Recent progress in enhancement of physical properties of organic phase change materials and optimization of coupling thermal management of batteries
-
摘要:
有机类相变材料(PCM)以其高热能密度、合适相变范围以及优异可循环使用性成为高效而有前景的新能源汽车电池热管理策略,但在实用化过程中仍有相应不足之处应予以改善。本文从有机PCM实用物性不足出发,概括了目前复合有机PCM的制备及改进方向:添加多维高导热材料以提高热导率;添加高分子共聚物提高柔韧性;添加化学阻燃剂提高阻燃效果,分别改善了有机PCM低导热、不易加工和热失控易燃现象。同时进一步基础上评价了其与热管、液冷、空冷等散热方式耦合后对电池热管理系统强化散热效果,对电池组最高温度/最大温差改善做出系统比对。指出耦合热管散热方式,仍主要讨论形状各异的热管排布;耦合液冷和空冷的散热方式其研究侧重对不同液体和气体流道对有机PCM散热的有效增强。最后介绍了模拟仿真分析对有机PCM在电池热管理领域的验证及预测,包括不同耦合散热的影响因素及最佳使用工况的研究。最后总结了目前有机PCM用于电池热管理的进展及不足,其难点仍在于复合柔性PCM虽然可塑性强,但在室温下柔韧性不足;复合阻燃PCM能有效延缓热失控和抑制燃烧,但无法彻底解决其燃烧问题。有机PCM耦合传统散热系统的车载可靠性和循环可行性也缺乏相应探讨,为今后有机PCM用于电池热管理提出一定建议。 添加不同阻燃剂对热失控(TR)时峰值热释放率(HRR)降低对比[59,61,63-66]Comparison of reduction of peak HRR when TR occurs with different flame retardants[59,61,63-66] Abstract: To meet the demand for thermal management of lithium-ion batteries in electric vehicle, the cooling method with phase change materials (PCM) on battery modules has gradually become a research hotspot. Based on the poor physical properties of organic PCM, the preparation and improvement directions of composite organic PCM for battery thermal management (BTM) are summarized, including adding multi-dimensional materials such as carbon materials, nano-metals and metal foams to enhance the heat transfer, and adding copolymer such as polyethylene and thermoplastic elastomer to improve the flexibilities. Additionally, flame retardants such as red phosphorus and ammonium polyphosphate are used to improve the flame retardance for better practicabilities. Among them, expanded graphite, styrene-ethylene-butadiene-styrene, and the composite of red phosphorus and ammonium polyphosphate significantly improve the thermal conductivity, flexibility and flame retardancy respectively. Subsequently, the heat transfer enhancement effects of the system after coupling organic PCM with heat pipe, liquid cooling or air cooling are evaluated, indicating that various arrangements of heat pipe and appropriate flow channels of air and liquid should be considered. Then the optimal operating conditions of organic PCM used in BTM system is determined with numerical calculation. Finally, the progress and shortcomings of organic PCM used in BTM are summarized. It is pointed out that the difficulties of composite organic PCM used in BTM are still accounted for the improvement of flammability and conductivity and the insufficient flexibility of flexible organic PCM at room temperature. Furthermore, the reliability and cycle feasibility of PCM and traditional heat dissipation system in the process of vehicle use are still lack of verification. Totally, several suggestions are put forward for the application of organic PCM in BTM in the future. -
表 1 部分用于电池热管理(BTM)的有机固-液相变材料(PCM)热物性
Table 1. Thermo-physical properties of organic solid-liquid phase change materials (PCM) for battery thermal management (BTM)
PCM Thermal conductivity/(W·m−1·K−1) Latent heat/(kJ·kg−1) Phase change temperature/
℃Ref. Paraffin(PW) 0.2 255 41-44/— [20] PW 0.22 300 36/— [21] PW 0.21 200 40/— [22] Lauric acid 0.15 177 43/— [23] Myristic acid — 187 53.7/— [23] Palmitic acid 0.17 186 62.3/— [23] Stearic acid 0.17 203 70.7/— [23] Capric acid 0.15 152.7 28.9/31.9 [24] Polyethylene glycol (PEG) 600 — 146 20-25 [23] PEG 1000 0.29 142/— 35.9/29.9 [25] PEG 1500 0.31 163.4/— 48.9/42.9 [25] PEG 3400 — 171.6 56.4 [23] Tetradecanol — 205 38 [26] 1-dodecanol — 200 26 [26] 表 2 BTM用有机PCM热导率强化及其热物性
Table 2. Thermal conductivity enhancements and thermo-physical properties of organic PCM for BTM
PCM and
additivesMass fraction Thermal conductivity
of pure PCM/
(W·m−1·K−1)Thermal conductivity of
composite PCM/
(W·m−1·K−1)Phase change
temperature/
℃Latent
heat/
