留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机相变材料强化及耦合优化电池热管理系统的研究进展

肖鑫 冯泽 王云峰 张莹 高峰

肖鑫, 冯泽, 王云峰, 等. 有机相变材料强化及耦合优化电池热管理系统的研究进展[J]. 复合材料学报, 2023, 40(7): 3795-3811. doi: 10.13801/j.cnki.fhclxb.20221024.001
引用本文: 肖鑫, 冯泽, 王云峰, 等. 有机相变材料强化及耦合优化电池热管理系统的研究进展[J]. 复合材料学报, 2023, 40(7): 3795-3811. doi: 10.13801/j.cnki.fhclxb.20221024.001
XIAO Xin, FENG Ze, WANG Yunfeng, et al. Recent progress in enhancement of physical properties of organic phase change materials and optimization of coupling thermal management of batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3795-3811. doi: 10.13801/j.cnki.fhclxb.20221024.001
Citation: XIAO Xin, FENG Ze, WANG Yunfeng, et al. Recent progress in enhancement of physical properties of organic phase change materials and optimization of coupling thermal management of batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3795-3811. doi: 10.13801/j.cnki.fhclxb.20221024.001

有机相变材料强化及耦合优化电池热管理系统的研究进展

doi: 10.13801/j.cnki.fhclxb.20221024.001
基金项目: 上海市浦江人才计划(20PJ1400200);云南省农村能源工程重点实验室开放基金项目(2022KF001);中央高校基本科研业务费专项基金(2232021D-11);上海市引进海外高层次人才计划;东华大学高层次人才专项基金;东华大学青年教师科研启动基金
详细信息
    通讯作者:

    肖鑫,博士,副教授,硕士生导师,研究方向为建筑蓄能及热管理 E-mail: xin.xiao@dhu.edu.cn

  • 中图分类号: TK02;TM912;TB332

Recent progress in enhancement of physical properties of organic phase change materials and optimization of coupling thermal management of batteries

Funds: Shanghai Pujiang Program (20PJ1400200); Yunnan Provincial Rural Energy Engineering Key Laboratory (2022KF001); Fundamental Research Funds for the Central Universities of China (2232021D-11); Shanghai Overseas High Level Talents Program; Dr. Xin Xiao also thank for the High Level Talent Program and Initial Funding for Young Researchers of Donghua University
  • 摘要: 为满足电动汽车锂离子电池热管理需求,具有优良温控效果的相变材料(PCM)冷却逐渐成为研究热点。本文从有机PCM物性不足出发,概括了目前复合有机PCM的制备及改进方向:添加多维高导热材料(如碳材料、纳米金属、泡沫金属等)强化导热;添加共聚物(如聚乙烯、热塑性弹性体等)提高材料柔韧性和添加阻燃剂(如红磷、聚磷酸铵等)提高阻燃效果以改善其实用性。分别指出膨胀石墨、苯乙烯-乙烯-丁二烯-苯乙烯和复合使用红磷与聚磷酸铵对导热、柔性和阻燃的显著提升。同时描述了有机PCM与热管、液冷、空冷等散热方式耦合后系统强化换热的效果,总结耦合热管时需要考虑不同热管排布;耦合液冷或空冷需要设计合适流道增强换热。随后介绍了通过模拟仿真分析有机PCM用于电池热管理系统影响因素及最佳使用工况的研究。最后总结有机PCM用于电池热管理的进展及不足,其难点仍在于其可燃和导电性的改善以及柔性有机PCM在室温下柔韧性不足,有机PCM耦合传统散热系统的车载可靠性和循环可行性也缺乏相应探讨,并为今后有机PCM用于电池热管理提出一定建议。

     

  • 图  1  蛛网结构三维石墨烯骨架(sw-GS)/石蜡(PW)的制备示意图[37]

    Figure  1.  Schematic diagram of preparation of spider web-inspired 3D graphene/paraffin (sw-GS/PW)[37]

    rGO—Reduced graphene oxide

    图  2  PW添加苯乙烯-丁二烯-苯乙烯(SBS)、热塑性酯弹性体(TPEE)、膨胀石墨(EG)后的拉伸状态和抗弯曲能力[47]

    Figure  2.  Tensile state and bending resistance of PW with styrene-butadiene-styrene (SBS), thermoplastic ester elastomer (TPEE) and expanded graphite (EG)[47]

    图  3  柔性复合有机PCM的SEM图像[47, 51, 53]

    Figure  3.  SEM images of flexible organic PCM[47, 51, 53]

    EPDM—Ethylene propylene diene monomer

    图  4  添加不同阻燃剂对热失控(TR)时峰值热释放率(HRR)降低对比[59, 61, 63-66]

    Figure  4.  Comparison of reduction of peak heat release rate (HRR) when thermal runaway (TR) appears with different flame retardants[59, 61, 63-66]

    图  5  不同聚磷酸铵(APP)类型阻燃PCM燃烧后碳层的SEM图像[63-64]

    Figure  5.  SEM images of carbon layer with different ammonium polyphosphate (APP) flame retardant PCM after combustion[63-64]

    图  6  耦合热管后PCM不同散热策略[67-68]

    Figure  6.  Different heat dissipation strategies of PCM after coupling heat pipes[67-68]

    图  7  PCM耦合不同液冷或空冷流道示意图[78-81]

    Figure  7.  Schematic diagram of PCM system structure coupled with different liquid or air cooling channels[78-81]

