留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半透明钙钛矿太阳能电池的光物理特性调控

刘梦瑶 陈伟伟 周鹏飞 吴航娟 马俊杰

刘梦瑶, 陈伟伟, 周鹏飞, 等. 半透明钙钛矿太阳能电池的光物理特性调控[J]. 复合材料学报, 2024, 42(0): 1-14.
引用本文: 刘梦瑶, 陈伟伟, 周鹏飞, 等. 半透明钙钛矿太阳能电池的光物理特性调控[J]. 复合材料学报, 2024, 42(0): 1-14.
LIU Mengyao, CHEN Weiwei, ZHOU Pengfei, et al. Regulation of optical physical properties of semitransparent perovskite solar cells[J]. Acta Materiae Compositae Sinica.
Citation: LIU Mengyao, CHEN Weiwei, ZHOU Pengfei, et al. Regulation of optical physical properties of semitransparent perovskite solar cells[J]. Acta Materiae Compositae Sinica.

半透明钙钛矿太阳能电池的光物理特性调控

基金项目: 国家自然科学基金 (62104216)
详细信息
    通讯作者:

    马俊杰,博士,研究院,硕士生生导师,研究方向为新能源材料与半导体器件相关的研究工作;基于同步辐射掠入射X射线散射(GIXS)技术,研究光电薄膜中纳米尺度的微观结构和分子取向。 E-mail:junjiema@zzu.edu.cn

  • 中图分类号: TM914.4;TB333

Regulation of optical physical properties of semitransparent perovskite solar cells

Funds: National Natural Science Foundation of China(No.62104216)
  • 摘要: 宽带隙半透明钙钛矿太阳能电池具有优异的光电性能和光学透过率等特点,使其在光伏建筑一体化、叠层器件、可穿戴电子设备等领域有独特的应用优势。然而,由于光敏层带隙吸收损耗、功能层界面反射、电极折射率失配等原因,限制了光子在器件内部的吸收和转换,进而造成光学能量损耗,降低了光利用率。为了提升半透明钙钛矿太阳能电池的性能,需要深入研究光物理特性和光子传输路径,提高光电能量转换效率。本论文针对半透明钙钛矿太阳能电池光物理特性的相关机制和调控策略进行系统性总结。首先,围绕光子的传播路径进行理论分析。然后,对围绕减缓光学损耗的光管理策略展开讨论。最后,对半透明钙钛矿太阳能电池当前的应用挑战和未来的发展研究方向进行了展望。

     

  • 图  1  反射透射图

    Figure  1.  Reflection transmission diagram

    图  2  半透明钙钛矿太阳能电池中的光传输路径以示意图TE:透明电极

    Figure  2.  Schematic diagram of light transmission path on ST-PSCs and radiative recombination and nonradiative recombination caused by defects in the ST-PSCs. TE: transparent electrode

    图  3  Sn基钙钛矿电池基础结构

    Figure  3.  The basic structure of tin-based perovskite solar cells

    图  4  Eu配合物的光致发光图谱,其在室内光下为白色,在紫外光下为红色,背景显示了归一化的太阳辐照度。经许可转载[23]

    Figure  4.  hotoluminescence excitation and emission of Eu complex, white in room light and red-emitting under UV, background shows the normalized solar irradiance. Reproduced with permission[23]

    图  5  (a) DS工艺的能量图;(b)UC工艺的能量。经许可转载[24]

    Figure  5.  (a) Energy diagrams of DS. (b) Energy diagrams of UC process. Reproduced with permissio[24]

    图  6  (a)双面板LSC-PV的操作示意图;(b)DS,UC和双DS/UC板分别的吸光度和PL发射光谱。经许可转载[24]

    Figure  6.  (a) Schematic diagram for the operation of a dual-panel LSC-PVs. (b) Absorbance and PL emission spectra of the DS, UC, and dual DS/UC panels, respectively. Reproduced with permission[24]

    图  7  (a、b)等离子体现象示意图;(c)通过FDTD方法计算的等离子体电场的横向(在PCBM-玻璃界面处)和垂直分布。根据知识共享署名CC-BY许可条款复制[29]

    Figure  7.  (a,b) Schematic diagram of surface plasmon phenomenon; (c) Lateral (at the PCBM–glass interface) and vertical distributions of the plasmonic electric field calculated by the FDTD method. Reproduced under the terms of a Creative Commons Attribution CC-BY license[29]