(kJ·kg−1)Ref. EG/PW 20∶80 0.15 1.90 — — [29] GNP/PW 20∶80 0.15 0.87 — — [29] CNT/PW 20∶80 0.15 0.37 — — [29] Graphene/PW 20∶80 0.15 0.49 — — [29] Nano-Al/PW 20∶80 0.25 0.78 53.89/49.46 282.50/281.20 [30] Nano-TiO2/PW 20∶80 0.25 0.43 54.28/50.74 283.09/280.64 [30] AlN/EG/ER/PW 20∶3∶27∶50 0.20 4.33 47.20/— 116.30 [33] EG/ER/copper foam/PW — 0.23 2.90 49.80/— 75.00 [36] sw-GS/PW 2.25∶97.75 0.19 2.58 53.50/45.40 172.50/158.90 [37] NPC-Al/PEG 2000 15∶85 0.27 0.41 54.40/— 155.30/— [38] CNT/MOFs/PEG 2000 5.16∶24.84∶70 0.30 0.46 52.40/27.40 96.20/90.10 [39] MWCNT/graphene/PW 0.3∶0.7∶99 0.39 0.87 45.30/40.80 203.80/198.00 [40] EG/PW 10∶90 0.28 6.4 39.50 187.88 [42] CNT/PW 10∶90 0.28 0.39 40.30 172.62 [42] h-BN/Na2SiO3/PW 18∶0.9∶81.1 0.12 0.85 52.30/47.90 165.40/176.10 [43] EG/aluminum foam/graphene/PW — 0.20 7.1 — — [44] NPC/myristic acid-stearic acid 12∶26.4∶61.6 0.17 0.37 49.45/— 164.33/— [45] EG/SiO2/low-density polyethylene/RT 45 7∶5.5∶30∶57.5 — 3.30 44.00 77.80 [46] Notes: EG—Expanded graphite; GNP—Graphene nanosheets; CNT—Carbon nanotubes; ER—Epoxy resin; MWCNT—Multi-walled carbon nanotubes; NPC—N-doped porous carbons; RT 45—Rubitherm 45. 表 3 BTM用有机PCM柔性强化及其热物性
Table 3. Flexibility enhancements and thermo-physical properties of organic PCM for BTM
PCM and
additivesThermal
conductivity/
(W·m−1·K−1)Phase change
temperature/
℃Latent
heat/
(kJ·kg−1)Mechanical property Ref. Test temperature/℃ Tensile and
bending
strength/MPaModulus of
elasticity/
MPaEG/SBS/TPEE/PW(5:10:5:80) 1.20(30℃) 56.7/— 172.6/— 60 0.09/— — [47] EG/TPC-et/PW(10:45:45) 1.64 46.4/— 102.0 25 0.88/0.14 — [48] EG/OBC/PW(10:45:45) 1.57 50.1/— 101.0 25 5.44/1.21 — [48] EVA/EG/PW(47.5:5:47.5) 1.70 53.0 121.0 30 0.83/0.02 — [49] SEPS/EG/PW(9.5:5:85.5) 2.67 48.0/— 211.9 50 — — [50] SBS/AlN/PW(50:15:35) 0.50 46.8 57.1 50 0.16/0.16 67.00 [51] h-BN/SEBS/PW(20:20:60) 2.80 40.1-44.3/— 148.3 — — 0.72 [52] EG/SBS/EPDM/PW(5:12:3:80) 1.25 50.9/— 133 60 0.51/— — [53] OBC/EG/PW(19:5:76) 2.34 39.5 185.4 60 — 63.90 [54] SBS/EG/PW(60:3:57) 0.88 50.6 78.3 — 0.34/0.51 — [55] EG/SEBS/PW(5:20:80) 1.23 47.4 159.2/166.5 — — — [56] OBC/EG/eicosane(20:3:80) 1.21 33.5 170.2 — — — [57] OBC/EG/tetracosane(20:3:80) 1.18 47.4 175.1 — — — [57] HDPE/EG/eicosane(20:3:80) 1.25 33.4 169.0 — — — [57] EG/silicon rubber/h-BN/PW(3:55:5:28) 0.95 47.3/— 62.7 — 0.53/— — [58] Notes: TPC-et—Copolyester thermoplastic elastomer with polyether soft segment; OBC—Olefin block copolymer; EVA—Ethylene vinylacetate; SEPS—Styrene butene propylene styrene; SEBS—Styrene ethylene butylene styrene; EPDM—Ethylene propylene diene monomer; HDPE—High density polyethylene. 表 4 部分BTM用阻燃PCM热物性及阻燃效果
Table 4. Thermo-physical properties and flame retardant effects of flame retardant PCM for BTM
PCM Flame
retardantMass fraction/
wt%Thermal
conductivity/
(W·m−1·K−1)Latent
heat/
(kJ·kg−1)Phase change
temperature/℃LOI/% Temperature
peak of TR/
℃Peak HRR before
and after
antiflaming/
(kW·m−2)Ref. OBC/EG/PW(13:5:70) AlCl3/Sb2O3/
glass fibrePadded 1.48 130.7/— 47.1/— 26.0 — 462.3/190.3 [59] Silica aerogel/PW(60:40) APP/dipentaerythritol Coated 0.05 79.2/— 39.6/— 56.3 691 — [60] Benzoyl peroxide/
EG/1,6-hexanediol diacrylate/octadecyl acrylate(4:12:6:318)Al(OH)3 15 1.26 71.5 46.1 — 639 242.5/204.4 [61] EG/SBS/PW(3:12:70) APP/phosphoric acid/ZnO 15 ~1 120.0 45.3 35.9 — 2980.0/801.0 [63] EG/ER/PW(4:50:80) APP/RP 38 1.10 81.2 45.0-48.0 27.6 — 870.9/313.1 [64] PW Aluminium trihydrate/
Mg(OH)250 — 115.0 50.0 — 364 29.0/15.5(kW) [65] PW APP 50 — 98.1 51.4 — 764 29.0/23.9(kW) [65] Polyester fiber/PEG APP 15 0.38 70.1 — 28.7 — 654.7/385.7 [66] Notes: PEG—Polyethylene glycol; APP—Ammonium polyphosphate; RP—Red phosphorus; TR—Thermal runaway; HRR—Heat release rate. 表 5 PW耦合热管BTM系统控温优化对比
Table 5. Optimization of temperature control of PW coupled with heat pipe BTM system
PCM Charge/discharge rate T1 max and ΔT1 max/℃ T2 max and ΔT2 max/℃ Ref. RT44 HC 60 W 52.8/—
(heatpipe)45.9/— [70] PW 2 W 48.3/—
(heatpipe)39.0/— [71] EG/PW 10 W 47.2/5.9
(PCM)45.1/4.7 [68] EG/PW 3 C 45.5/2.5(PCM) 44.1/1.7 [74] Copper foam/PW 5 C 52.5/4.2(PCM) 44.9/3.6 [67] Notes: T1 max and ΔT1 max—Maximum temperature and maximum temperature difference with single cooling method; T2 max and ΔT2 max—Maximum temperature and maximum temperature difference with coupled cooling method; RT44 HC—Rubitherm 44 high crystallinity. 表 6 耦合液冷或空冷后BTM系统控温优化
Table 6. Optimization of temperature control of BTM system coupled with liquid cooling or air cooling
