Research progress of water responsive compound material in the field of green writing and anti-counterfeiting
-
摘要:
目的 水响应型复合材料是指在水分子作用下,其紫外吸收峰位和强度、荧光发射能够发生变化的物质,基于这类材料对水刺激的响应特征,可应用于信息记录、擦除、加密及解密,因而在绿色和安全印刷领域具有广阔的应用前景。同时水作为绿色清洁的能源,其成本低、安全、分布广,与现有喷墨打印技术相兼容,是理想的刺激响应触发剂。本文综述近五年相关文献,对基于有机小分子的水响应复合材料的研究进行总结并做出展望。 方法 总结基于有机小分子的水响应复合材料的相关研究,从水致质子转移、水致构型变化和水致质子转移诱导显色分子的构型变化等不同响应原理角度对水响应材料进行分类,归纳其在设计原理、光物理性能和信息存储应用等方面的成果和技术,并对未来水响应复合材料的研究方向进行展望。 结果 首先,我们对基于水致染料质子转移原理的复合材料进行说明,这类水响应材料分子结构中多具有邻苯二酚/苯酚或酰胺/胺等能电离出质子的官能团(包括苏丹红(III)、茜素红和偶氮衍生物等),可作为碱性阴离子(如氟离子、乙酸离子和磷酸根)的结合位点,在非质子溶剂中发生质子酸碱反应,进一步通过官能团中活泼氢的质子化和脱质子化过程实现对水分子的响应,有机分子作为含有这些官能团的母体分子也在质子转移过程中呈现颜色或发光强度的明显变化。第二,我们对基于水致构型变化原理的材料进行小结,其主要包括基于罗丹明类染料、螺吡喃类染料、恶唑烷和Stenhouse加合物(DASAs)的复合材料。对罗丹明分子结构进行适当改造,使其在酸性条件下发生内酯环开环而显示颜色或发射荧光。恶唑烷、螺吡喃和DASAs的变色行为也均发生在环形结构和共轭结构之间,但由于结构差别较大,其水响应性能也有很大不同。第三,我们梳理了基于水致质子转移诱导构型变化的复合材料,除了有机小分子本身直接参与质子给出与接受过程,也有研究者借助引入第三方质子给予体,在质子转移与水致构型变化共同作用下显色。显色组分包含显色剂和成色剂,显色剂为遇水后能作为氢键给体或者能释放出H的有机或无机化合物,成色剂多为在获得H后能发生构型变化并引起颜色变化的有机小分子染料;当失去水时,显色剂和成色剂又可逆恢复到反应前状态,伴随着颜色又恢复到起始的颜色,从而实现显色过程可逆。除此之外,我们对基于氢键和水分子作为竞争配体原理的水响应复合材料在绿色书写和防伪领域的应用也进行了介绍。 结论 本文从响应原理角度出发,对近五年来基于有机小分子的水响应复合材料进行分类,并对其在绿色书写与防伪领域中的研究成果进行了整理,归纳水响应复合材料的设计原理、光物理性能和信息存储应用成果。目前水写复合材料的研究函待解决问题包括:一、如何实现水写保持时间精密控制,改进擦除方式,如何有效降低绿色书写印刷成本,调整显色组分用量、涂层厚度和基底材料,优化制备工艺,尽快实现实际工业生产。二、深入开展水响应材料的防伪机理研究,加密信息的存储和读取方式,要适应信息化产业不断革命的现状。同时,由于水响应复合材料自身特性,其在湿度传感、信息存储、离子检测、pH值测定、溶剂水检测和指纹识别等领域同样具有十分广阔的应用前景。 Abstract: Water stimulus responsive materials can undergo reversible color or fluorescence emission change process under the external stimulus of water. Because of its low cost, non-toxic, compatibility with existing inkjet printing technology and other advantages, it is an ideal choice to achieve rewritable. Meanwhile, it shows great application potential in information storage, security and anti-counterfeiting. In this review, the research progress of water responsive compound material based on organic small molecules in the past five years is systematically reviewed. Inductive materials are classified from the viewpoints of water induced proton transfer, water induced configuration change, water induced proton transfer combined with configuration change sensing principle. The achievements and technologies in design principles, optical physical properties and information storage applications are summarized. It is hoped to provide ideas for further developing the application of water responsive composites in the field of green writing and anti-counterfeiting, promoting the development of related industries. -
图 2 (a) 苏丹红(III) (1)和茜素红(2)的化学结构式;(b) 使用无墨水水笔在加入苏丹红(III).F的纸张上进行文本写入和擦除循环,文本信息在50℃温度下可被擦除[20]
Figure 2. (a) Structures of Sudan-III (1) and alizarin red S (2); (b) Rewritable (write and erase) text cycles carried out by ink-less water pen on paper incorporated with Sudan-III.F and the text erased by the temperature at 50℃[20]
图 3 (a) 基于质子转移机制的喷水重写纸(WJRP)氢致变色二元体系示意图;(b) 基于“SA-P (SA=2, 2'-双 (对甲苯磺酰胺基)-偶氮苯;P=H2PO4−)”的喷水打印可重写纸的结构示意图(i)和在WJRP上由EPSON L1119水打印的的打印文本图像(ii)[21]
Figure 3. (a) Schematic illustration of the hydrochromic binary system for water-jet rewritable paper (WJRP) based on deprotonation and protonation mechanism in this work; (b) Schematic illustrations of structure of water jet print rewritable paper based on SA-P (SA=2, 2'-bis 4-methylbenzenesulfonamido azobenzene, P= H2PO4−) (i) and image of print text on WJRP printed by EPSON L1119 with water (ii)[21]