    图  8  (a) 具有2D/3D钙钛矿异质结构的半透明钙钛矿太阳能电池(PSC)的横截面扫描电子显微镜(SEM)图像(光从顶部进入);(b)具有2D/3D异质结构和工程化带隙(1.65 eV ≤ Eg ≤ 1.85 eV)的非透明PSC的外量子效率(EQE)和透射率;在1个太阳(AM1.5 G)光照下,具有2D/3D异质结构的半透明钙钛矿太阳能电池在对应带隙下的光伏参数 (c) 反向扫描的光电转换效率图(PCE)和(d)电流-电压(J-V)曲线图。经许可转载[33]

    Figure  8.  (a) Cross-sectional scanning electron microscopy (SEM) image of the semitransparent perovskite solar cells (PSCs) with 2D/3D perovskite hetero structure (the light enters from the top); (b) External quantum efficiency (EQE) and transmit-tance of semitransparent PSCs with 2D/3D heterostructure and engineered bandgap (1.65 eV ≤ Eg ≤ 1.85 eV); Statistics of the photovoltaic parameters (12Devices) for semitransparent perovskite solar cells with 2D/3D heterostructure under 1 sun AM1.5 G illumination (c) power conversion efficiency (PCE) in the reverse scan direction as a function of the perovskite bandgap and (d) The current–voltage curve. Reproduced with permission[33]

    图  9  (a) 以导电聚合物PEDOT:PSST作为顶部电极的电池的器件结构;(b)由彩色钙钛矿太阳能电池组装的彩色原理图“H”的照片图像。每个像素基板的尺寸约为5×5 mm2。经许可转载[34]

    Figure  9.  (a) Device architecture of the cells with conducting polymer PEDOT:PSST as the top electrod; (b) Photographic image of a colored schematic “H” assembled by colorful perovskite solar cells. Each pixel substrate is with the size of about 5 × 5 mm2. Reproduced with permission.[34]

    图  10  单层平面减反膜的(a)光学传输模型;(b)折射率变化示意图;(c)多层平面减反膜的折射率变化示意图

    Figure  10.  (a) optical transmission model of a single-layer planar anti-reflection coating; (b) Schematic diagram of refractive index change; (c) Multilayer planar anti-reflection coating

    图  11  (a) PIT(0-100)系列杂化薄膜的折射率和消光系数随波长的变化。插图显示了折射率随二氧化钛含量的变; 三层减反膜的反射率随波长的变化: FEA玻璃(b)和PMMA衬底(c)。插图为三层增透膜的结构。经许可转载[37]

    Figure  11.  (a) Variation of the refractive index and extinction coefficient of the PIT0, PIT100 and PIT series hybrid films, with wavelength. The inset figure shows the variation of refractive index with titania content; Variation on the reflectance of the three-layer coating with wavelength: FEA glass (b) and PMMA substrate (c). The inset figures are the structure ofthe three layer anti-reflective coatings. Reproduced with permission.[37]

    图  12  蛾眼减反膜结构(a)实物图;(b)测试图;(c)折射率变化图. 经许可转载[37]

    Figure  12.  Motheye anti-reflective structure (a) physical diagram; (b) test drawings; (c) Refractive index change diagram. Reproduced with permission[37]

    图  13  (a) 以 IO:H 为顶电极的半透明钙钛矿太阳能电池的截面扫描图像;(b) 该半透明钙钛矿太阳能电池的透过、吸收及反射光谱(插图内为器件的外观照片)经许可转载[43]

    Figure  13.  (a) Cross-sectional scan image of a translucent perovskite solar cell with IO:H as the top electrode; (b) The transmission, absorption and reflection spectra of the translucent perovskite solar cell (the external photos of the device are shown in the illustrations) are reproduced with permissio[43]

    图  14  (a) 以 AgNWs 为顶电极的半透明钙钛矿太阳能电池的结构示意图;(b)该半透明钙钛矿太阳能电池的透过率光谱(插图内为对应器件的外观照片) 经许可转载[43]

    Figure  14.  (a) Schematic diagram of the structure of a translucent perovskite solar cell with AgNWs as the top electrode; (b) Transmittance spectrum of the translucent perovskite solar cell (the appearance photo of the corresponding device is shown in the inset) .Reproduced with permission[43]

