留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁性颗粒感应加热原位固化的碳纤维复合材料加筋板力学性能

许玉荣 胡夏芬 孙澳 梁纪秋 武丹 郝磊 魏俊杰 李毅超

许玉荣, 胡夏芬, 孙澳, 等. 基于磁性颗粒感应加热原位固化的碳纤维复合材料加筋板力学性能[J]. 复合材料学报, 2024, 42(0): 1-9.
引用本文: 许玉荣, 胡夏芬, 孙澳, 等. 基于磁性颗粒感应加热原位固化的碳纤维复合材料加筋板力学性能[J]. 复合材料学报, 2024, 42(0): 1-9.
XU Yurong, HU Xiafen, SUN Ao, et al. Mechanical performance of stiffened CFRP panel cured via magnetic particle-induced in-situ heating[J]. Acta Materiae Compositae Sinica.
Citation: XU Yurong, HU Xiafen, SUN Ao, et al. Mechanical performance of stiffened CFRP panel cured via magnetic particle-induced in-situ heating[J]. Acta Materiae Compositae Sinica.

基于磁性颗粒感应加热原位固化的碳纤维复合材料加筋板力学性能

基金项目: 2023年湖北省重大攻关项目(JD) (2023BAA004)
详细信息
    通讯作者:

    李毅超,博士,副教授,研究方向为航空航天复合材料的多功能化与制备成型 E-mail: liyichao@hust.edu.cn

  • 中图分类号: TB332

Mechanical performance of stiffened CFRP panel cured via magnetic particle-induced in-situ heating

Funds: Major Program (JD) of Hubei Province (2023BAA004)
  • 摘要: 随着碳纤维复合材料结构呈现出大型化、复杂化的发展趋势,常规的烘箱或热压罐成型工艺暴露出尺寸受限、成型周期长、能量利用率低、固化不均匀等问题,亟需探寻新型的复合材料成型工艺。本文以锰锌铁氧体作为加热载体,探究了一种基于电磁感应原位加热的碳纤维复合材料固化成型新工艺。着重研究了T字型与工字型两种复杂铺层的碳纤维复合材料加筋板的加热特性、力学性能与孔隙率,并与经烘箱固化的试样件进行了对比分析。结果显示,电磁感应方法对两种结构加筋板均可以实现原位、均匀、温度可控,且不受铺层角度影响的加热与固化成型。在添加13wt%锰锌铁氧体电磁加热5.5 h条件下,T字型加筋板的弯曲刚度较相同固化时间下烘箱成型试样件提升了5.2%,最大承载载荷提升了11.2%。工字型加筋板的屈曲载荷较烘箱成型试样件提升了3.3%。然而两种加筋板的孔隙率却略微增加了0.4%与0.3%。本文获得的研究结果为电磁感应固化工艺在复合材料结构成型方面的工程化应用提供了重要依据。

     

  • 图  1  (a) T型结构加筋板的横截面尺寸及铺层角度;(b) 工字型加筋板的横截面尺寸及铺层角度

    Figure  1.  Cross-section geometry and ply sequence of T-shaped (a) and I-shaped (b) stiffened panel

    图  2  (a) 碳纤维复合材料加筋板制作过程铺层方法示意图;(b) 实物图

    Figure  2.  (a) Stacking sequence for the fabrication of CFRP stiffened panel; (b) Prepared real picture

    图  3  (a) 电磁感应加热原理图;(b)装置实物图

    Figure  3.  (a) Mechanism of induction heating method; (b) Real picture of the experimental setup

    图  4  在有(a)无(b)磁性颗粒条件下T字型试样件电磁加热升温曲线图以及不同升温时刻试样表面温度场分布图

    Figure  4.  Induction heating curves and temperature fields of T-shape sample with (a) and without (b) magnetic particles

    图  5  T字型加筋板单元切分法及相关参数标注

    Figure  5.  Segmentation labeling of T-shaped stiffened panel

    di—Distance from component i’s central axis to panel’s neutral axis; bi—Width of component i; ti—Thickness of component i

    图  6  经烘箱固化和电磁感应加热固化的T型加筋板三点弯曲载荷-位移曲线

    Figure  6.  Load-displacement curve of three-points bending of T-shaped stiffened panel cured by oven heating and induction heating

    图  7  T型加筋板在烘箱固化与电磁固化条件下弯曲刚度对比图

    Figure  7.  Flexural stiffness of T-shaped stiffened panel cured by oven heating and induction heating