PEG—Polyethylene glycol
图 4 (a) 吲哚衍生偶氮苯化合物1~3的化学结构式;(b) 使用无墨水笔在加入偶氮苯酚类化合物(1-F)的纸张上进行文本写入和擦除循环,文本信息在60°C温度下可被擦除[22]
Figure 4. (a) Structures of indole-derived azobenzene compounds 1-3; (b) Rewritable (write and erase) text cycles carried out by a fountain pen filled with water on paper incorporated with azophenols (1-F) and the text erased by the temperature at 60℃[22]
图 7 (a) 2, 5-二羟基对苯二甲酸二乙酯(DDT)在氟离子存在下形成DDT-F;(b) 环境光和紫外线(365 nm)下DDT和DDT-F的照片(i);DDT-F在无墨书写纸上的图像:(ii)未经PEG处理;(iii) 经PEG处理(ONOM字符通过一支蘸水的刷子书写)[25]
Figure 7. (a) Formation of DDT-F in the presence of the fluoride anion; (b) Photographs of DDT and DDT-F under ambient and UV lights (365 nm) (i); Images on inkless writing paper (Whatman No.2 filter paper) containing DDT-F without (ii) and with PEG treatment (iii) on the filter paper (The letters of ONOM were written with a brush containing water)[25]
DDT—2,5-dihydroxyterephthalate
图 8 (a) 氨基罗丹明(NH2-RhB)[26]和丙氨基罗丹明(Pr-N-RhB)[27]的合成方法和水刺激构型化示意图;(b) 照片、相应的紫外可见吸收光谱、荧光图像(在365 nm紫外光下)和CH3CN-H2O溶液(1×10−5 mol/L)中Pr-N-RhB的荧光发射光谱,其荧光强度随含水量的增加而增加(0%至90%,按体积计)[27];(c) 结合Pr-N-RhB双模氢致变色染料和NH2-RhB可见氢致变色颜料的“两级加密”防伪图像[27]
Figure 8. (a) Schematic of the synthesis method and water-stimulated isomerization of NH2-RhB (3-NH2-rhodamine B)[26] and Pr-N-RhB (aminopropylrhodamine)[27]; (b) Photographs, corresponding UV-Vis absorption spectra, fluorescence images (under 365 nm UV light) and fluorescence emission spectra of Pr-N-RhB in CH3CN-H2O binary solutions (1×10−5 mol/L) with increasing the water content (0% to 90%, by volume)27]; (c) Demonstration of "two-level encryption" with the dual-mode hydrochromic dye of Pr-N-RhB and visible hydrochromic dye of NH2-RhB27]
图 9 (a) 噁唑烷螺吡喃复合物1的结构设计和每个亚单位的变色构型化图解;(b) 通过纯水喷射打印在可擦写纸上显示的多色图像示例,其中纯水用于蓝色,咪唑乙醇溶液与紫外线照射相结合用于黄色,紫外线照射仅用于洋红色[29]
Figure 9. (a) Illustration of the structural design for oxazolidines-spiropyrans complex 1 and the color-changing isomerizations for each subunit; (b) Examples of muliticolor images displayed on the rewritable paper by water-jet printing with pure water for the blue color, a combination of an ethanol solution of imidazole with UV irradiation for the yellow color, and UV irradiation only for the magenta color[29]
OX—Oxazolidines; SP—Spiropyrans; hv—Irradiation with light; WJP—Water jet paper
图 10 (a) 水和热引发的光致变色分子(DASAs)和噁唑烷(OXs)分子构型化示意图;环状DASA·xH2O和线性DASAs的UV-Vis光谱;封闭OXs和开放OXs的UV-Vis光谱;(b) 在双重加密模式下通过加热将狗转换为猫的照片[30]
Figure 10. (a) Schematic illustration of molecular isomerization of DASAs (donor-acceptor stenhouse adducts) and OXs (oxazolidines) triggered by water and heat; UV-Vis spectra of cyclic DASA·xH2O and linear DASAs (The absorbance at 550 nm is normalized ([DASAs] = 0.04 mmol/L in DMSO-d6)); UV-Vis spectra of closed OXs and open OXs (The absorbance at 346 nm is normalized ([OXs] = 0.04 mmol/L in DMSO-d6)); (b) Photographic images of switching the dog to cat profile by heat in double-encryption mode[30]
图 14 (a) 基于酸致变色染料 (ODB-2) 和4-羟基苯甲酸苄酯 (B4 H)的喷水重写纸(WJRP)结构和组成(虚线:氢键);(b) 水打印前后基于聚对苯二甲酸乙二醇酯(PET)基材的WJRP;(c) 其他WJRPs颜色[36]
