Research progress of lightweight polymer electromagnetic shielding materials
-
摘要:
目的 随着科技不断的进步,5G技术快速的普及以及可穿戴设备的飞速发展,生活变得越来越便利,同时电磁干扰对人们的身体健康和精密电子设备的运行造成威胁。如今传统的电磁屏蔽材料已不能满足人们生活的日常需求,轻质、优异的力学性能以及高效电磁屏蔽效能 ( Electromagnetic shielding efficiency , EMI SE )的电磁屏蔽材料已备受关注。本文总结了电磁屏蔽机制以及聚合物结构对电磁屏蔽性能的影响,本文综述了前沿碳/聚合物电磁屏蔽材料、金属/聚合物电磁屏蔽材料、新型MXene/聚合物电磁屏蔽材料的制备方法、电磁屏蔽性能及其相关机制,探讨了其优势和局限性,并对轻质聚合物电磁屏蔽材料面临的关键挑战、潜在应用和发展前景进行展望。 方法 当电磁波传输到电磁屏蔽材料时,电磁波在电磁屏蔽材料的表面发生部分反射(SE),其余电磁波进入到材料的内部,进行多次反射损耗 (SE)、介电损耗和磁损耗(SE),最终剩余的电磁波会透过电磁屏蔽材料, EMI SE = SE + SE + SE 。本文通过分析碳/聚合物电磁屏蔽材料、金属/聚合物电磁屏蔽材料、新型MXene/聚合物电磁屏蔽材料中聚合物的微观结构、化学结构、官能团以及碳、金属、MXene的成分、微观结构和缺陷等对聚合物基电磁屏蔽材料EMI SE 的影响,对未来的电磁屏蔽材料的发展做出预测。 结果 多层结构、隔离结构、多孔结构的聚合物基电磁屏蔽材料能显著提高其电磁屏蔽效能,其次我们通过添加碳、金属、MXene等填料增加聚合物基复合材料的导电性、磁损耗、介电损耗,进一步增强其 EMI SE 。一维碳材料通常具有低密度、高拉伸强度和突出的长径比,使其能以相对较低的填料负载量形成有效的导电网络,增强一维碳/聚合物基电磁屏蔽材料的SE,并且大幅度增加一维碳/聚合物基电磁屏蔽材料的力学性能,但是怎么确保一维碳在聚合物基体中形成导电网络是目前的一大难题。石墨烯/聚合物复合材料是二维碳/聚合物复合材料一类,石墨烯/聚合物电磁屏蔽材料虽然有较高的SE ,但是石墨烯/聚合物电磁屏蔽材料因其结构单一、低磁导率以及在层与层之间未形成导电网络,导致聚合/石墨烯的 EMI SE 较差,可以通过增加石墨烯的层数或参杂其他填料提高其 EMI SE 。三维碳/聚合物电磁屏蔽材料具有纳米纤维孔壁和优异EMI SE,但是其脆性大、很难作为结构材料使用。另外,三维碳/聚合物电磁屏蔽材料的分层间隙会导致其 EMI SE 下降,降低分层间隙的缺陷是增加碳泡沫 EMI SE 的有效途径之一,添加高长径比的填料可增强三维碳/聚合物基电磁屏蔽材料的力学性能。可视窗的金属/聚合物电磁屏蔽材料已成为未来的研究趋势之一。高长径比的金属纳米线可在聚合物集体中形成连续的导电网络,增强SE 。金属纳米线赋予了金属/聚合物电磁屏蔽材料透明性,而合金/聚合电磁屏蔽材料多元金属提供多元协同损耗,提高金属/聚合物电磁屏蔽材料的SE。MXene具有高导电性、高比表面积和丰富的官能团,MXene表面的官能团可增强其与基体材料的界面强度,增强MXene/聚合物电磁屏蔽材料的力学性能。MXene/聚合物电磁屏蔽材料常被制备为3D泡孔结构,并且其优异的导电性使其 EMI SE 远远超过了其它典型的多孔材料。 结论 单一的填料制备的聚合物复合材料无法提供足够的电导率和磁导率。另外,填料在聚合物基体中的分布不可控、复合材料加工困难等因素都是阻碍聚合物基电磁屏蔽材料规模化和市场化的重要因素,有待进一步研究。轻量化、柔性和可视化的高效电磁屏蔽材料是未来的发展方向。纳米材料具有光学透过率、高磁导率和电导率和突出的 EMI SE 。将纳米填料与聚合物复合为轻质、透明、高效的电磁屏蔽材料是未来的研究热点。近几年来,将石墨烯、 MXene 等二维材料与聚合物复合,在电磁屏蔽的研究领域取得了巨大的进展。另外,为避免电磁波反射造成二次危害,制备以吸收为主的高性能电磁屏蔽材料将成为未来电磁屏蔽材料的热点。 Abstract: With the continuous progress of science and technology, the rapid popularization of 5G technology and the rapid development of wearable devices, life is becoming more and more convenient. Meanwhile, electromagnetic interference poses a threat to the health of people and the operation of precision electronic devices. Nowadays, traditional electromagnetic interference shielding materials can no longer meet the daily needs of people's life, lightweight polymer-based electromagnetic interference shielding materials have attracted more and more attention. This study summarized the electromagnetic interference shielding mechanism, and the influence of polymer structures on electromagnetic interference shielding performance, reviewed the preparation methods, electromagnetic shielding properties, and related mechanisms of advanced carbon/polymer materials, metal/polymer materials, and novel MXene/polymer materials, discussed their advantages and limitations, and prospected the key challenges, potential applications and development prospects of lightweight polymer-based electromagnetic shielding materials in the future. -
表 1 电磁屏蔽效果
Table 1. Electromagnetic shielding effect
No. EMI SE/dB Electromagnetic
shielding effectRemarks 1 <10 Bad — 2 10-30 General ≥20 dB Has commercialization potential 3 30-60 Moderate ≥35 dB Meeting civilian needs 4 60-90 Good ≥75 dB Meeting military requirements 5 >90 Excellent Note: EMI SE—Electromagnetic shielding efficiency. 表 2 常见的填料
Table 2. Common filler
Classification Example Remarks Carbon Carbon fiber, carbon nanotubes, graphene, etc. Enhanced material conductivity and dielectric loss Metal Nickel, cobalt, iron, zinc, copper, alloy, etc. Enhanced material conductivity, magnetic properties, dielectric losses and magnetic losses Composite filler Carbon and metals, metals and alloys, carbon and
MXene, etc.Packing composition can be designed according to material requirements -