PCM Method of coupling Charge/discharge rate T1 max and ΔT1 max/℃ T2 max and ΔT2 max/℃ Ref. h-BN/SEBS/PW Liquid cooling 5 C 52.9/7.9
(Liquid cooling)44.0/3.2 [52] PEG 1000 Liquid cooling 0.9 C 32.0/1.2(PEG 1000) 30.0/0.6 [79] Copper foam/PW Liquid cooling 12.5 W 60.0/—
(Liquid cooling)45.1/— [83] EG/RT44 HC Liquid cooling 2 C 50.0/4.1
(Liquid cooling)42.0/1.2 [85] EG/Lipin/PW Liquid cooling 3 C 45.10/—
(PCM)41.1/4.0 [86] Copper foam/RT25 HC Liquid cooling 2 C 39.00/—
(RT25 HC)25.0/1.0 [87] Aluminium foam/RT27 Air cooling 1 C — 25.6/— [82] Copper foam/PW Air cooling 5 W 46.6/—
(Air cooling)35.8/— [80] Cetane stearic acid/EG/PW Air cooling 2 C — 51.9/2.6 [81] PEG 1000 Air cooling 2 C — 37.0/— [25] Copper wire/PW Air cooling 2.45 W 43.0/—
(PCM)26.0/— [84] 表 7 BTM仿真模拟常用的3种数学物理模型
Table 7. Three kinds of mathematical and physical models commonly used in BTM simulation
Model Equation of definition Parameter Ref. Electrochemical heat
generation model$q = {R_{\rm{i}}}{I^2} - IT\dfrac{{\partial U}}{{\partial T}}$ Where Ri is the equivalent internal resistance of the battery; I is current; T is the temperature of battery; q is heat flux; U is voltage. [92] Effective heat capacity model $\rho {c_{\rm{p}}}(T)\dfrac{{\partial T}}{{\partial t}} = \lambda \dfrac{{{\partial ^2}T}}{{\partial {x^2}}}$
${c_p} = \left\{ \begin{gathered} {c_{\rm ps}},T < {T_{\rm c}} - \Delta T \\ \dfrac{L}{{2\Delta T}} + \dfrac{{{c_{\rm ps}} + {c_{\rm pl}}}}{2},{T_{\rm c}} - \Delta T \leqslant T \leqslant {T_{\rm c}} + \Delta T \\ {c_{\rm pl}},T > {T_{\rm c}} + \Delta T \\ \end{gathered} \right.$L is the liquid fraction; λ is thermal conductivity; t is time; x is distance; cps, cpl are the specific heat capacities of solid and liquid PCM respectively; ΔT is half of the phase change temperature range; Tc is the cent temperature of the phase change temperature range. [93] Enthalpy model $\begin{gathered} \rho \dfrac{{\partial H}}{{\partial t}} = \lambda \dfrac{{{\partial ^2}T}}{{\partial {x^2}}} \\ H = \int_{{T_0}}^T {{c_{\rm p}}dT} + \beta \gamma \\ \left\{ \begin{gathered} \beta = 0,T < {T_{\rm s}}{\text{ }} \\ \beta = 0,T > {T_{\rm l}} \\ \beta = \dfrac{{T - {T_{\rm s}}}}{{{T_{\rm l}} - {T_{\rm s}}}},{T_{\rm s}} < T < {T_{\rm l}} \\ \end{gathered} \right. \\ \end{gathered} $ ρ is density; H is the total enthalpy; T0 is the temperature when the enthalpy is 0 kJ·kg−1; β is the liquid fraction; γ is latent heat; Ts and Tl are the solidification and melting temperatures of PCM, respectively [94] -
[1] 邓林旺, 冯天宇, 舒时伟, 等. 锂离子电池快充策略技术研究进展[J]. 储能科学与技术, 2022, 11(9):2879-2890. doi: 10.19799/j.cnki.2095-4239.2021.0635DENG Linwang, FENG Tianyu, SHU Shiwei, et al. A review of fast charging strategy and technology for lithium-ion batteries[J]. Energy Storage Science and Technology,2022,11(9):2879-2890(in Chinese). doi: 10.19799/j.cnki.2095-4239.2021.0635 [2] LEI S R, SHI Y, CHEN G Y. A lithium-ion battery-thermal-management design based on phase-change-material thermal storage and spray cooling[J]. Applied Thermal Engineering,2020,168:114792. doi: 10.1016/j.applthermaleng.2019.114792 [3] 刘霏霏, 鲍荣清, 程贤福, 等. 服役工况下车用锂离子动力电池散热方法综述[J]. 储能科学与技术, 2021, 10(6):2269-2282.LIU Feifei, BAO Rongqing, CHENG Xianfu, et al. Review on heat dissipation methods of lithium-ion power battery for vehicles under service conditions[J]. Energy Storage Science and Technology,2021,10(6):2269-2282(in Chinese). [4] PANCHAL S, DINCER I, AGELIN-CHAAB M, et al. Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery[J]. International Journal of Heat and Mass Transfer,2017,109:1239-1251. doi: 10.1016/j.ijheatmasstransfer.2017.03.005 [5] PANCHAL S, RASHID M, LONG F, et al. Degradation testing and modeling of 200 Ah LiFePO4 battery[Z]. SAE International. 2018. [6] XU X M, HE R. Research on the heat dissipation performance of battery pack based on forced air cooling[J]. Journal of Power Sources,2013,240:33-41. doi: 10.1016/j.jpowsour.2013.03.004 [7] CHEN F F, HUANG R, WANG C M, et al. Air and PCM cooling for battery thermal management considering battery cycle life[J]. Applied Thermal Engineering,2020,173:115154. doi: 10.1016/j.applthermaleng.2020.115154 [8] YUKSEL T, LITSTER S, VISWANATHAN V, et al. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate[J]. Journal of Power Sources,2017,338:49-64. doi: 10.1016/j.jpowsour.2016.10.104 [9] LAN C J, XU J, QIAO Y, et al. Thermal management for high power lithium-ion battery by minichannel aluminum tubes[J]. Applied Thermal Engineering,2016,101:284-292. doi: 10.1016/j.applthermaleng.2016.02.070 [10] SHANG Z Z, QI H Z, LIU X T, et al. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system[J]. International Journal of Heat and Mass Transfer,2019,130:33-41. doi: 10.1016/j.ijheatmasstransfer.2018.10.074 [11] LIU J W, LI H, LI W Y, et al. Thermal characteristics of power battery pack with liquid-based thermal management[J]. Applied Thermal Engineering,2020,164:114421. doi: 10.1016/j.applthermaleng.2019.114421 [12] LIU F F, LAN F C, CHEN J Q. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling[J]. Journal of Power Sources,2016,321:57-70. doi: 10.1016/j.jpowsour.2016.04.108 [13] RAO Z H, WANG S F, WU M C, et al. Experimental investigation on thermal management of electric vehicle battery with heat pipe[J]. Energy Conversion and Management,2013,65:92-97. doi: 10.1016/j.enconman.2012.08.014 [14] 陈萌, 李静静. 脉动热管用于电动汽车锂电池散热性能试验[J]. 化工进展, 2021, 40(6):3163-3171. doi: 10.16085/j.issn.1000-6613.2020-1400CHEN Meng, LI Jingjing. Experiment on heat dissipation performance of electric vehicle lithium battery based on pulsating heat pipe[J]. Chemical Progress,2021,40(6):3163-3171(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1400 [15] ZHANG N, YUAN Y P, CAO X L, et al. Latent heat thermal energy storage systems with solid-liquid phase change materials: A review[J]. Advanced Engineering Materials,2018,20(6):1700753. doi: 10.1002/adem.201700753 [16] AHMADI Y, KIM K H, KIM S, et al. Recent advances in polyurethanes as efficient media for thermal energy storage[J]. Energy Storage Materials,2020,30:74-86. doi: 10.1016/j.ensm.2020.05.003 [17] NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: A review[J]. International Journal of Heat and Mass Transfer,2019,129:491-523. doi: 10.1016/j.ijheatmasstransfer.2018.09.126 [18] ZHANG P, XIAO X, MA Z W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy,2016,165:472-510. doi: 10.1016/j.apenergy.2015.12.043 [19] LILLEY D, LAU J, DAMES C, et al. Impact of size and thermal gradient on supercooling of phase change materials for thermal energy storage[J]. Applied Energy,2021,290:116635. doi: 10.1016/j.apenergy.2021.116635 [20] ZHANG F R, ZHAI L, ZHANG L, et al. A novel hybrid battery thermal management system with fins added on and between liquid cooling channels in composite phase change materials[J]. Applied Thermal Engineering,2022,207:118198. doi: 10.1016/j.applthermaleng.2022.118198 [21] LAMRANI B, LEBROUHI B E, KHATTARI Y, et al. A simplified thermal model for a lithium-ion battery pack with phase change material thermal management system[J]. Journal of Energy Storage,2021,44:103377. doi: 10.1016/j.est.2021.103377 [22] ZHOU Z Z, WANG D, PENG Y, et al. Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery[J]. Energy,2022,238:122081. doi: 10.1016/j.energy.2021.122081 [23] 金露, 谢鹏, 赵彦琦, 等. 基于相变材料的电动汽车电池热管理研究进展[J]. 材料导报, 2021, 35(21):21113-21126.JIN Lu, XIE Peng, ZHAO Yanqi, et al. Research progress on phase change material based thermal management system of EV batteries[J]. Materials Reports,2021,35(21):21113-21126(in Chinese). [24] VERMA A, SHASHIDHARA S, RAKSHIT D. A comparative study on battery thermal management using phase change material (PCM)[J]. Thermal Science and Engineering Progress,2019,11:74-83. doi: 10.1016/j.tsep.2019.03.003 [25] SAFDARI M, AHMADI R, SADEGHZADEH S. Numerical and experimental investigation on electric vehicles battery thermal management under new european driving cycle[J]. Applied Energy,2022,315:119026. doi: 10.1016/j.apenergy.2022.119026 [26] 王忠良, 王子晨, 陈昌建, 等. 相变材料在动力电池中的应用研究进展[J]. 