    IC—Integrated circuit

    图  8  换热系数h与努塞尔数Nu随入口流速和入口尺寸的变化[98]

    Figure  8.  Variation of heat transfer coefficient h and Nusselt number Nu with inlet velocity and inlet size[98]

    图  9  不同耦合系统电池最高温度的仿真效果[73, 85, 93]

    Figure  9.  Simulation of maximum temperatures of battery in different coupling systems[73, 85, 93]

    ΔTd—Temperature difference

    表  1  部分用于电池热管理(BTM)的有机固-液相变材料(PCM)热物性

    Table  1.   Thermo-physical properties of organic solid-liquid phase change materials (PCM) for battery thermal management (BTM)

    PCMThermal conductivity/(W·m−1·K−1)Latent heat/(kJ·kg−1)Phase change temperature/
    Ref.
    Paraffin(PW)0.225541-44/—[20]
    PW0.2230036/—[21]
    PW0.2120040/—[22]
    Lauric acid0.1517743/—[23]
    Myristic acid18753.7/—[23]
    Palmitic acid0.1718662.3/—[23]
    Stearic acid0.1720370.7/—[23]
    Capric acid0.15152.728.9/31.9[24]
    Polyethylene glycol (PEG) 60014620-25[23]
    PEG 10000.29142/—35.9/29.9[25]
    PEG 15000.31163.4/—48.9/42.9[25]
    PEG 3400171.656.4[23]
    Tetradecanol20538[26]
    1-dodecanol20026[26]
    下载: 导出CSV

    表  2  BTM用有机PCM热导率强化及其热物性

    Table  2.   Thermal conductivity enhancements and thermo-physical properties of organic PCM for BTM

    PCM and
    additives
    Mass fractionThermal conductivity
    of pure PCM/
    (W·m−1·K−1)
    Thermal conductivity of
    composite PCM/
    (W·m−1·K−1)
    Phase change
    temperature/
    Latent
    heat/
    (kJ·kg−1)
    Ref.
    EG/PW20∶800.151.90[29]
    GNP/PW20∶800.150.87[29]
    CNT/PW20∶800.150.37[29]
    Graphene/PW20∶800.150.49[29]
    Nano-Al/PW20∶800.250.7853.89/49.46282.50/281.20[30]
    Nano-TiO2/PW20∶800.250.4354.28/50.74283.09/280.64[30]
    AlN/EG/ER/PW20∶3∶27∶500.204.3347.20/—116.30[33]
    EG/ER/copper foam/PW0.232.9049.80/—75.00[36]
    sw-GS/PW2.25∶97.750.192.5853.50/45.40172.50/158.90[37]
    NPC-Al/PEG 200015∶850.270.4154.40/—155.30/—[38]
    CNT/MOFs/PEG 20005.16∶24.84∶700.300.4652.40/27.4096.20/90.10[39]
    MWCNT/graphene/PW0.3∶0.7∶990.390.8745.30/40.80203.80/198.00[40]
    EG/PW10∶900.286.439.50187.88[42]
    CNT/PW10∶900.280.3940.30172.62[42]
    h-BN/Na2SiO3/PW18∶0.9∶81.10.120.8552.30/47.90165.40/176.10[43]
    EG/aluminum foam/graphene/PW0.207.1[44]
    NPC/myristic acid-stearic acid12∶26.4∶61.60.170.3749.45/—164.33/—[45]
    EG/SiO2/low-density polyethylene/RT 457∶5.5∶30∶57.53.3044.0077.80[46]
    Notes: EG—Expanded graphite; GNP—Graphene nanosheets; CNT—Carbon nanotubes; ER—Epoxy resin; MWCNT—Multi-walled carbon nanotubes; NPC—N-doped porous carbons; RT 45—Rubitherm 45.
    下载: 导出CSV

    表  3  BTM用有机PCM柔性强化及其热物性

    Table  3.   Flexibility enhancements and thermo-physical properties of organic PCM for BTM

    PCM and
    additives
    Thermal
    conductivity/
    (W·m−1·K−1)
    Phase change
    temperature/
    Latent
    heat/
    (kJ·kg−1)
    Mechanical propertyRef.
    Test temperature/℃Tensile and
    bending
    strength/MPa
    Modulus of
    elasticity/
    MPa
    EG/SBS/TPEE/PW(5:10:5:80)1.20(30℃)56.7/—172.6/—600.09/—[47]
    EG/TPC-et/PW(10:45:45)1.6446.4/—102.0250.88/0.14[48]
    EG/OBC/PW(10:45:45)1.5750.1/—101.0255.44/1.21[48]
    EVA/EG/PW(47.5:5:47.5)1.7053.0121.0300.83/0.02[49]
    SEPS/EG/PW(9.5:5:85.5)2.6748.0/—211.950[50]
    SBS/AlN/PW(50:15:35)0.5046.857.1500.16/0.1667.00[51]
    h-BN/SEBS/PW(20:20:60)2.8040.1-44.3/—148.30.72[52]
    EG/SBS/EPDM/PW(5:12:3:80)1.2550.9/—133600.51/—[53]
    OBC/EG/PW(19:5:76)2.3439.5185.46063.90[54]
    SBS/EG/PW(60:3:57)0.8850.678.30.34/0.51[55]
    EG/SEBS/PW(5:20:80)1.2347.4159.2/166.5[56]
    OBC/EG/eicosane(20:3:80)1.2133.5170.2[57]
    OBC/EG/tetracosane(20:3:80)1.1847.4175.1[57]
    HDPE/EG/eicosane(20:3:80)1.2533.4169.0[57]
    EG/silicon rubber/h-BN/PW(3:55:5:28)0.9547.3/—62.70.53/—[58]
    Notes: TPC-et—Copolyester thermoplastic elastomer with polyether soft segment; OBC—Olefin block copolymer; EVA—Ethylene vinylacetate; SEPS—Styrene butene propylene styrene; SEBS—Styrene ethylene butylene styrene; HDPE—High density polyethylene.
    下载: 导出CSV