    图  15  不同厚度钙钛矿薄膜对PSC性能的影响。(a)1太阳光照下PSCs的J-V曲线;(b) 具有不同钙钛矿膜厚度的完整PSC的透射光谱。经许可转载[52]

    Figure  15.  Characterization of PSCs with CH3 NH3 PbI3 films of different thicknesses. (a) J–V curves of PSCs under AM 1.5 (1 sun) illumination. (e) transmittance spectra of complete PSCs with different CH3 NH3 PbI3 film thicknesses.Reproduced with permission[52]

    图  16  (a) 钙钛矿型晶体结构;(b) MAPbCl3、MAPbBr3薄膜的透射率光谱; (c)扫描电子显微镜图像。标尺为5μm。经许可转载[56-61]

    Figure  16.  (a) Perovskite crystal structure; (b) The transmittance spectra of MAPbCl3 and MAPbBr3 film respectively; (c) The SEM images of MAPbCl3 and MAPbBr3 film respectively. Scale bar is5μm. Reproduced with permission[56-61]

    图  17  半透明钙钛矿太阳能电池提高LUE、环境友好性和商业化应用的展望

    Figure  17.  Improved LUE, environmental friendliness, and prospects for commercial applications of translucent perovskite solar cells

  • [1] SNAITH H J. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells[J]. Journal of Physical Chemistry Letters, 2013, 4(21): 3623-3630. doi: 10.1021/jz4020162
    [2] GREEN M A, HO-Baillie A, SNAITH H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514. doi: 10.1038/nphoton.2014.134
    [3] STRANKS S D, SNAITH H J. Metal-halide perovskites for photovoltaic and light-emitting devices[J]. Nature Nanotechnology, 2015, 10(5): 391-402. doi: 10.1038/nnano.2015.90
    [4] ZHANG Taiyang, DAR M Ibrahim, LI Ge, et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells[J]. Science Advances, 3(9): e1700841.
    [5] LI Ge, ZHANG Taiyang, GUO Nanjie, et al. Ion-Exchange-Induced 2D–3D Conversion of HMA1−xFAxPbI3Cl Perovskite into a High-Quality MA1−xFAxPbI3 Perovskite[J]. Angewandte Chemie International Edition, 2016, 55(43): 13460-13464. doi: 10.1002/anie.201606801
    [6] 周瑾璟, 钟敏. 铅卤钙钛矿太阳能电池界面工程的近期进展[J]. 复合材料学报, 2022, 39(5): 1937.

    ZHOU Jinjing, ZHONG Min. Recent progress of interface engineering for lead halide perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1937(in Chinese).
    [7] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237. doi: 10.1126/science.aaa9272
    [8] 安世崇, 黄茜, 陈沛润, 等. 半透明钙钛矿及叠层太阳电池中的透明电极研究综述[J]. 材料导报, 2020, 34(2A): 03069-03079. doi: 10.11896/cldb.19010225