Figure 14. (a) Preliminary structure of water-jet rewritable paper (WJRP) and the composition of this hydrochromic system in the imaging layer of WJRP (Dashed line: H-bonding); (b) WJRP based on polyethylene glycol terephthalate (PET) substrate before and after printed with water; (c) Other colours for WJRPs based on binary systems[36]
TFR—Fluorans; TFO—Fluorans; OXL—Spirooxazines; TFG—Fluorans; CVL—Triarylmethanes
图 15 (a) 在环境光和紫外光下,用纯水作为墨水在纸上书写图案的照片;(b) 可重写纸在多级安全信息中的应用; (c) 可重写纸在数据存储中的应用[37]
Figure 15. (a) Photographs of patterns written on the paper by using pure water as ink under ambient light and UV light; (b) Application of the produced rewritable paper in multilevel security information; (c) Application of the produced rewritable paper in data store [37]
图 16 (a) 三联吡啶配体NUPT1、NUPT2的结构式,NUPT3-Zn配合物结构;(b) 基于NUPT3-Zn配合物的可复写纸喷水无墨打印和擦除过程示意图[38]
Figure 16. (a) Structural formula of terpyridine derivatives NUPT1, NUPT2, NUPT3-Zn complex structure; (b) Schematic diagram of water jet inkless printing and erasing process of reproducible paper based on NUPT3-Zn complex[38]
-
[1] WANG Y Y, ZHANG Y M, ZHANG S X A. Stimuli-induced reversible proton transfer for stimuli-responsive materials and devices[J]. Accounts of Chemical Research,2021,54(9):2216-2226. doi: 10.1021/acs.accounts.1c00061 [2] KHAZI M I, JEONG W, KIM J M. Functional materials and systems for rewritable paper[J]. Advanced Materials,2018,30(15):1705310. doi: 10.1002/adma.201705310 [3] QIN T, SHENG L, ZHANG S X A. Highly tunable multicolor water-jet rewritable paper based on simple new-type dual addressable oxazolidines[J]. ACS Applied Material & Interfaces,2018,10(47):40838-40843. doi: 10.1021/acsami.8b13660 [4] GARCIA-AMOROS J, SWAMINATHAN S, RAYMO F M. Saving paper with switchable ink[J]. Dyes and Pigments,2014,106:71-73. doi: 10.1016/j.dyepig.2014.02.019 [5] GONTANI S, OHASHI T, MIYANAGA K, et al. Structural comparison of two bisphenol S derivatives used as colour developers in high-performance thermal paper[J]. Dyes and Pigments,2017,139:549-555. doi: 10.1016/j.dyepig.2016.12.049 [6] WANG W T, ZHOU Y C, YANG L, et al. Stimulus-responsive photonic crystals for advanced security[J]. Advance Functional Materials,2022,32(40):2204744. doi: 10.1002/adfm.202204744 [7] WANG H H, SUN L Y. Materials and society: Functional chemicals and materials in banknote and security paper[J]. Accounts of Materials Research,2021,2(1):1-6. doi: 10.1021/accountsmr.0c00071 [8] YOON B, SHIN H, KANG E M, et al. Inkjet-compatible single-component polydiacetylene precursors for thermochromic paper sensors[J]. ACS Applied Materials & Interfaces,2013,5(11):4527-4535. doi: 10.1021/am303300g [9] GARAI B, MALLICK A, BANERJEE R. Photochromic metal-organic frameworks for inkless and erasable printing[J]. Chemistry Science,2016,7(3):2195-2200. doi: 10.1039/C5SC04450B [10] MA Y, SHEN L, SHE P F, et al. Constructing multi-stimuli-responsive luminescent materials through outer sphere electron transfer in ion pairs[J]. Advanced Optical Materials,2019,7(8):1801657. doi: 10.1002/adom.201801657 [11] YANG G J, DING J L, YANG B G, et al. Highly stretchable electrochromic hydrogels for use in wearable electronic devices[J]. Journal of Materials Chemistry,2019,7(31):9481-9486. doi: 10.1039/c9tc02673h [12] ZHANG W R, ZHANG Y M, XIE F L, et al. A single-pixel RGB device in a