    表  4  部分BTM用阻燃PCM热物性及阻燃效果

    Table  4.   Thermo-physical properties and flame retardant effects of flame retardant PCM for BTM

    PCMFlame
    retardant
    Mass fraction/
    wt%
    Thermal
    conductivity/
    (W·m−1·K−1)
    Latent
    heat/
    (kJ·kg−1)
    Phase change
    temperature/℃
    LOI/%Temperature
    peak of TR/
    Peak HRR before
    and after
    antiflaming/
    (kW·m−2)
    Ref.
    OBC/EG/PW(13:5:70)AlCl3/Sb2O3/
    glass fibre
    Padded1.48130.7/—47.1/—26.0462.3/190.3[59]
    Silica aerogel/PW(60:40)APP/dipentaerythritolCoated0.0579.2/—39.6/—56.3691[60]
    Benzoyl peroxide/
    EG/1,6-hexanediol diacrylate/octadecyl acrylate(4:12:6:318)
    Al(OH)3151.2671.546.1639242.5/204.4[61]
    EG/SBS/PW(3:12:70)APP/phosphoric acid/ZnO15~1120.045.335.92980.0/801.0[63]
    EG/ER/PW(4:50:80)APP/RP381.1081.245.0-48.027.6870.9/313.1[64]
    PWAluminium trihydrate/
    Mg(OH)2
    50115.050.036429.0/15.5(kW)[65]
    PWAPP5098.151.476429.0/23.9(kW)[65]
    Polyester fiber/PEG
    APP150.3870.128.7654.7/385.7[66]
    Notes: PEG—Polyethylene glycol; APP—Ammonium polyphosphate; RP—Red phosphorus; TR—Thermal runaway; HRR—Heat release rate.
    下载: 导出CSV

    表  5  PW耦合热管BTM系统控温优化对比

    Table  5.   Optimization of temperature control of PW coupled with heat pipe BTM system

    PCMCharge/discharge rateT1 max and ΔT1 max/℃T2 max and ΔT2 max/℃Ref.
    RT44 HC60 W52.8/—
    (heatpipe)
    45.9/—[70]
    PW2 W48.3/—
    (heatpipe)
    39.0/—[71]
    EG/PW10 W47.2/5.9
    (PCM)
    45.1/4.7[68]
    EG/PW3 C45.5/2.5(PCM)44.1/1.7[74]
    Copper foam/PW5 C52.5/4.2(PCM)44.9/3.6[67]
    Notes: T1 max and ΔT1 max—Maximum temperature and maximum temperature difference with single cooling method; T2 max and ΔT2 max—Maximum temperature and maximum temperature difference with coupled cooling method; RT44 HC—Rubitherm 44 high crystallinity.
    下载: 导出CSV

    表  6  耦合液冷或空冷后BTM系统控温优化

    Table  6.   Optimization of temperature control of BTM system coupled with liquid cooling or air cooling

    PCMMethod of couplingCharge/discharge rateT1 max and ΔT1 max/℃T2 max and ΔT2 max/℃Ref.
    h-BN/SEBS/PWLiquid cooling5 C52.9/7.9
    (Liquid cooling)
    44.0/3.2[52]
    PEG 1000Liquid cooling0.9 C32.0/1.2(PEG 1000)30.0/0.6[79]
    Copper foam/PWLiquid cooling12.5 W60.0/—
    (Liquid cooling)
    45.1/—[83]
    EG/RT44 HCLiquid cooling2 C50.0/4.1
    (Liquid cooling)
    42.0/1.2[85]
    EG/Lipin/PWLiquid cooling3 C45.10/—
    (PCM)
    41.1/4.0[86]
    Copper foam/RT25 HCLiquid cooling2 C39.00/—
    (RT25 HC)
    25.0/1.0[87]
    Aluminium foam/RT27Air cooling1 C25.6/—[82]
    Copper foam/PWAir cooling5 W46.6/—
    (Air cooling)
    35.8/—[80]
    Cetane stearic acid/EG/PWAir cooling2 C51.9/2.6[81]
    PEG 1000Air cooling2 C37.0/—[25]
    Copper wire/PWAir cooling2.45 W43.0/—
    (PCM)
    26.0/—[84]
    下载: 导出CSV

    表  7  BTM仿真模拟常用的3种数学物理模型

    Table  7.   3 kinds of mathematical and physical models commonly used in BTM simulation