    AN Shichong, HUANG Qian, CHEN Peirun, et al. Research Progress of Transparent Electrodes in Semi-transparent Perovskite and Tandem Solar Cells[J]. Materials Review, 2020, 34(2A): 03069-0307 (in Chinese). doi: 10.11896/cldb.19010225
    [9] KOJIMA A, TESHIMA K, SHIRAI Y, MIYASAKA T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. doi: 10.1021/ja809598r
    [10] ZHU Hongwei, TEALE Sam, LINTANGPRADIPTO Muhammad Naufal, et al. Long-term operating stability in perovskite photovoltaics[J]. Nature Reviews Materials, 2023, 8(9): 569-586. doi: 10.1038/s41578-023-00582-w
    [11] JACOBSSON T J, CORREA-Baen J P, PAZOKI M, et al. Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells[J]. Energy & Environmental Science, 2016, 9(5): 1706-1724.
    [12] STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber[J]. Science, 2013, 342(6156): 341-344. doi: 10.1126/science.1243982
    [13] DE Wolf S, HOLOVSKY J, MOON S J. , et al. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance[J]. Journal of Physical Chemistry Letters, 2014, 5(6): 1035-1039. doi: 10.1021/jz500279b
    [14] HAO F, STOUMPOS C C, CAO D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature Photonics, 2014, 8(6): 489-494. doi: 10.1038/nphoton.2014.82
    [15] TONG Yao, NAJAR Adel, WANG Le, et al. Wide-Bandgap Organic–Inorganic Lead Halide Perovskite Solar Cells[J]. Advanced Science, 2022, 9(14): 2105085. doi: 10.1002/advs.202105085
    [16] HU Zhenghao, WANG Jian, MA Xiaoling, et al. A critical review on semitransparent organic solar cells[J]. Nano Energy, 2020, 78: 105376. doi: 10.1016/j.nanoen.2020.105376
    [17] XUE Q F, XIA R X, BRABEC C J, et al. Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications[J]. Energy & Environmental Science, 2018, 11(7): 1688-1709.
    [18] BALL J M, PETROZZA A. Defects in perovskite-halides and their effects in solar cells[J]. Nature Energy, 2016, 1: 1-13.
    [19] JOHNSTON M B, HERZ L M. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies[J]. Accounts of Chemical Research, 2016, 49(1): 146-154. doi: 10.1021/acs.accounts.5b00411
    [20] DERICIOGLU A F, KAGAWA Y. Effect of grain boundary microcracking on the light transmittance of sintered transparent MgAl2O4[J]. Journal of the European Ceramic Society, 2003, 23(6): 951-959. doi: 10.1016/S0955-2219(02)00205-4
    [21] 张美荣, 祝曾伟, 郁骁琦, 等. 高效率双结钙钛矿叠层太阳能电池研究进展[J]. 复合材料学报, 2023, 40(2): 726-740.