    图  8  经烘箱固化和电磁感应加热固化的T型加筋板弯曲最大载荷与载荷最大处对应位移

    Figure  8.  Maximum bending load and displacement of T-shaped stiffened panel cured by oven heating and induction heating

    图  9  经电磁感应加热固化(a)和烘箱固化(b)的T字型加筋板试样失效特征对比图

    Figure  9.  Failure characteristics of T-shaped stiffened panel cured by induction heating (a) and oven heating (b)

    图  10  工字型加筋板单元切分法及相关参数标注

    Figure  10.  Segmentation labeling of I-shaped stiffened panel

    di: Distance from component i’s central axis to panel’s neutral axis;bi: Width of component i; ti: Thickness of component i.

    图  11  经烘箱固化和电磁感应加热固化的工字型加筋板三点弯曲载荷-位移曲线

    Figure  11.  Load-displacement curve of three-points bending of I-shaped stiffened panel cured by oven heating and induction heating

    图  12  经烘箱固化和电磁感应加热固化的工字型加筋板弯曲最大载荷与载荷最大处对应位移

    Figure  12.  Maximum bending load and displacement of I-shaped stiffened panel cured by oven heating and induction heating

    图  13  经电磁感应加热固化(a)和烘箱固化(b)的工字型加筋板试样失效特征对比图

    Figure  13.  Failure characteristics of I-shaped stiffened panel cured by induction heating (a) and oven heating (b)

    图  14  T字型加筋板与工字型加筋板在两种固化工艺后的孔隙率结果图

    Figure  14.  Porosity of T-shaped and I-shaped stiffened panel cured by oven heating and induction heating

    表  1  实验相关参数

    Table  1.   Parameters used in the experiment

    SampleTypeLoadingCuring
    time
    Curing method
    MPs-CFRPT13 wt%5.5 hInduction heating:
    0.7 mT(4 h)-0.9 mT(1.5 h)
    Oven heating:
    70°C(4 h)-120°C(1.5 h)
    I
    下载: 导出CSV

    表  2  T字型加筋板不同分割单元相关参数

    Table  2.   Parameters of different segments of T-shaped stiffened panel

    No.b/mmt/mmd/mmEb/GPa
    1202.49.675.5
    2701.2113.35
    3702.42.862.1
    Notes: d—Distance from component i’s central axis to panel’s neutral axis; B—Width of component i; t—Thickness of component i; Eb—Flexural modulus of component i.
    下载: 导出CSV