    ModelEquation of definitionParameterRef.
    Electrochemical heat
    generation model
    $q = {R_{\rm{i}}}{I^2} - IT\dfrac{{\partial U}}{{\partial T}}$ Notes: Ri—Equivalent internal resistance of the battery; I—Current; T—Temperature of battery; qHeat flux; UVoltage. [92]
    Effective heat capacity model $\rho {c_{\rm{p}}}(T)\dfrac{{\partial T}}{{\partial t}} = \lambda \dfrac{{{\partial ^2}T}}{{\partial {x^2}}}$
    ${c_{\rm p}} = \left\{ \begin{gathered} {c_{\rm ps}},T < {T_{\rm c}} - \Delta T \\ \dfrac{L}{{2\Delta T}} + \dfrac{{{c_{\rm ps}} + {c_{\rm pl}}}}{2},{T_{\rm c}} - \Delta T \leqslant T \leqslant {T_{\rm c}} + \Delta T \\ {c_{\rm pl}},T > {T_{\rm c}} + \Delta T \\ \end{gathered} \right.$
    Notes: L—Liquid fraction; λ—Thermal conductivity; t—Time; x—Distance; cps, cpl—Specific heat capacities of solid and liquid PCM respectively; ΔT—Half of phase change temperature range; Tc—Cent temperature of the phase change temperature range. [93]
    Enthalpy model $\begin{gathered} \rho \dfrac{{\partial H}}{{\partial t}} = \lambda \dfrac{{{\partial ^2}T}}{{\partial {x^2}}} \\ H = \int_{{T_0}}^T {{c_{\rm p}}dT} + \beta \gamma \\ \left\{ \begin{gathered} \beta = 0,T < {T_{\rm s}}{\text{ }} \\ \beta = 0,T > {T_{\rm l}} \\ \beta = \dfrac{{T - {T_{\rm s}}}}{{{T_{\rm l}} - {T_{\rm s}}}},{T_{\rm s}} < T < {T_{\rm l}} \\ \end{gathered} \right. \\ \end{gathered} $ Notes: ρ—Density; H—Total enthalpy; T0—Temperature when the enthalpy is 0 kJ·kg−1; β—Liquid fraction; γ—Latent heat; Ts and Tl—Solidification and melting temperatures of PCM, respectively. [94]
    下载: 导出CSV
  • [1] 邓林旺, 冯天宇, 舒时伟, 等. 锂离子电池快充策略技术研究进展[J]. 储能科学与技术, 2022, 11(9):2879-2890. doi: 10.19799/j.cnki.2095-4239.2021.0635

    DENG Linwang, FENG Tianyu, SHU Shiwei, et al. A review of fast charging strategy and technology for lithium-ion batteries[J]. Energy Storage Science and Technology,2022,11(9):2879-2890(in Chinese). doi: 10.19799/j.cnki.2095-4239.2021.0635
    [2] LEI S R, SHI Y, CHEN G Y. A lithium-ion battery-thermal-management design based on phase-change-material thermal storage and spray cooling[J]. Applied Thermal Engineering,2020,168:114792. doi: 10.1016/j.applthermaleng.2019.114792
    [3] 刘霏霏, 鲍荣清, 程贤福, 等. 服役工况下车用锂离子动力电池散热方法综述[J]. 储能科学与技术, 2021, 10(6):2269-2282.

    LIU Feifei, BAO Rongqing, CHENG Xianfu, et al. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions[J]. Energy Storage Science and Technology,2021,10(6):2269-2282(in Chinese).
    [4] PANCHAL S, DINCER I, AGELIN-CHAAB M, et al. Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery[J]. International Journal of Heat and Mass Transfer,2017,109:1239-1251. doi: 10.1016/j.ijheatmasstransfer.2017.03.005
    [5] PANCHAL S, RASHID M, LONG F, et al. Degradation testing and modeling of 200 Ah LiFePO4 battery[Z]. SAE International. 2018.
    [6] XU X M, HE R. Research on the heat dissipation performance of battery pack based on forced air cooling[J]. Journal of Power Sources,2013,240:33-41. doi: 10.1016/j.jpowsour.2013.03.004
    [7] CHEN F F, HUANG R, WANG C M, et al. Air and PCM cooling for battery thermal management considering battery cycle life[J]. Applied Thermal Engineering,2020,173:115154. doi: 10.1016/j.applthermaleng.2020.115154
    [8] YUKSEL T, LITSTER S, VISWANATHAN V, et al. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate[J]. Journal of Power Sources,2017,338:49-64. doi: 10.1016/j.jpowsour.2016.10.104
    [9] LAN C J, XU J, QIAO Y, et al. Thermal management for high power lithium-ion battery by minichannel aluminum tubes[J]. Applied Thermal Engineering,2016,101:284-292. doi: 10.1016/j.applthermaleng.2016.02.070
    [10] SHANG Z Z, QI H Z, LIU X T, et al. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system[J]. International Journal of Heat and Mass Transfer,2019,130:33-41. doi: 10.1016/j.ijheatmasstransfer.2018.10.074
    [11] LIU J W, LI H, LI W Y, et al. Thermal characteristics of power battery pack with liquid-based thermal management[J]. Applied Thermal Engineering,2020,164:114421. doi: 10.1016/j.applthermaleng.2019.114421
    [12] LIU F F, LAN F C, CHEN J Q. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling[J]. Journal of Power Sources,2016,321:57-70. doi: 10.1016/j.jpowsour.2016.04.108
    [13] RAO Z H, WANG S F, WU M C, et al. Experimental investigation on thermal management of electric vehicle battery with heat pipe[J]. Energy Conversion and Management,2013,65:92-97. doi: 10.1016/j.enconman.2012.08.014
    [14] 陈萌, 李静静. 脉动热管用于电动汽车锂电池散热性能试验[J]. 化工进展, 2021, 40(6):3163-3171. doi: 10.16085/j.issn.1000-6613.2020-1400

