doi: 10.1016/j.tws.2020.107390
    [30] STANDAU T, ZHAO C, MURILLO CASTELLON S, et al. Chemical Modification and Foam Processing of Polylactide (PLA) [J]. Polymers, 2019, 11(2).
    [31] ZHU H, HOBDELL J, WINDLE A. Effects of cell irregularity on the elastic properties of 2 D Voronoi honeycombs[J]. Journal of the Mechanics and Physics of Solids,2001,49(4):857-870. doi: 10.1016/S0022-5096(00)00046-6
    [32] ZHENG Z, YU J, LI J. Dynamic crushing of 2 D cellular structures: a finite element study[J]. International Journal of Impact Engineering,2005,32:650-664. doi: 10.1016/j.ijimpeng.2005.05.007
    [33] 中国国家标准化管理委员会(标准制定单位). 金属材料拉伸试验: GB/T228.1—2010 [S]. 北京: 中国标准出版社, 2011.

    Standardization Administration of the People’s Republic of China. Metallic materials tensile testing: GB/T228.1—2010 [S]. Beijing: China Standards Press, 2011(in Chinese).
    [34] ZHAO X, WEI L, WEN D, et al. Bending response and energy absorption of sandwich beams with novel auxetic honeycomb core[J]. Engineering Structures,2021,247:113204. doi: 10.1016/j.engstruct.2021.113204
    [35] HA N, PHAM T, CHEN W, et al. Crashworthiness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing[J]. Thin-Walled Structures,2021,169:108315. doi: 10.1016/j.tws.2021.108315
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  207
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2022-09-12
  • 录用日期:  2022-09-16
  • 网络出版日期:  2022-09-30
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回