硅酸盐学报, 2021, 49(6):1065-1077.WANG Zhongliang, WANG Zichen, CHENG Changjian, et al. Development on application of phase change materials in electric vehicle power batteries[J]. Journal of the Chinese Ceramic Society,2021,49(6):1065-1077(in Chinese). [27] 孙文鸽, 韩磊, 吴志根. 膨胀石墨/石蜡相变复合材料有效导热系数的数值计算[J]. 复合材料学报, 2015, 32(6):1596-1601.SUN Wen'ge, HAN Lei, WU Zhigen. Numerical calculation of effective thermal conductivity coefficients of expanded graphite/paraffin phase change composites[J]. Acta Materiae Compositae Sinica,2015,32(6):1596-1601(in Chinese). [28] 刘臣臻, 张国庆, 王子缘, 等. 膨胀石墨/石蜡复合材料的制备及其在动力电池热管理系统中的散热特性[J]. 新能源进展, 2014, 2(3):233-238. doi: 10.3969/j.issn.2095-560X.2014.03.011LIU Chenzhen, ZHANG Guoqing, WANG Ziyuan, et al. Preparation of expanded graphite/paraffin composite materials and their heat dissipation characteristics in power battery thermal management system[J]. Progress of New Energy,2014,2(3):233-238(in Chinese). doi: 10.3969/j.issn.2095-560X.2014.03.011 [29] NOH Y J, KIM H S, KU B C, et al. Thermal conductivity of polymer composites with geometric characteristics of carbon allotropes [J]. Advanced Engineering Materials,2016,18(7):1127-1132. doi: 10.1002/adem.201500451 [30] WARZOHA R J, FLEISCHER A S. Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks[J]. International Journal of Heat and Mass Transfer,2014,79:314-323. doi: 10.1016/j.ijheatmasstransfer.2014.08.009 [31] KUMAR R, MITRA A, SRINIVAS T. Role of nano-additives in the thermal management of lithium-ion batteries: A review[J]. Journal of Energy Storage,2022,48:104059. doi: 10.1016/j.est.2022.104059 [32] LI J M, TANG A K, SHAO X, et al. Experimental evaluation of heat conduction enhancement and lithium-ion battery cooling performance based on h-BN-based composite phase change materials[J]. International Journal of Heat and Mass Transfer,2022,186:122487. doi: 10.1016/j.ijheatmasstransfer.2021.122487 [33] ZHANG J Y, LI X X, ZHANG G Q, et al. Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management[J]. Energy Conversion and Management,2020,204:112319. doi: 10.1016/j.enconman.2019.112319 [34] ZHOU T L, WANG X, LIU X H, et al. Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler[J]. Carbon,2010,48(4):1171-1176. doi: 10.1016/j.carbon.2009.11.040 [35] MOEINI S M, KHODADADI J M. Thermal conductivity improvement of phase change materials/graphite foam composites[J]. Carbon,2013,60:117-128. doi: 10.1016/j.carbon.2013.04.004 [36] HE J S, YANG X Q, ZHANG G Q. A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management[J]. Applied Thermal Engineering,2019,148:984-991. doi: 10.1016/j.applthermaleng.2018.11.100 [37] LIN Y, KANG Q, WEI H, et al. Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management[J]. Nano-Micro Letters,2021,13(11):316-329. [38] ATINAFU D G, DONG W, HOU C, et al. A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials[J]. Materials Today Energy,2019,12:239-249. doi: 10.1016/j.mtener.2019.01.011 [39] WANG J J, HUANG X B, GAO H Y, et al. Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity[J]. Chemical Engineering Journal,2018,350:164-172. doi: 10.1016/j.cej.2018.05.190 [40] ZOU D Q, MA X F, LIU X S, et al. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery[J]. International Journal of Heat and Mass Transfer,2018,120:33-41. doi: 10.1016/j.ijheatmasstransfer.2017.12.024 [41] WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review[J]. Energy Storage Materials,2020,25:251-295. doi: 10.1016/j.ensm.2019.10.010 [42] 王文健. 基于复合相变材料的锂离子电池热管理系统传热强化研究[D]. 徐州: 中国矿业大学, 2018.WANG Wenjian. Investigation on the heat transfer enhancement of lithium ion battery thermal management system based on composite phase change material[D]. Xuzhou: China University of Mining and Technology, 2018(in Chinese). [43] QIAN Z C, SHEN H, FANG X, et al. Phase change materials of paraffin in h-BN porous scaffolds with enhanced thermal conductivity and form stability[J]. Energy and Buildings,2018,158:1184-1188. doi: 10.1016/j.enbuild.2017.11.033 [44] 黄菊花, 陈强, 曹铭, 等. 石蜡/膨胀石墨/石墨烯/铝蜂窝复合相变材料的制备及锂电池控温性能研究[J]. 