    CHEN Meng, LI Jingjing. Experiment on heat dissipation performance of electric vehicle lithium battery based on pulsating heat pipe[J]. Chemical Progress,2021,40(6):3163-3171(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1400
    [15] ZHANG N, YUAN Y P, CAO X L, et al. Latent heat thermal energy storage systems with solid-liquid phase change materials: A review[J]. Advanced Engineering Materials,2018,20(6):1700753. doi: 10.1002/adem.201700753
    [16] AHMADI Y, KIM K H, KIM S, et al. Recent advances in polyurethanes as efficient media for thermal energy storage[J]. Energy Storage Materials,2020,30:74-86. doi: 10.1016/j.ensm.2020.05.003
    [17] NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: A review[J]. International Journal of Heat and Mass Transfer,2019,129:491-523. doi: 10.1016/j.ijheatmasstransfer.2018.09.126
    [18] ZHANG P, XIAO X, MA Z W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy,2016,165:472-510. doi: 10.1016/j.apenergy.2015.12.043
    [19] LILLEY D, LAU J, DAMES C, et al. Impact of size and thermal gradient on supercooling of phase change materials for thermal energy storage[J]. Applied Energy,2021,290:116635. doi: 10.1016/j.apenergy.2021.116635
    [20] ZHANG F R, ZHAI L, ZHANG L, et al. A novel hybrid battery thermal management system with fins added on and between liquid cooling channels in composite phase change materials[J]. Applied Thermal Engineering,2022,207:118198. doi: 10.1016/j.applthermaleng.2022.118198
    [21] LAMRANI B, LEBROUHI B E, KHATTARI Y, et al. A simplified thermal model for a lithium-ion battery pack with phase change material thermal management system[J]. Journal of Energy Storage,2021,44:103377. doi: 10.1016/j.est.2021.103377
    [22] ZHOU Z Z, WANG D, PENG Y, et al. Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery[J]. Energy,2022,238:122081. doi: 10.1016/j.energy.2021.122081
    [23] 金露, 谢鹏, 赵彦琦, 等. 基于相变材料的电动汽车电池热管理研究进展[J]. 材料导报, 2021, 35(21):21113-21126.

    JIN Lu, XIE Peng, ZHAO Yanqi, et al. Research progress on phase change material based thermal management system of EV batteries[J]. Materials Reports,2021,35(21):21113-21126(in Chinese).
    [24] VERMA A, SHASHIDHARA S, RAKSHIT D. A comparative study on battery thermal management using phase change material (PCM)[J]. Thermal Science and Engineering Progress,2019,11:74-83. doi: 10.1016/j.tsep.2019.03.003
    [25] SAFDARI M, AHMADI R, SADEGHZADEH S. Numerical and experimental investigation on electric vehicles battery thermal management under new european driving cycle[J]. Applied Energy,2022,315:119026. doi: 10.1016/j.apenergy.2022.119026
    [26] 王忠良, 王子晨, 陈昌建, 等. 相变材料在动力电池中的应用研究进展[J]. 硅酸盐学报, 2021, 49(6):1065-1077.

    WANG Zhongliang, WANG Zichen, CHENG Changjian, et al. Development on application of phase change materials in electric vehicle power batteries[J]. Journal of the Chinese Ceramic Society,2021,49(6):1065-1077(in Chinese).
    [27] 孙文鸽, 韩磊, 吴志根. 膨胀石墨/石蜡相变复合材料有效导热系数的数值计算[J]. 复合材料学报, 2015, 32(6):1596-1601.

    SUN Wen'ge, HAN Lei, WU Zhigen. Numerical calculation of effective thermal conductivity coefficients of expanded graphite/paraffin phase change composites[J]. Acta Materiae Compositae Sinica,2015,32(6):1596-1601(in Chinese).
    [28] 刘臣臻, 张国庆, 王子缘, 等. 膨胀石墨/石蜡复合材料的制备及其在动力电池热管理系统中的散热特性[J]. 新能源进展, 2014, 2(3):233-238. doi: 10.3969/j.issn.2095-560X.2014.03.011