[1] GUPTA S, TAI N. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band[J]. Carbon,2019,152:159-187. doi: 10.1016/j.carbon.2019.06.002 [2] DU S, CHEN H, HONG R. Preparation and electromagnetic properties characterization of reduced graphene oxide/strontium hexaferrite nanocomposites[J]. Nanotechnology Reviews (Berlin),2020,9(1):105-114. doi: 10.1515/ntrev-2020-0010 [3] FAISAL M, KHASIM S. Polyaniline-antimony oxide composites for effective broadband EMI shielding[J]. Iranian Polymer Journal,2013,22(7):473-480. doi: 10.1007/s13726-013-0149-z [4] LI D, YANG N, TAO Y, et al. Induced electric field intensification of acid hydrolysis of polysaccharides: Roles of thermal and non-thermal effects[J]. Food Hydrocolloids,2020,101:105484. doi: 10.1016/j.foodhyd.2019.105484 [5] WANG H, TENG K, CHEN C, et al. Conductivity and electromagnetic interference shielding of graphene-based architectures using MWCNTs as free radical scavenger in gamma-irradiation[J]. Materials Letters,2017,186:78-81. doi: 10.1016/j.matlet.2016.09.086 [6] LU M, CAO M, CHEN Y, et al. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune Intensities[J]. ACS Applied Materials & Interfaces,2015,7(34):19408-19415. doi: 10.1021/acsami.5b05595 [7] HE J, WANG X, ZHANG Y, et al. Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity[J]. Journal of Materials Chemistry C,2016,4(29):7130-7140. doi: 10.1039/C6TC02020H [8] WANG G, WANG L, MARK L H, et al. Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications[J]. ACS Applied Materials & Interfaces,2018,10(1):1195-1203. [9] SACHDEV V K, SHARMA S K, TOMAR M, et al. EMI shielding of MWCNT/ABS nanocomposites in contrast to graphite/ABS composites and MWCNT/PS nanocomposites[J]. RSC Advances,2016,6(51):4549-4558. [10] LIU H, WU S, YOU C, et al. Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding[J]. Carbon,2021,172:569-596. doi: 10.1016/j.carbon.2020.10.067 [11] WANASINGHE D, ASLANI F, MA G, et al. Advancements in electromagnetic interference shielding cementitious composites[J]. Construction and Building Materials,2020,231:117116. doi: 10.1016/j.conbuildmat.2019.117116 [12] YUAN Y, SUN X, YANG M, et al. Stiff, thermally stable and highly anisotropic wood-derived carbon composite monoliths for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2017,9(25):21371-21381. doi: 10.1021/acsami.7b04523 [13] QIN L, LIU S, QIN S, et al. MOF derived porous Ni/Co@C nanocomposite as electromagnetic wave absorber with optimized impedance matching[J]. Composites Communications,2022,33:101196. doi: 10.1016/j.coco.2022.101196 [14] LIU S, QIN S, JIANG Y, et al. Lightweight high-performance carbon-polymer nanocomposites for electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing,2021,145:106376. doi: 10.1016/j.compositesa.2021.106376 [15] LIU H, XU Y, ZHAO X, et al. Lightweight leaf-structured carbon nanotubes/graphene foam and the composites with polydimethylsiloxane for electromagnetic interference shielding[J]. Carbon,2022,191:183-194. doi: 10.1016/j.carbon.2022.01.051 [16] DOGAN S, KAYACAN O, GOREN A. A lightweight, strength and electromagnetic shielding polymer composite structure for infant carrier strollers[J]. Polymer Composites,2019,40(12):4559-4572. doi: 10.1002/pc.25324 [17] ZHANG K, GU X, DAI Q, et al. Flexible polyaniline-coated poplar fiber composite membranes with effective electromagnetic shielding performance[J]. Vacuum,2019,170:108990. doi: 10.1016/j.vacuum.2019.108990 [18] WANG H, LI S, LIU M, et al. Review on shielding mechanism and structural design of electromagnetic interference shielding composites[J]. Macromolecular Materials and Engineering,2021,306(6):2100032. doi: 