    ZHANG Meirong, ZHU Zengwei, YU Xiaoqi, et al. Research progress of high-efficiency double-junction perovskite tandem solar cells[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 726-740(in Chinese).
    [22] CHEN Z, CHEN X, JIA Z Y, et al. Triplet exciton formation for non-radiative voltage loss in high-efficiency nonfullerene organic solar cells[J]. JOULE, 2021, 5(7): 1832-1844. doi: 10.1016/j.joule.2021.04.002
    [23] RAI Monika, YUAN Zhengtian, SADHU Anupam, et al. Multimodal Approach towards Large Area Fully Semitransparent Perovskite Solar Module[J]. Advanced Energy Materials, 2021, 11(45): 2102276. doi: 10.1002/aenm.202102276
    [24] KIM Kiwon, NAM Seong Kyung, CHO Jinhan, et al. Photon upconversion-assisted dual-band luminescence solar concentrators coupled with perovskite solar cells for highly efficient semi-transparent photovoltaic systems[J]. Nanoscale, 2020, 12(23): 12426-12431. doi: 10.1039/D0NR02106G
    [25] ATWATER H A, POLMAN A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 2010, 9(3): 205-213. doi: 10.1038/nmat2629
    [26] KONG Lingming, HONG Sheng Jiao. Analysis of Multiple Droop Control Strategies in DC Microgrid[J]. 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2020: 6 pp. -6 pp.
    [27] ROLAN -Carmona Cristina, MALINKIEWICZ Olga, BETANCUR Rafael, et al. High efficiency single-junction semitransparent perovskite solar cells[J]. Energy & Environmental Science, 2014, 7(9): 2968-2973.
    [28] KIM Gyu Min, TATSUMA Tetsu. Semitransparent Perovskite Solar Cells Developed by Considering Human Luminosity Function[J]. Scientific Reports, 2017, 7(1): 10699. doi: 10.1038/s41598-017-11193-1
    [29] RAHMAN M S, IBRAHIM M. Position dependent impact of plasmonic nanocubes on the optical performance of perovskite solar cells: a simulation[J]. 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 2019: 6 pp. -6 pp.
    [30] JIMENEZ-Solano Alberto, CARRETERO-Palacios Sol, MIGUEZ Hernán. Absorption enhancement in methylammonium lead iodide perovskite solar cells with embedded arrays of dielectric particles[J]. Optics Express, 2018, 26(18): A865-A878. doi: 10.1364/OE.26.00A865
    [31] JUNG Hyunmin, KIM Geunjin, JANG Gyeong Sun, et al. Transparent Electrodes with Enhanced Infrared Transmittance for Semitransparent and Four-Terminal Tandem Perovskite Solar Cells[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30497-30503.
    [32] BUSH Kevin A, PALMSTROM Axel F, YU Zhengshan J, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability[J]. Nature Energy, 2017, 2(4): 17009. doi: 10.1038/nenergy.2017.9
    [33] GHARIBZADEH Saba, HOSSAIN Ihteaz M, FASSL Paul, et al. 2D/3D Heterostructure for Semitransparent Perovskite Solar Cells with Engineered Bandgap Enables Efficiencies Exceeding 25% in Four-Terminal Tandems with Silicon and CIGS[J]. Advanced Functional Materials, 2020, 30(19): 1909919. doi: 10.1002/adfm.201909919
    [34] SAHLI Florent, WERNER Jérémie, KAMINO Brett A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nature Materials, 2018, 17(9): 820-826. doi: 10.1038/s41563-018-0115-4
    [35] JIANG Youyu, LUO Bangwu, JIANG Fangyuan, et al. Efficient Colorful Perovskite Solar Cells Using a Top Polymer Electrode Simultaneously as Spectrally Selective Antireflection Coating[J]. Nano Letters, 2016, 16(12): 7829-7835. doi: 10.1021/acs.nanolett.6b04019
    [36] LEE Hanbin, PARK Minjeong, JEON Minhyon, et al. Multi-Layer Anti-Reflection Film Based on SiOx and NbOx by DC Pulse Sputter System with Inductively Coupled Plasma Source[J]. Crystals, 2020, 10(6): 424. doi: 10.3390/cryst10060424
    [37] YU Yang-Yen, CHIEN Wen-Chen, LIN Jhe Min, et al. High transparent polyimide/titania multi-layer anti-reflective hybrid films[J]. Thin Solid Films, 2011, 519(15): 4731-4736. doi: 10.1016/j.tsf.2011.01.025
    [38] MODIGUNTA J K R, KIM J M, SONG H, et al. Fabrication of moth eye-like patterned polystyrene films and their functionalization with polyaniline via interfacial reaction[J]. Polymer, 2019, 179: 121636. doi: 10.1016/j.polymer.2019.121636
    [39] KIM Min-cheol, JANG Segeun, CHOI Jiwoo, et al. Moth-eye Structured Polydimethylsiloxane Films for High-Efficiency Perovskite Solar Cells[J]. Nano-Micro Letters, 2019, 11(1): 53. doi: 10.1007/s40820-019-0284-y
    [40] RAHMANY Stav, ETGAR Lioz. Semitransparent Perovskite Solar Cells[J]. ACS Energy Letters, 2020, 5(5): 1519-1531. doi: 10.1021/acsenergylett.0c00417
    [41] LEE Hyun-Jung, CHO Se-Phin, NA Seok-in, et al. Thin metal top electrode and interface engineering for efficient and air-stable semitransparent perovskite solar cells[J]. Journal of Alloys and Compounds, 2019, 797: 65-73. doi: 10.1016/j.jallcom.2019.05.051