    LIU Chenzhen, ZHANG Guoqing, WANG Ziyuan, et al. Preparation of expanded graphite/paraffin composite materials and their heat dissipation characteristics in power battery thermal management system[J]. Progress of New Energy,2014,2(3):233-238(in Chinese). doi: 10.3969/j.issn.2095-560X.2014.03.011
    [29] NOH Y J, KIM H S, KU B C, et al. Thermal conductivity of polymer composites with geometric characteristics of carbon allotropes [J]. Advanced Engineering Materials,2016,18(7):1127-1132. doi: 10.1002/adem.201500451
    [30] WARZOHA R J, FLEISCHER A S. Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks[J]. International Journal of Heat and Mass Transfer,2014,79:314-323. doi: 10.1016/j.ijheatmasstransfer.2014.08.009
    [31] KUMAR R, MITRA A, SRINIVAS T. Role of nano-additives in the thermal management of lithium-ion batteries: A review[J]. Journal of Energy Storage,2022,48:104059. doi: 10.1016/j.est.2022.104059
    [32] LI J M, TANG A K, SHAO X, et al. Experimental evaluation of heat conduction enhancement and lithium-ion battery cooling performance based on h-BN-based composite phase change materials[J]. International Journal of Heat and Mass Transfer,2022,186:122487. doi: 10.1016/j.ijheatmasstransfer.2021.122487
    [33] ZHANG J Y, LI X X, ZHANG G Q, et al. Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management[J]. Energy Conversion and Management,2020,204:112319. doi: 10.1016/j.enconman.2019.112319
    [34] ZHOU T L, WANG X, LIU X H, et al. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler[J]. Carbon,2010,48(4):1171-1176. doi: 10.1016/j.carbon.2009.11.040
    [35] MOEINI S M, KHODADADI J M. Thermal conductivity improvement of phase change materials/graphite foam composites[J]. Carbon,2013,60:117-128. doi: 10.1016/j.carbon.2013.04.004
    [36] HE J S, YANG X Q, ZHANG G Q. A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management[J]. Applied Thermal Engineering,2019,148:984-991. doi: 10.1016/j.applthermaleng.2018.11.100
    [37] LIN Y, KANG Q, WEI H, et al. Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management[J]. Nano-Micro Letters,2021,13(11):316-329.
    [38] ATINAFU D G, DONG W, HOU C, et al. A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials[J]. Materials Today Energy,2019,12:239-249. doi: 10.1016/j.mtener.2019.01.011
    [39] WANG J J, HUANG X B, GAO H Y, et al. Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity[J]. Chemical Engineering Journal,2018,350:164-172. doi: 10.1016/j.cej.2018.05.190
    [40] ZOU D Q, MA X F, LIU X S, et al. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery[J]. International Journal of Heat and Mass Transfer,2018,120:33-41. doi: 10.1016/j.ijheatmasstransfer.2017.12.024
    [41] WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review[J]. Energy Storage Materials,2020,25:251-295. doi: 10.1016/j.ensm.2019.10.010
    [42] 王文健. 基于复合相变材料的锂离子电池热管理系统传热强化研究[D]. 徐州: 中国矿业大学, 2018.

    WANG Wenjian. Investigation on the heat transfer enhancement of lithium ion battery thermal management system based on composite phase change material[D]. Xuzhou: China University of Mining and Technology, 2018(in Chinese).
    [43] QIAN Z C, SHEN H, FANG X, et al. Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability[J]. Energy and Buildings,2018,158:1184-1188. doi: 10.1016/j.enbuild.2017.11.033
    [44] 黄菊花, 陈强, 曹铭, 等. 石蜡/膨胀石墨/石墨烯/铝蜂窝复合相变材料的制备及锂电池控温性能研究[J]. 化工新型材料, 2022, 50(2):140-144, 149. doi: 10.19817/j.cnki.issn1006-3536.2022.02.028