colorful alphanumeric electrofluorochromic display[J]. Advance Materials,2020,32(37):2003121. doi: 10.1002/adma.202003121 [13] ZHANG T, SHENG L, LIU U N, et al. Photoinduced proton transfer between photoacid and pH-sensitive dyes: Influence factors and application for visible-light-responsive rewritable paper[J]. Advance Functional Materials,2018,28(16):1705532. doi: 10.1002/adfm.201705532 [14] DU J H, SHENG L, CHEN Q N, et al. Simple and general platform for highly adjustable thermochromic fluorescent materials and multi-feasible applications[J]. Materials Horizons,2019,6(8):1654-1662. doi: 10.1039/C9MH00253G [15] LIU S Y, MA Y, LIU S J, et al. Achieving multiple emission states and controllable response behavior in thermochromic luminescent materials for security applications[J]. Journal of Materials Chemistry C,2020,8(31):10798-10804. doi: 10.1039/C9TC06627F [16] HAI J, WANG H, SUN P P, et al. Smart responsive luminescent aptamer-functionalized covalent organic framework hydrogel for high-resolution visualization and security protection of latent fingerprints[J]. ACS Applied Materials & Interfaces,2019,11(47):44664-44672. doi: 10.1021/acsami.9b18251 [17] YU X Y, WU L Z, YANG D, et al. Hydrochromic CsPbBr3 nanocrystals for anti-counterfeiting[J]. Angewandte Chemie-International Edition,2020,59(34):14527-14532. doi: 10.1002/anie.202005120 [18] 佘鹏飞. 智能响应型光功能材料的设计、合成及其在可擦除与安全打印中的应用研究[D]. 南京: 南京邮电大学, 2020.SHE Pengfei. The design and synthesis of smart responsive optical functional materials for rewritable and security printing[D]. Nanjin: Nanjing University of Posts and Telecommunications, 2020(in Chinese). [19] MA Y, YU Y X, LI J G, et al. Stimuli-responsive photofunctional materials for green and security printing[J]. InfoMat,2021,3(1):82-100. doi: 10.1002/inf2.12125 [20] KUMAR P, SAKLA R, GHOSH A, et al. A reversible colorimetric sensor for moisture detection in organic solvents and application in ink-less writing[J]. ACS Applied Materials & Interfaces,2017,9(30):25600-25605. doi: 10.1021/acsami.7b05335 [21] WU P, REN H. Azobenzene with sulfonamide group deprotonated by green developer for moisture detection and water jet rewritable paper[J]. Dyes and Pigments,2021,196:109764. doi: 10.1016/j.dyepig.2021.109764 [22] YANG X F, ZHU F Q, LI Y X, et al. Three indole derived azo-azomethine dyes as effective chemosensors for F− ion and trace water detection[J]. Bulletin of the Chemical Society of Japan,2021,93(7):870-879. doi: 10.1246/bcsj.20200003 [23] DONG C, HAO J C. Synthesis of a new functionalized phenol and use as ink-free rewriting[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,583:123856. doi: 10.1016/j.colsurfa.2019.123856 [24] NANDI S K, HALDAR D. 1-m-nitrobenzoyl semicarbazide: Reversible colorimetric cascade indicators for fluoride and moisture[J]. New Journal of Chemistry,2020,44(40):17523-17530. doi: 10.1039/D0NJ03769A [25] CHO E, LEE T S. Manipulation of intramolecular hydrogen bonds in single-benzene derivatives: Esterase sensing, fluorescence patterning, and inkless writing[J]. Sensors & Actuators B: Chemical,2020,319:128307. doi: 10.1016/j.snb.2020.128307 [26] XI G, SHENG L, ZHANG I, et al. Endowing hydrochromism to fluorans via bioinspired alteration of molecular structures and microenvironments and expanding their potential for rewritable paper[J]. ACS Applied Materials & Interfaces,2017,9(43):38032-38041. doi: 10.1021/acsami.7b12363 [27] JU L, GAO W B, ZHANG J Y, et al. A new absorption/fluorescence dual-mode hydrochromic dye for water-jet printing and anti-counterfeiting applications[J]. Journal of Materials Chemistry C,2020,8(8):2806-2811. doi: 10.1039/C9TC06522A [28] 卫小燕, 张金艳, 盛兰, 等. Off-on/on-off 双模式水致变色材料: 水诱导微环境酸度改变调控罗丹明衍生物颜色切换[J]. 