    [42] LEE Kyu-Tae, GUO L J, PARK Hui J. Neutral- and Multi-Colored Semitransparent Perovskite Solar Cells[J]. Molecules, 2016, 21(4): 475. doi: 10.3390/molecules21040475
    [43] FANG Yunsheng, WU Zhi cong, LI Jia, et al. High-Performance Hazy Silver Nanowire Transparent Electrodes through Diameter Tailoring for Semitransparent Photovoltaics[J]. Advanced Functional Materials, 2018, 28(9): 1705409. doi: 10.1002/adfm.201705409
    [44] ELLMER Klaus. Past achievements and future challenges in the development of optically transparent electrodes[J]. Nature Photonics, 2012, 6(12): 809-817. doi: 10.1038/nphoton.2012.282
    [45] LIM Sang-Hwi, SEOK Hae-Jun, KWAK Min-Jun, et al. Semi-transparent perovskite solar cells with bidirectional transparent electrodes[J]. Nano Energy, 2021, 82: 105703. doi: 10.1016/j.nanoen.2020.105703
    [46] HEO Jin Hyuck, HAN Hye Ji, LEE Minho, et al. Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells[J]. Energy & Environmental Science, 2015, 8(10): 2922-2927.
    [47] XIE Menglan, LU Hui, ZHANG Lianping, et al. Fully Solution-Processed Semi-Transparent Perovskite Solar Cells With Ink-Jet Printed Silver Nanowires Top Electrode[J]. Solar RRL, 2018, 2(2): 1700184. doi: 10.1002/solr.201700184
    [48] ZHANG Yaokang, NG Sze-Wing, LU Xi, et al. Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells[J]. Chemical Reviews, 2020, 120(4): 2049-2122. doi: 10.1021/acs.chemrev.9b00483
    [49] PARK Nam-Gyu. Perovskite solar cells: an emerging photovoltaic technology[J]. Materials Today, 2015, 18(2): 65-72. doi: 10.1016/j.mattod.2014.07.007
    [50] RAMIREZ Quiroz César Omar, LEVCHUK Ievgen, BRONNBAUER Carina, et al. Pushing efficiency limits for semitransparent perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(47): 24071-24081. doi: 10.1039/C5TA08450D
    [51] ROLDAN -Carmona Cristina, MALINKIEWICZ Olga, BETANCUR Rafael, et al. High efficiency single-junction semitransparent perovskite solar cells[J]. Energy & Environmental Science, 2014, 7(9): 2968-2973.
    [52] HUANG Yan, TAO Jiayou, MENG Wenjun, et al. Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability[J]. Nano Energy, 2015, 11: 518-525. doi: 10.1016/j.nanoen.2014.10.031
    [53] XIAO Shuang, CHEN Haining, JIANG Fangyuan, et al. Hierarchical Dual-Scaffolds Enhance Charge Separation and Collection for High Efficiency Semitransparent Perovskite Solar Cells[J]. Advanced Materials Interfaces, 2016, 3(17): 1600484. doi: 10.1002/admi.201600484
    [54] DOKKHAN Chotiros, MOKHTAR Muhamad Z, KE Chun-Ren, et al. Modulating Crystallization in Semitransparent Perovskite Films Using Submicrometer Spongelike Polymer Colloid Particles to Improve Solar Cell Performance[J]. ACS Applied Energy Materials, 2019, 2(9): 6624-6633. doi: 10.1021/acsaem.9b01162
    [55] ONO Luis K, WANG Shenghao, KATO Yuichi, et al. Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method[J]. Energy & Environmental Science, 2014, 7(12): 3989-3993.
    [56] GREEN Martin A, HO-Baillie Anita, SNAITH Henry J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514. doi: 10.1038/nphoton.2014.134
    [57] KRISHNAMOORTHY Thirumal, DING Hong, YAN Chen, et al. Lead-free germanium iodide perovskite materials for photovoltaic applications[J]. Journal of Materials Chemistry A, 2015, 3(47): 23829-23832. doi: 10.1039/C5TA05741H
    [58] PARK Byung-Wook, PHILIPPE Bertrand, ZHANG Xiaoliang, et al. Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application[J]. Advanced Materials, 2015, 27(43): 6806-6813. doi: 10.1002/adma.201501978
    [59] HABISEEUTINGER Severin N, LEIJTENS Tomas, EPERON Giles E, et al. Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells[J]. Nano Letters, 2014, 14(10): 5561-5568. doi: 10.1021/nl501982b
    [60] JIANG Chun-Sheng, YANG Mengjin, ZHOU Yuanyuan, et al. Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential[J]. Nature Communications, 2015, 6(1): 8397. doi: 10.1038/ncomms9397
    [61] LIU You, WANG Jun gan, WANG Fangfang, et al. Full-frame and high-contrast smart windows from halide-exchanged perovskites[J]. Nature Communications, 2021, 12(1): 3360. doi: 10.1038/s41467-021-23701-z
    [62] PONCHAI Jitprabhat, SRATHONGSIAN Ladda, Amratisha Koth, et al. Modified colored semi-transparent perovskite solar cells with enhanced stability[J]. Journal of Alloys and Compounds, 2021, 875: 159781. doi: 10.1016/j.jallcom.2021.159781
  • 加载中
计量
  • 文章访问数:  81
  • HTML全文浏览量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-03
  • 修回日期:  2024-05-10
  • 录用日期:  2024-06-11
  • 网络出版日期:  2024-06-29

目录

    /

    返回文章
    返回