    HUANG Juhua, CHEN Qiang, CAO Ming, et al. Research on preparation of PW/EG graphite/graphene/Al honeycomb and temperature control performance of lithium battery[J]. New Chemical Materials,2022,50(2):140-144, 149(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2022.02.028
    [45] ATINAFU D G, DONG W, HUANG X, et al. Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity[J]. Applied Energy,2018,211:1203-1215. doi: 10.1016/j.apenergy.2017.12.025
    [46] LV Y F, SITU W F, YANG X Q, et al. A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management[J]. Energy Conversion and Management,2018,163:250-259. doi: 10.1016/j.enconman.2018.02.061
    [47] HUANG Q Q, LI X X, ZHANG G Q, et al. Pouch lithium battery with a passive thermal management system using form-stable and flexible composite phase change materials[J]. ACS Applied Energy Materials,2021,4(2):1978-1992. doi: 10.1021/acsaem.0c03116
    [48] WU W F, YE G H, ZHANG G Q, et al. Composite phase change material with room-temperature-flexibility for battery thermal management[J]. Chemical Engineering Journal,2022,428:131116. doi: 10.1016/j.cej.2021.131116
    [49] LI S J, DONG X L, LIN X D, et al. Flexible phase change materials obtained from a simple solvent-evaporation method for battery thermal management[J]. Journal of Energy Storage,2021,44:103447. doi: 10.1016/j.est.2021.103447
    [50] LIN X W, ZHANG X L, LIU L, et al. Polymer/expanded graphite-based flexible phase change material with high thermal conductivity for battery thermal management[J]. Journal of Cleaner Production,2022,331:130014. doi: 10.1016/j.jclepro.2021.130014
    [51] HUANG Q Q, DENG J, LI X X, et al. Experimental investigation on thermally induced aluminum nitride based flexible composite phase change material for battery thermal management[J]. Journal of Energy Storage,2020,32:101755. doi: 10.1016/j.est.2020.101755
    [52] CAO J H, WU Y, LING Z Y, et al. Upgrade strategy of commercial liquid-cooled battery thermal management system using electric insulating flexible composite phase change materials[J]. Applied Thermal Engineering,2021,199:117562. doi: 10.1016/j.applthermaleng.2021.117562
    [53] HUANG Q Q, LI X X, ZHANG G Q, et al. Flexible composite phase change material with anti-leakage and anti-vibration properties for battery thermal management[J]. Applied Energy,2022,309:118434. doi: 10.1016/j.apenergy.2021.118434
    [54] WU W X, LIU J Z, LIU M, et al. An innovative battery thermal management with thermally induced flexible phase change material[J]. Energy Conversion and Management,2020,221:113145. doi: 10.1016/j.enconman.2020.113145
    [55] HUANG Q Q, LI X X, ZHANG G Q, et al. Thermal management of lithium-ion battery pack through the application of flexible form-stable composite phase change materials[J]. Applied Thermal Engineering,2021,183:116151. doi: 10.1016/j.applthermaleng.2020.116151
    [56] RONG H Q, WANG C H, LIU X Q, et al. A novel elastomeric copolymer-based phase change material with thermally induced flexible and shape-stable performance for prismatic battery module[J]. International Journal of Thermal Sciences,2022,174:107435. doi: 10.1016/j.ijthermalsci.2021.107435
    [57] HUANG Y H, CHENG W L, ZHAO R. Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials[J]. Energy Conversion and Management,2019,182:9-20. doi: 10.1016/j.enconman.2018.12.064
    [58] ZHANG Y F, HUANG J H, CAO M, et al. A novel flexible phase change material with well thermal and mechanical properties for lithium batteries application[J]. Journal of Energy Storage,2021,44:103433. doi: 10.1016/j.est.2021.103433
    [59] HUANG Y H, CHENG Y X, ZHAO R, et al. A high heat storage capacity form-stable composite phase change material with enhanced flame retardancy[J]. Applied Energy,2020,262:114536. doi: 10.1016/j.apenergy.2020.114536
    [60] NIU J Y, DENG S Y, GAO X N, et al. Experimental study on low thermal conductive and flame retardant phase change composite material for mitigating battery thermal runaway propagation[J]. Journal of Energy Storage,2022,47:103557. doi: 10.1016/j.est.2021.103557
    [61] WENG J W, XIAO C R, OUYANG D X, et al. Mitigation effects on thermal runaway propagation of structure-enhanced phase change material modules with flame retardant additives[J]. Energy,2022,239:122087. doi: 10.1016/j.energy.2021.122087
    [62] LI L, XU C S, CHANG R Z, et al. Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules[J]. Energy Storage Materials,2021,40:329-336. doi: 10.1016/j.ensm.2021.05.018
    [63] HUANG Q Q, LI X X, ZHANG G Q, et al. Innovative thermal management and thermal runaway suppression for battery module with flame retardant flexible composite phase change material[J]. Journal of Cleaner Production,2022,330:129718. doi: 10.1016/j.jclepro.2021.129718
    [64] ZHANG J Y, LI X X, ZHANG G Q, et al. Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system[J]. Journal of Power Sources,2020,480:229116. doi: 10.1016/j.jpowsour.2020.229116
    [65] DAI X Y, KONG D P, DU J, et al. Investigation on effect of phase change material on the thermal runaway of lithium-ion battery and exploration of flame retardancy improvement[J]. Process Safety and Environmental Protection,2022,159:232-242. doi: 10.1016/j.psep.2021.12.051
    [66] YIN G Z, YANG X M, HOBSON J, et al. Bio-based poly (glycerol-itaconic acid)/PEG/APP as form stable and flame-retardant phase change materials[J]. Composites Communications,2022,30:101057. doi: 10.1016/j.coco.2022.101057
    [67] ZHANG W C, QIU J Y, YIN X X, et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material[J]. Applied Thermal Engineering,2020,165:114571. doi: 10.1016/j.applthermaleng.2019.114571
    [68] ZHAO J T, LV P Z, RAO Z H. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack[J]. Experimental Thermal and Fluid Science,2017,82:182-188. doi: 10.1016/j.expthermflusci.2016.11.017
    [69] 曲捷. 三维脉动热管传热与流动特性研究[D]. 徐州: 中国矿业大学, 2021.

    QU Jie. Study on the heat transfer and flow characteristics of three-dimensional oscillating heat pipe[D]. Xuzhou: China University of Mining and Technology, 2021(in Chinese).
    [70] PUTRA N, SANDI A F, ARIANTARA B, et al. Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles[J]. Case Studies in Thermal Engineering,2020,21:100655. doi: 10.1016/j.csite.2020.100655
    [71] ABBAS S, RAMADAN Z, PARK C W. Thermal performance analysis of compact-type simulative battery module with paraffin as phase-change material and flat plate heat pipe[J]. International Journal of Heat and Mass Transfer,2021,173:121269. doi: 10.1016/j.ijheatmasstransfer.2021.121269
    [72] ALI H M. An experimental study for thermal management using hybrid heat sinks based on organic phase change material, copper foam and heat pipe[J]. Journal of Energy Storage,2022,53:105185. doi: 10.1016/j.est.2022.105185
    [73] LENG Z Y, YUAN Y P, CAO X L, et al. Heat pipe/phase change material thermal management of Li-ion power battery packs: A numerical study on coupled heat transfer performance[J]. Energy,2022,240:122754. doi: 10.1016/j.energy.2021.122754
    [74] HUANG Q Q, LI X X, ZHANG G Q, et al. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system[J]. Applied Thermal Engineering,2018,141:1092-1100. doi: 10.1016/j.applthermaleng.2018.06.048
    [75] QU J, KE Z Q, ZUO A, et al. Experimental investigation on thermal performance of phase change material coupled with three-dimensional oscillating heat pipe (PCM/3D-OHP) for thermal management application[J]. International Journal of Heat and Mass Transfer,2019,129:773-782. doi: 10.1016/j.ijheatmasstransfer.2018.10.019
    [76] FENG L Y, ZHOU S, LI Y C, et al. Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling[J]. Journal of Energy Storage,2018,16:84-92. doi: 10.1016/j.est.2018.01.001
    [77] 王烨. 基于平板热管——相变材料复合传热系统的动力电池热管理研究 [D]. 大连: 大连理工大学, 2021.