应用化学, 2022, 39(7):1119-1128.WEI Xiaoyan, ZHANG Jinyan, SHENG Lan, et al. Off-on/on-off dual-mode hydrochromic materials: Water-induced acidity changes in the microenvironment regulate the color switching of rhodamine derivatives[J]. Chinese Journal of Applied Chemistry,2022,39(7):1119-1128(in Chinese). [29] QIN T Y, HAN J Q, GENG Y, et al. A multi-addressable dyad with switchable cyan/magenta/yellow colors for full color rewritable papers[J]. Chemistry A European Journal,2018,24(48):12448. doi: 10.1002/chem.201803545 [30] ZHAO H Q, QIN X C, ZHAO L, et al. Invisible inks for secrecy and anticounterfeiting: From single to double-encryption by hydrochromic molecules[J]. ACS Applied Materials & Interfaces,2020,12(7):8952-8960. doi: 10.1021/acsami.0c00462 [31] SHENG L, LI M J, ZHU S Y, et al. Hydrochromic molecular switches for water-jet rewritable paper[J]. Nature Communications,2014,5:3044. doi: 10.1038/ncomms4044 [32] KARIMIPOUR K, KEYVAN RAD J, GHOMI A R, et al. Hydrochromic and photoswitchable polyacrylic nanofibers containing spiropyran in eco-friendly ink-free rewriteable sheets with responsivity to humidity[J]. Dyes and Pigments,2020,175:108185. doi: 10.1016/j.dyepig.2020.108185 [33] 李建华, 王洪泽, 盛兰, 等. 无墨喷水可重复打印纸工业化制备[J]. 应用化学, 2018, 35(6):679-686. doi: 10.11944/j.issn.1000-0518.2018.06.170142LI Jianhua, WANG Hongze, SHEN Lan, et al. Industrial preparation of water jet rewritable paper[J]. Chinese Journal of Applied Chemistry,2018,35(6):679-686(in Chinese). doi: 10.11944/j.issn.1000-0518.2018.06.170142 [34] 高文彬. 基于吲哚并噁唑啉的水致变色材料的开发及应用[D]. 长春: 吉林大学, 2019.GAO Wenbin. The development and application of hydrochromic material based on indolino-oxazolidine[D]. Changchun: Jilin University, 2019(in Chinese). [35] 盛兰, 席冠, 张晓安, 等. 一种可重复使用的水写纸: 中国专利, ZL 201510824186[P]. 2017-07-28.SHEN Lan, XI Guan, ZHANG Xiaoan, et al. A reusable water writing pape: Chinese patent, ZL 201510824186[P]. 2017-07-28(in Chinese). [36] XI G, SHENG L, DU J H, et al. Water assisted biomimetic synergistic process and its application in water-jet rewritable paper[J]. Nature Communications,2018,9:4819. doi: 10.1038/s41467-018-07211-z [37] SUN H, SUN S S, HAN F F, et al. Water-stimuli-responsive dynamic fluorescent switch from Kasha's rule to anti-Kasha's rule based on a tetraphenylethene substituted Schiff base[J]. Chemical Engineering Journal,2021,405:127000. doi: 10.1016/j.cej.2020.127000 [38] MA Y, SHE P F, ZHANG K Y, et al. Dynamic metal-ligand coordination for multicolour and waterjet rewritable paper[J]. Nature Communications,2018,9:3. doi: 10.1038/s41467-017-02452-w [39] SAKAI R, BARASA E B, SAKAI N, et al. Colorimetric detection of anions in aqueous solution using poly(phenylacetylene) with sulfonamide receptors activated by electron withdrawing group[J]. Macromolecules,2012,45(20):8221-8227. doi: 