10.1002/mame.202100032 [19] YUAN D, GUO H, KE K, et al. Recyclable conductive epoxy composites with segregated filler network structure for EMI shielding and strain sensing[J]. Composites Part A: Applied Science and Manufacturing,2020,132:105837. doi: 10.1016/j.compositesa.2020.105837 [20] QI Q, MA L, ZHAO B, et al. An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness[J]. ACS Applied Materials & Interfaces,2020,12(32):36568-36577. doi: 10.1021/acsami.0c10600 [21] WANG G, LIAO X, YANG J, et al. Frequency-selective and tunable electromagnetic shielding effectiveness via the sandwich structure of silicone rubber/graphene composite[J]. Composites Science and Technology,2019,184:107847. doi: 10.1016/j.compscitech.2019.107847 [22] SONG W, GONG C, LI H, et al. Graphene-based sandwich structures for frequency selectable electromagnetic shielding[J]. ACS Applied Materials & Interfaces,2017,9(41):36119-36129. doi: 10.1021/acsami.7b08229 [23] LIU J, ZHANG H, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials,2017,29(38):1702367. doi: 10.1002/adma.201702367 [24] ZHANG H, ZHANG G, GAO Q, et al. Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance[J]. Chemical Engineering Journal,2020,379:122304. doi: 10.1016/j.cej.2019.122304 [25] LIANG C, LIU Y, RUAN Y, et al. Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing,2020,139:106143. doi: 10.1016/j.compositesa.2020.106143 [26] WU N, LIU C, XU D, et al. Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers[J]. ACS Sustainable Chemistry & Engineering,2018,6(9):12471-12480. doi: 10.1021/acssuschemeng.8b03097 [27] WU N, LIU C, XU D, et al. Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples[J]. Journal of Materials Chemistry C,2019,7(6):1659-1669. doi: 10.1039/C8TC04984J [28] KAUSHAL A, SINGH V. Excellent electromagnetic interference shielding performance of polypropylene/carbon fiber/multiwalled carbon nanotube nanocomposites[J]. Polymer Composites,2022,43(6):3708-3715. doi: 10.1002/pc.26649 [29] TUNAKOVA V, TUNAK M. Carbon-fiber reinforcements for epoxy composites with electromagnetic radiation protection-prediction of electromagnetic shielding ability[J]. Composites Science and Technology,2021,215:109029. doi: 10.1016/j.compscitech.2021.109029 [30] CULICA M E, BILIUTA G, ROTARU R, et al. New electromagnetic shielding materials based on viscose-carbon nanotubes composites[J]. Polymer Engineering & Science,2019,59(7):1499-1506. [31] FORMELA K. Waste tire rubber-based materials: Processing, performance properties and development strategies[J]. Advanced Industrial and Engineering Polymer Research,2022,5(4):234-247. doi: 10.1016/j.aiepr.2022.06.003 [32] FU L, LI K, QIN H, et al. Sandwich structured iPP/CNTs nanocomposite foams with high electromagnetic interference shielding performance[J]. Composites Science and Technology,2022,220:109297. doi: 10.1016/j.compscitech.2022.109297 [33] KUANG T R, JU J J, CHEN F, et al. Coupled effect of self-assembled nucleating agent, Ni-CNTs and pressure-driven flow on the electrical, electromagnetic interference shielding and thermal conductive properties of poly(lactic acid) composite foams[J]. Composites Science and Technology,2022,230:109736. doi: 10.1016/j.compscitech.2022.109736 [34] PEI X, ZHAO M, LI R, et al. Porous network carbon nanotubes/chitosan 3D printed composites based on ball milling for electromagnetic shielding[J]. Composites Part A: Applied Science and Manufacturing,2021,145:106363. doi: 10.1016/j.compositesa.2021.106363 [35] MANNA K, SRIVASTAVA S K. Contrasting role of defect-induced carbon nanotubes in electromagnetic interference shielding[J]. The Journal of Physical Chemistry C,2018,122(34):19913-19920. doi: 