    表  3  T字型加筋板不同分割单元相关参数

    Table  3.   Parameters of different segments of I-shaped stiffened panel

    No. b/mm t/mm d/mm Eb/GPa
    1 20 1.2 18.1 91.64
    2 20 1.2 16.9 13.35
    3 20 2.4 6.3 75.5
    4 70 1.2 4.3 13.35
    5 70 2.4 6.1 62.1
    下载: 导出CSV
  • [1] LIN K. Y. Composite Materials: Materials, Manufacturing, Analysis, Design and Repair[M], CreateSpace Independent Publishing Platform, 2015.
    [2] BARBERO E. J. Introduction to Composite Materials Design, Third Edition[M], CRC Press, 2017.
    [3] COLLINSON M G, BOWER M P, SWAIT T J, et al. Novel composite curing methods for sustainable manufacture: A review[J]. Composites Part C: Open Access, 2022, 9: 100293. doi: 10.1016/j.jcomc.2022.100293
    [4] Yang Z L, LEE S. Optimized curing of thick section composite laminates[J]. MATERIALS AND MANUFACTURING PROCESSES, 2001, 16(4): 541-560. doi: 10.1081/AMP-100108526
    [5] ZHOU Jing, LI Yingguang, ZHU Zexin, et al. Microwave heating and curing of metal-like CFRP laminates through ultrathin and flexible resonance structures[J]. Composites Science and Technology, 2022, 218: 109200. doi: 10.1016/j.compscitech.2021.109200
    [6] LI Shengping, LI Yingguang, ZHOU Jing, et al. Improvement of Heating Uniformity by Limiting the Absorption of Hot Areas in Microwave Processing of CFRP Composites[J]. Materials, 2021, 14(24): 7769. doi: 10.3390/ma14247769
    [7] COLLINSON M G, SWAIT T J, BOWER M P, et al. Development and implementation of direct electric cure of plain weave CFRP composites for aerospace[J]. Composites Part A: Applied Science and Manufacturing, 2023, 172: 107615. doi: 10.1016/j.compositesa.2023.107615
    [8] LIU Yi, van Vliet T, TAO Yinping, et al. Sustainable and self-regulating out-of-oven manufacturing of FRPs with integrated multifunctional capabilities[J]. Composites Science and Technology, 2020, 190: 108032. doi: 10.1016/j.compscitech.2020.108032
    [9] LIU Shuting, LI Yingguang, SHEN Yan, et al. Mechanical performance of carbon fiber/epoxy composites cured by self-resistance electric heating method[J]. International journal of advanced manufacturing technology, 2019, 103(9-12): 3479-3493. doi: 10.1007/s00170-019-03707-0
    [10] LUNDSTRÖM F, FROGNER K, ANDERSSON M. A numerical model to analyse the temperature distribution in cross-ply CFRP during induction heating[J]. Composites Part B: Engineering, 2020, 202: 108419. doi: 10.1016/j.compositesb.2020.108419
    [11] LUNDSTRÖM F, FROGNER K, ANDERSSON M. Numerical modelling of CFRP induction heating using temperature-dependent material properties[J]. Composites Part B: Engineering, 2021, 220: 108982. doi: 10.1016/j.compositesb.2021.108982
    [12] SEGRETO T, BOTTILLO A, PALMIERI B, et al. Ultrasonic evaluation of induction heat treatment applied to thermoplastic matrix CFRP[J]. Procedia CIRP, 2020, 88: 467-472. doi: 10.1016/j.procir.2020.05.081
    [13] GROUVE W, VRUGGINK E, SACCHETTI F, et al. Induction heating of UD C/PEKK cross-ply laminates[J]. Procedia Manufacturing, 2020, 47: 29-35. doi: 10.1016/j.promfg.2020.04.112
    [14] KIDANGAN R T, UNNIKRISHNAKURUP S, KRISHNAMURTHY C V, et al. The influence of interlaminar microstructure on the induction heating patterns of CFRP laminates[J]. Materials Today Communications, 2022, 33: 104338. doi: 10.1016/j.mtcomm.2022.104338
    [15] BAYERL T, DUHOVIC M, MITSCHANG P, et al. The heating of polymer composites by electromagnetic induction – A review[J]. Composites Part A: Applied Science and Manufacturing, 2014, 57: 27-40. doi: 10.1016/j.compositesa.2013.10.024
    [16] LIU Changwei, QU Chunyang, HAN Lei, et al. Preparation of carbon fiber-reinforced polyimide composites via in situ induction heating[J]. HIGH PERFORMANCE POLYMERS, 2017, 29(9): 1027-1036. doi: 10.1177/0954008316667789
    [17] 付天宇, 许家忠, 赵辉, 等. CFRP感应加热线圈中心区域温度场[J]. 复合材料学报, 2021, 38(10): 3314-3322.

    FU Tianyu, XU Jiazhong, ZHAO Hui, et al. Temperature field in the central area of CFRP induction heating coil[J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3314-3322(in Chinese).
    [18] LI Yichao, SUN Ao, HU Xiafen, et al. An out-of-oven curing technique for epoxy resin via magnetic particle-induced in situ heating[J]. JOURNAL OF MATERIALS SCIENCE, 2024, 59(16): 6765-6777. doi: 10.1007/s10853-024-09600-w
    [19] HUANG Xianrong, LI Renfu, ZENG Lijian, et al. A multifunctional carbon nanotube reinforced nanocomposite modified via soy protein isolate: A study on dispersion, electrical and mechanical properties[J]. CARBON, 2020, 161: 350-358. doi: 10.1016/j.carbon.2020.01.069
    [20] LI Yichao, JI Jianying, WANG Yu, et al. Soy protein-treated nanofillers creating adaptive interfaces in nanocomposites with effectively improved conductivity[J]. JOURNAL OF MATERIALS SCIENCE, 2018, 53(11): 8653-8665. doi: 10.1007/s10853-018-2121-y
    [21] American Society for Testing Materials. Standard test method for flexural properties of polymer matrix composite materials: ASTM D7264/D7264M-2007[S]. United States: American Society for Testing Materials International 2007
  • 加载中
计量
  • 文章访问数:  65
  • HTML全文浏览量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-07-14
  • 录用日期:  2024-07-27
  • 网络出版日期:  2024-08-27

目录

    /

    返回文章
    返回