10.1021/ma301767g [40] KUMAR P, KAUSHIK R, GHOSH A, et al. Detection of moisture by fluorescent OFF-ON sensor in organic solvents and raw food products[J]. Analytical Chemistry,2016,88(23):11314-11318. doi: 10.1021/acs.analchem.6b03949 [41] YOON S A, HYUN OH J, KIM S K, et al. Water-sensitive ratiometric fluorescent probes and application to test strip for rapid and reversible detection of water[J]. Dyes and Pigments,2019,165:421-428. doi: 10.1016/j.dyepig.2019.02.052 [42] YOO H, KIM H S. Real-time colorimetric water content monitoring of organic solvents by an azo dye incorporated into AlPO4-5 nanochannel[J]. Journal of Materials Chemistry C,2019,7(24):7336-7343. doi: 10.1039/C9TC01767D [43] WU Y C, JI J Q, ZHOU Y B, et al. Ratiometric and colorimetric sensors for highly sensitive detection of water in organic solvents based on hydroxyl-containing polyimide fluoride complexes[J]. Analytica Chimica Acta,2020,1108:37-45. doi: 10.1016/j.aca.2020.02.043 [44] WANG J, ZHANG X M, LIU H B. Highly sensitive pyrene-dansyl conjugate-based fluorescent sensor for discriminative detection of water in organic solvents[J]. Dyes and Pigments,2020,182:108685. doi: 10.1016/j.dyepig.2020.108685 [45] HUANG J, LIANG Y H, LIU H B, et al. N-hydroxypropyl substituted 4-hydroxynaphthalimide: Differentiation of solvents and discriminative determination of water in organic solvents[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2021,253:119559. doi: 10.1016/j.saa.2021.119559 [46] WU P, REN H, HAN D D, et al. Effects of chemical equilibrium on Cu2+ colorimetric probe based on azobenzene with ortho amino and sulfonamide group[J]. Journal of Molecular Structure,2021,1244:130959. doi: 10.1016/j.molstruc.2021.130959 [47] WU F Y, WANG L Y, TANG H, et al. Excited state intramolecular proton transfer plus aggregation-induced emission-based diketopyrrolopyrrole luminogen: Photophysical properties and simultaneously discriminative detection of trace water in three organic solvents[J]. Analyst Chemistry,2019,91(8):5261-5269. doi: 10.1021/acs.analchem.9b00032 [48] TAN J Y, WANG X Y, ZHANG Q, et al. Chalcone based ion-pair recognition towards nitrates and the application for the colorimetric and fluorescence turn-on determination of water content in organic solvents[J]. Sensors and Actuators B: Chemical,2018,260:727-735. doi: 10.1016/j.snb.2017.12.186 [49] KUMAR P, GHOSH A, JOSE D A. Chemical sensors for water detection in organic solvents and their applications[J]. ChemistrySelect,2021,6(4):820-842. doi: 10.1002/slct.202003920 [50] PAPAZOI E, DOUVSLI A, DIAMANTIS S A, et al. Unravelling the mechanism of water sensing by the Mg2+ dihydroxy-terephthalate MOF (AEMOF-1')[J]. Molecular Systems Design & Engineering,2020,5(2):461-468. doi: 10.1039/c9me00098d [51] WU P, REN H, HAN D D, et al. The colorimetric sensor based on azobenzenes with sulfonamide group for fluorine ion and moisture detection in organic solvents[J]. ChemistrySelect,2022,7(23):e202200992. doi: 10.1002/slct.202200992 [52] KUMAR P, GHOSH A, JOSE D A. A simple colorimetric sensor for the detection of moisture in organic solvents and building materials: Applications in rewritable paper and fingerprint imaging[J]. Analyst,2019,144(2):594-601. doi: 10.1039/C8AN01042K -