10.1021/acs.jpcc.8b04813 [36] WANG W, CUI R, ZHANG P, et al. High electromagnetic interference shielding effectiveness in MgO composites reinforced by aligned graphene platelets[J]. Journal of the American Ceramic Society,2021,104(6):2868-2878. doi: 10.1111/jace.17667 [37] BARANI Z, KARGAR F, MOHAMMADZADEH A, et al. Multifunctional graphene composites for electromagnetic shielding and thermal management at elevated temperatures[J]. Advanced Electronic Materials,2020,6(11):2000520. doi: 10.1002/aelm.202000520 [38] SIM H J, LEE D W, KIM H, et al. Self-healing graphene oxide-based composite for electromagnetic interference shielding[J]. Carbon,2019,155:499-505. doi: 10.1016/j.carbon.2019.08.073 [39] GILL N, GUPTA V, TOMAR M, et al. Improved electromagnetic shielding behaviour of graphene encapsulated polypyrrole-graphene nanocomposite in X-band[J]. Composites Science and Technology,2020,192:108113. doi: 10.1016/j.compscitech.2020.108113 [40] LI M, YANG K, ZHU W, et al. Copper-coated reduced graphene oxide fiber mesh-polymer composite films for electromagnetic interference shielding[J]. ACS Applied Nano Materials,2020,3(6):5565-5574. doi: 10.1021/acsanm.0c00843 [41] ZENG Y, LUO X, YU K, et al. EMI shielding performance of phenolic-based carbon foam modified with GO/SiO2 hybrid nanomaterials[J]. Chemical Physics Letters,2019,715:166-172. doi: 10.1016/j.cplett.2018.11.040 [42] LIU H, WU S, YOU C, et al. Fe3O4 nanoparticles decorated flexible carbon foam for efficient electromagnetic interference shielding[J]. Ceramics International,2022,48(13):19452-19459. doi: 10.1016/j.ceramint.2022.03.246 [43] TANG R, XU P, DONG J, et al. Carbon foams derived from emulsion-templated porous polymeric composites for electromagnetic interference shielding[J]. Carbon,2022,188:492-502. doi: 10.1016/j.carbon.2021.12.026 [44] GUO F, JIANG Y, XU Z, et al. Highly stretchable carbon aerogels[J]. Nature Communications, 2018, 9(1): 881. [45] ZHU E, PANG K, CHEN Y, et al. Ultra-stable graphene aerogels for electromagnetic interference shielding[J]. Science China Materials, 2023, 66(3): 1106-1113. [46] YU Z, DAI T, YUAN S, et al. Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels[J]. ACS Applied Materials & Interfaces,2020,12(27):30990-31001. doi: 10.1021/acsami.0c07122 [47] QUAN L, WANG C, XU Y, et al. Electromagnetic properties of graphene aerogels made by freeze-casting[J]. Chemical Engineering Journal,2022,428:131337. doi: 10.1016/j.cej.2021.131337 [48] FAN X, GAO Q, ZHANG Y, et al. Anisotropic microcellular epoxy/rGO-SCF aerogel foam with excellent compressibility and superior electromagnetic interference shielding performance[J]. Composites Science and Technology,2022,230:109718. doi: 10.1016/j.compscitech.2022.109718 [49] CHANG H, GAO J, LAI S, et al. Prediction of the electromagnetic shielding effectiveness of metal grid using neural network algorithm[J]. IEEE Photonics Journal,2021,13(4):1-6. [50] YAO Y, JIN S, ZOU H, et al. Polymer-based lightweight materials for electromagnetic interference shielding: A review[J]. Journal of Materials Science,2021,56(11):6549-6580. doi: 10.1007/s10853-020-05635-x [51] ZHANG J, LI J, TAN G, et al. Thin and flexible Fe-Si-B/Ni-Cu-P metallic glass multilayer composites for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2017,9(48):42192-42199. doi: 10.1021/acsami.7b12504 [52] QIN F, YAN Z, FAN J, et al. Highly uniform and stable transparent electromagnetic interference shielding film based on silver nanowire-PEDOT:PSS composite for high power microwave shielding[J]. Macromolecular Materials and Engineering,2021,306(2):2000607. doi: 10.1002/mame.202000607 [53] WANG G, HAO L, ZHANG X, et al. Flexible and transparent silver nanowires/biopolymer film for high-efficient electromagnetic interference shielding[J]. Journal of Colloid and Interface Science,2022,607:89-99. doi: 10.1016/j.jcis.2021.08.190 [54] ZHU X, XU J, QIN F, et al. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires[J]. Nanoscale,2020,12(27):14589-14597. doi: 10.1039/D0NR03790G [55] YE J, CHEN X, LUO Z, et al. Improving strength and electromagnetic shielding effectiveness of Mg-Sn-Zn-Ca-Ce alloy by Sn addition[J]. Advanced Engineering Materials,2021,23(9):2100166. doi: 10.1002/adem.202100166 [56] WANG Y, WANG W, DING X, et al. Multilayer-structured Ni-Co-Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic[J]. Chemical Engineering Journal,2020,380:122553. doi: 10.1016/j.cej.2019.122553 [57] ZHANG N, ZHAO R, HE D, et al. Lightweight and flexible Ni-Co alloy nanoparticle-coated electrospun polymer nanofiber hybrid membranes for high-performance electromagnetic interference shielding[J]. Journal of Alloys and Compounds,2019,784:244-255. doi: 10.1016/j.jallcom.2018.12.341 [58] WANG Q, XU Y, BI S, et al. Enhanced electromagnetic-interference shielding effectiveness and mechanical strength of Co-Ni coated aramid-carbon blended fabric[J]. Chinese Journal of Aeronautics,2021,34(10):103-114. doi: 10.1016/j.cja.2021.03.011 [59] OH K, HONG S M, SEO Y. Effect of crosslinking reaction on the electromagnetic interference shielding of a Fe-Si-Al alloy (Sendust)/polymer composite at high frequency[J]. Polymers for Advanced Technologies,2014,25(11):1366-1370. doi: 10.1002/pat.3393 [60] PANDEY R, TEKUMALLA S, GUPTA M. Effect of defects on electromagnetic interference shielding effectiveness of magnesium[J]. Journal of Materials Science: Materials in Electronics,2018,29(11):9728-9739. doi: 10.1007/s10854-018-9010-7 [61] HU M, ZHANG H, HU T, et al. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects[J]. Chemical Society Reviews,2020,49(18):6666-6693. doi: 10.1039/D0CS00175A [62] JIANG Y, RU X, CHE W, et al. Flexible, mechanically robust and self-extinguishing MXene/wood composite for efficient electromagnetic interference shielding[J]. Composites Part B: Engineering,2022,229:109460. doi: 10.1016/j.compositesb.2021.109460 [63] KIM E, ZHANG H, LEE J, et al. MXene/polyurethane auxetic composite foam for electromagnetic interference shielding and impact attenuation[J]. Composites Part A: Applied Science and Manufacturing,2021,147:106430. doi: 10.1016/j.compositesa.2021.106430 [64] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: A review[J]. Advanced Functional Materials,2020,30(47):2000883. doi: 10.1002/adfm.202000883 [65] ZENG Z H, WU N, WEI J J, et al. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding[J]. Nano-Micro Letters,2022,14(1):59. doi: 10.1007/s40820-022-00800-0 [66] CHENG Y, LU Y, XIA M, et al. Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion[J]. Composites Science and Technology,2021,215:109023. doi: 10.1016/j.compscitech.2021.109023 [67] YIN H, BI L, WU Z, et al. 2D foaming of ultrathin MXene sheets with highly conductive silver nanowires for wearable electromagnetic interference shielding applications owing to multiple reflections within created free space[J]. Nano Futures,2020,4(3):35002. doi: 10.1088/2399-1984/ab92f5 [68] LI R, DING L, GAO Q, et al. Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene[J]. Chemical Engineering Journal,2021,415:128930. doi: 10.1016/j.cej.2021.128930 [69] YIN L, KANG H, MA H, et al. Sunshine foaming of compact Ti3C2T MXene film for highly efficient electromagnetic interference shielding and energy storage[J]. Carbon,2021,182:124-133. doi: 10.1016/j.carbon.2021.05.048 -