化工新型材料, 2022, 50(2):140-144, 149. doi: 10.19817/j.cnki.issn1006-3536.2022.02.028HUANG Juhua, CHEN Qiang, CAO Ming, et al. Research on preparation of PW/EG graphite/graphene/Al honeycomb and temperature control performance of lithium battery[J]. New Chemical Materials,2022,50(2):140-144, 149(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2022.02.028 [45] ATINAFU D G, DONG W, HUANG X, et al. Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity[J]. Applied Energy,2018,211:1203-1215. doi: 10.1016/j.apenergy.2017.12.025 [46] LV Y F, SITU W F, YANG X Q, et al. A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management[J]. Energy Conversion and Management,2018,163:250-259. doi: 10.1016/j.enconman.2018.02.061 [47] HUANG Q Q, LI X X, ZHANG G Q, et al. Pouch lithium battery with a passive thermal management system using form-stable and flexible composite phase change materials[J]. ACS Applied Energy Materials,2021,4(2):1978-1992. doi: 10.1021/acsaem.0c03116 [48] WU W F, YE G H, ZHANG G Q, et al. Composite phase change material with room-temperature-flexibility for battery thermal management[J]. Chemical Engineering Journal,2022,428:131116. doi: 10.1016/j.cej.2021.131116 [49] LI S J, DONG X L, LIN X D, et al. Flexible phase change materials obtained from a simple solvent-evaporation method for battery thermal management[J]. Journal of Energy Storage,2021,44:103447. doi: 10.1016/j.est.2021.103447 [50] LIN X W, ZHANG X L, LIU L, et al. Polymer/expanded graphite-based flexible phase change material with high thermal conductivity for battery thermal management[J]. Journal of Cleaner Production,2022,331:130014. doi: 10.1016/j.jclepro.2021.130014 [51] HUANG Q Q, DENG J, LI X X, et al. Experimental investigation on thermally induced aluminum nitride based flexible composite phase change material for battery thermal management[J]. Journal of Energy Storage,2020,32:101755. doi: 10.1016/j.est.2020.101755 [52] CAO J H, WU Y, LING Z Y, et al. Upgrade strategy of commercial liquid-cooled battery thermal management system using electric insulating flexible composite phase change materials[J]. Applied Thermal Engineering,2021,199:117562. doi: 10.1016/j.applthermaleng.2021.117562 [53] HUANG Q Q, LI X X, ZHANG G Q, et al. Flexible composite phase change material with anti-leakage and anti-vibration properties for battery thermal management[J]. Applied Energy,2022,309:118434. doi: 10.1016/j.apenergy.2021.118434 [54] WU W X, LIU J Z, LIU M, et al. An innovative battery thermal management with thermally induced flexible phase change material[J]. Energy Conversion and Management,2020,221:113145. doi: 10.1016/j.enconman.2020.113145 [55] HUANG Q Q, LI X X, ZHANG G Q, et al. Thermal management of lithium-ion battery pack through the application of flexible form-stable composite phase change materials[J]. Applied Thermal Engineering,2021,183:116151. doi: 10.1016/j.applthermaleng.2020.116151 [56] RONG H Q, WANG C H, LIU X Q, et al. A novel elastomeric copolymer-based phase change material with thermally induced flexible and shape-stable performance for prismatic battery module[J]. International Journal of Thermal Sciences,2022,174:107435. doi: 10.1016/j.ijthermalsci.2021.107435 [57] HUANG Y H, CHENG W L, ZHAO R. Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials[J]. Energy Conversion and Management,2019,182:9-20. doi: 10.1016/j.enconman.2018.12.064 [58] ZHANG Y F, HUANG J H, CAO M, et al. A novel flexible phase change material with well thermal and mechanical properties for lithium batteries application[J]. Journal of Energy Storage,2021,44:103433. doi: 10.1016/j.est.2021.103433 [59] HUANG Y H, CHENG Y X, ZHAO R, et al. A high heat storage capacity form-stable composite phase change material with enhanced flame retardancy[J]. Applied Energy,2020,262:114536. doi: 10.1016/j.apenergy.2020.114536 [60] NIU J Y, DENG S Y, GAO X N, et al. Experimental study on low thermal conductive and flame retardant phase change composite material for mitigating battery thermal runaway propagation[J]. Journal of Energy Storage,2022,47:103557. doi: 10.1016/j.est.2021.103557 [61] WENG J W, XIAO C R, OUYANG D X, et al. Mitigation effects on thermal runaway propagation of structure-enhanced phase change material modules with flame retardant additives[J]. Energy,2022,239:122087. doi: 10.1016/j.energy.2021.122087 [62] LI L, XU C S, CHANG R Z, et al. Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules[J]. Energy Storage Materials,2021,40:329-336. doi: 10.1016/j.ensm.2021.05.018 [63] HUANG Q Q, LI X X, ZHANG G Q, et al. Innovative thermal management and thermal runaway suppression for battery module with flame retardant flexible composite phase change material[J]. Journal of Cleaner Production,2022,330:129718. doi: 10.1016/j.jclepro.2021.129718 [64] ZHANG J Y, LI X X, ZHANG G Q, et al. Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system[J]. Journal of Power Sources,2020,480:229116. doi: 10.1016/j.jpowsour.2020.229116 [65] DAI X Y, KONG D P, DU J, et al. Investigation on effect of phase change material on the thermal runaway of lithium-ion battery and exploration of flame retardancy improvement[J]. Process Safety and Environmental Protection,2022,159:232-242. doi: 10.1016/j.psep.2021.12.051 [66] YIN G Z, YANG X M, HOBSON J, et al. Bio-based poly (glycerol-itaconic acid)/PEG/APP as form stable and flame-retardant phase change materials[J]. Composites Communications,2022,30:101057. doi: 10.1016/j.coco.2022.101057 [67] ZHANG W C, QIU J Y, YIN X X, et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material[J]. Applied Thermal Engineering,2020,165:114571. doi: 10.1016/j.applthermaleng.2019.114571 [68] ZHAO J T, LV P Z, RAO Z H. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack[J]. Experimental Thermal and Fluid Science,2017,82:182-188. doi: 10.1016/j.expthermflusci.2016.11.017 [69] 曲捷. 三维脉动热管传热与流动特性研究[D]. 徐州: 中国矿业大学, 2021.QU Jie. Study on the heat transfer and flow characteristics of three-dimensional oscillating heat pipe[D]. Xuzhou: China University of Mining and Technology, 2021(in Chinese). [70] PUTRA N, SANDI A F, ARIANTARA B, et al. Performance of beeswax phase change material (PCM) and heat pipe as passive battery cooling system for electric vehicles[J]. Case Studies in Thermal Engineering,2020,21:100655. doi: 10.1016/j.csite.2020.100655 [71] ABBAS S, RAMADAN Z, PARK C W. Thermal performance analysis of compact-type simulative battery module with paraffin as phase-change material and flat plate heat pipe[J]. International Journal of Heat and Mass Transfer,2021,173:121269. doi: 10.1016/j.ijheatmasstransfer.2021.121269 [72] ALI H M. An experimental study for thermal management using hybrid heat sinks based on organic phase change material, copper foam and heat pipe[J]. Journal of Energy Storage,2022,53:105185. doi: 10.1016/j.est.2022.105185 [73] LENG Z Y, YUAN Y P, CAO X L, et al. Heat pipe/phase change material thermal management of Li-ion power battery packs: A numerical study on coupled heat transfer performance[J]. Energy,2022,240:122754. doi: 10.1016/j.energy.2021.122754 [74] HUANG Q Q, LI X X, ZHANG G Q, et al. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system[J]. Applied Thermal Engineering,2018,141:1092-1100. doi: 10.1016/j.applthermaleng.2018.06.048 [75] QU J, KE Z Q, ZUO A, et al. Experimental investigation on thermal performance of phase change material coupled with three-dimensional oscillating heat pipe (PCM/3D-OHP) for thermal management application[J]. International Journal of Heat and Mass Transfer,2019,129:773-782. doi: 10.1016/j.ijheatmasstransfer.2018.10.019 [76] FENG L Y, ZHOU S, LI Y C, et al. Experimental investigation of thermal and strain management for lithium-ion battery pack in heat pipe cooling[J]. Journal of Energy Storage,2018,16:84-92. doi: 10.1016/j.est.2018.01.001 [77] 王烨. 基于平板热管——相变材料复合传热系统的动力电池热管理研究 [D]. 大连: 大连理工大学, 2021.WANG Ye. Study on a composite power battery thermal management system based on flat heat pipe-phase change material[D]. Dalian: Dalian University of Technology, 2021(in Chinese). [78] YANG W, ZHOU F, LIU Y C, et al. Thermal performance of honeycomb-like battery thermal management system with bionic liquid mini-channel and phase change materials for cylindrical lithium-ion battery[J]. Applied Thermal Engineering,2021,188:116649. doi: 10.1016/j.applthermaleng.2021.116649 [79] HEKMAT S, MOLAEIMANESH G R. Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes: An experimental investigation[J]. Applied Thermal Engineering,2020,166:114759. doi: 10.1016/j.applthermaleng.2019.114759 [80] MEHRABI-KERMANI M, HOUSHFAR E, ASHJAEE M. A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection[J]. International Journal of Thermal Sciences,2019,141:47-61. doi: 10.1016/j.ijthermalsci.2019.03.026 [81] LV Y F, LIU G J, ZHANG G Q, et al. A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules[J]. Journal of Power Sources,2020,468:228398. doi: 10.1016/j.jpowsour.2020.228398 [82] AKBARZADEH M, JAGUEMONT J, KALOGIANNIS T, et al. A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles[J]. Energy Conversion and Management,2021,231:113862. doi: 10.1016/j.enconman.2021.113862 [83] MASHAYEKHI M, HOUSHFAR E, ASHJAEE M. Development of hybrid cooling method with PCM and Al2O3 nanofluid in aluminium minichannels using heat source model of Li-ion batteries[J]. Applied Thermal Engineering,2020,178:115543. doi: 10.1016/j.applthermaleng.2020.115543 [84] LAZRAK A, FOURMIGUÉ J F, ROBIN J F. An innovative practical battery thermal management system based on phase change materials: Numerical and experimental investigation[J]. Applied Thermal Engineering,2018,128:20-32. doi: 10.1016/j.applthermaleng.2017.08.172 [85] CAO J H, LUO M Y, FANG X M, et al. Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study[J]. Energy,2020,191:116565. doi: 10.1016/j.energy.2019.116565 [86] KONG D P, PENG R Q, PING P, et al. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures[J]. Energy Conversion and Management,2020,204:112280. doi: 10.1016/j.enconman.2019.112280 [87] ZHAO Y Q, ZOU B Y, LI C, et al. Active cooling based battery thermal management using composite phase change materials[J]. Energy Procedia,2019,158:4933-4940. doi: 10.1016/j.egypro.2019.01.697 [88] SANTHANAGOPALAN S, GUO Q, RAMADASS P, et al. Review of models for predicting the cycling performance of lithium-ion batteries[J]. Journal of Power Sources,2006,156:620-628. doi: 10.1016/j.jpowsour.2005.05.070 [89] NING G, POPOV B N. Cycle life modeling of lithium-ion batteries[J]. Journal of Electrochemical Society,2004,151:A1584. doi: 10.1149/1.1787631 [90] YANG Y T. Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material[J]. International Journal of Thermal Sciences,2011,51:155-162. [91] LING Z Y, CHEN J J, FANG X M, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system[J]. Applied Energy,2014,121:104-113. doi: 10.1016/j.apenergy.2014.01.075 [92] GRECO A, CAO D P, JIANG X, et al. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes[J]. Journal of Power Sources,2014,257:344-355. doi: 10.1016/j.jpowsour.2014.02.004 [93] YANG Y, CHEN L, YANG L J, et al. Numerical study of combined air and phase change cooling for lithium-ion battery during dynamic cycles[J]. International Journal of Thermal Sciences,2021,165:106968. doi: 10.1016/j.ijthermalsci.2021.106968 [94] CHEN K, HOU J S, SONG M X, et al. Design of battery thermal management system based on phase change material and heat pipe[J]. Applied Thermal Engineering,2021,188:116665. doi: 10.1016/j.applthermaleng.2021.116665 [95] JIN X R, DUAN X T, JIANG W J, et al. Structural design of a composite board/heat pipe based on the coupled electro-chemical-thermal model in battery thermal management system[J]. Energy,2021,216:119234. doi: 10.1016/j.energy.2020.119234 [96] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of Electrochemical Society,1985,132(1):5-12. doi: 10.1149/1.2113792 [97] WANG R, LIANG Z, SOURI M, et al. Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method[J]. International Journal of Heat and Mass Transfer,2022,183:122095. doi: 10.1016/j.ijheatmasstransfer.2021.122095 [98] YI F, E J Q, ZHANG B, et al. Effects analysis on heat dissipation characteristics of lithium-ion battery thermal management system under the synergism of phase change material and liquid cooling method[J]. Renewable Energy,2022,181:472-489. doi: 10.1016/j.renene.2021.09.073 -