    WANG Ye. Study on a composite power battery thermal management system based on flat heat pipe-phase change material[D]. Dalian: Dalian University of Technology, 2021(in Chinese).
    [78] YANG W, ZHOU F, LIU Y C, et al. Thermal performance of honeycomb-like battery thermal management system with bionic liquid mini-channel and phase change materials for cylindrical lithium-ion battery[J]. Applied Thermal Engineering,2021,188:116649. doi: 10.1016/j.applthermaleng.2021.116649
    [79] HEKMAT S, MOLAEIMANESH G R. Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes: An experimental investigation[J]. Applied Thermal Engineering,2020,166:114759. doi: 10.1016/j.applthermaleng.2019.114759
    [80] MEHRABI-KERMANI M, HOUSHFAR E, ASHJAEE M. A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection[J]. International Journal of Thermal Sciences,2019,141:47-61. doi: 10.1016/j.ijthermalsci.2019.03.026
    [81] LV Y F, LIU G J, ZHANG G Q, et al. A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules[J]. Journal of Power Sources,2020,468:228398. doi: 10.1016/j.jpowsour.2020.228398
    [82] AKBARZADEH M, JAGUEMONT J, KALOGIANNIS T, et al. A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles[J]. Energy Conversion and Management,2021,231:113862. doi: 10.1016/j.enconman.2021.113862
    [83] MASHAYEKHI M, HOUSHFAR E, ASHJAEE M. Development of hybrid cooling method with PCM and Al2O3 nanofluid in aluminium minichannels using heat source model of Li-ion batteries[J]. Applied Thermal Engineering,2020,178:115543. doi: 10.1016/j.applthermaleng.2020.115543
    [84] LAZRAK A, FOURMIGUÉ J F, ROBIN J F. An innovative practical battery thermal management system based on phase change materials: Numerical and experimental investigation[J]. Applied Thermal Engineering,2018,128:20-32. doi: 10.1016/j.applthermaleng.2017.08.172
    [85] CAO J H, LUO M Y, FANG X M, et al. Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study[J]. Energy,2020,191:116565. doi: 10.1016/j.energy.2019.116565
    [86] KONG D P, PENG R Q, PING P, et al. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures[J]. Energy Conversion and Management,2020,204:112280. doi: 10.1016/j.enconman.2019.112280
    [87] ZHAO Y Q, ZOU B Y, LI C, et al. Active cooling based battery thermal management using composite phase change materials[J]. Energy Procedia,2019,158:4933-4940. doi: 10.1016/j.egypro.2019.01.697
    [88] SANTHANAGOPALAN S, GUO Q, RAMADASS P, et al. Review of models for predicting the cycling performance of lithium-ion batteries[J]. Journal of Power Sources,2006,156:620-628. doi: 10.1016/j.jpowsour.2005.05.070
    [89] NING G, POPOV B N. Cycle life modeling of lithium-ion batteries[J]. Journal of Electrochemical Society,2004,151:A1584. doi: 10.1149/1.1787631
    [90] YANG Y T. Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material[J]. International Journal of Thermal Sciences,2011,51:155-162.
    [91] LING Z Y, CHEN J J, FANG X M, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system[J]. Applied Energy,2014,121:104-113. doi: 10.1016/j.apenergy.2014.01.075
    [92] GRECO A, CAO D P, JIANG X, et al. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes[J]. Journal of Power Sources,2014,257:344-355. doi: 10.1016/j.jpowsour.2014.02.004
    [93] YANG Y, CHEN L, YANG L J, et al. Numerical study of combined air and phase change cooling for lithium-ion battery during dynamic cycles[J]. International Journal of Thermal Sciences,2021,165:106968. doi: 10.1016/j.ijthermalsci.2021.106968
    [94] CHEN K, HOU J S, SONG M X, et al. Design of battery thermal management system based on phase change material and heat pipe[J]. Applied Thermal Engineering,2021,188:116665. doi: 10.1016/j.applthermaleng.2021.116665
    [95] JIN X R, DUAN X T, JIANG W J, et al. Structural design of a composite board/heat pipe based on the coupled electro-chemical-thermal model in battery thermal management system[J]. Energy,2021,216:119234. doi: 10.1016/j.energy.2020.119234
    [96] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of Electrochemical Society,1985,132(1):5-12. doi: 10.1149/1.2113792
    [97] WANG R, LIANG Z, SOURI M, et al. Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method[J]. International Journal of Heat and Mass Transfer,2022,183:122095. doi: 10.1016/j.ijheatmasstransfer.2021.122095
    [98] YI F, E J Q, ZHANG B, et al. Effects analysis on heat dissipation characteristics of lithium-ion battery thermal management system under the synergism of phase change material and liquid cooling method[J]. Renewable Energy,2022,181:472-489. doi: 10.1016/j.renene.2021.09.073
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  972
  • HTML全文浏览量:  380
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-23
  • 修回日期:  2022-09-28
  • 录用日期:  2022-10-16
  • 网络出版日期:  2022-10-24
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回