留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻质聚合物基电磁屏蔽材料的研究进展

杨继飞 刘珊 樊峤 何露露 何敏

杨继飞, 刘珊, 樊峤, 等. 轻质聚合物基电磁屏蔽材料的研究进展[J]. 复合材料学报, 2023, 40(7): 3785-3794. doi: 10.13801/j.cnki.fhclxb.20230119.002
引用本文: 杨继飞, 刘珊, 樊峤, 等. 轻质聚合物基电磁屏蔽材料的研究进展[J]. 复合材料学报, 2023, 40(7): 3785-3794. doi: 10.13801/j.cnki.fhclxb.20230119.002
YANG Jifei, LIU Shan, FAN Qiao, et al. Research progress of lightweight polymer electromagnetic shielding materials[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3785-3794. doi: 10.13801/j.cnki.fhclxb.20230119.002
Citation: YANG Jifei, LIU Shan, FAN Qiao, et al. Research progress of lightweight polymer electromagnetic shielding materials[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3785-3794. doi: 10.13801/j.cnki.fhclxb.20230119.002

轻质聚合物基电磁屏蔽材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20230119.002
基金项目: 国家自然科学基金地区基金(52163011);贵州省学术新苗培养及创新探索项目(GZLGXM-22)
详细信息
    通讯作者:

    何敏,本科,教授,博士生导师,研究方向为功能复合材料 E-mail : hemin851@126.com

  • 中图分类号: TB34;TB332

Research progress of lightweight polymer electromagnetic shielding materials

Funds: Authors Acknowledge Financial Support from National Natural Science Foundation of China (52163011); Academic Novice Cultivation and Innovative Exploration Project of Guizhou Province (GZLGXM-22)
  • 摘要: 随着科技不断的进步,5G技术快速的普及及可穿戴设备的飞速发展,生活变得越来越便利,同时电磁干扰对人们的身体健康和精密电子设备的运行造成威胁。如今传统的电磁屏蔽材料已不能满足人们生活的日常需求,轻质聚合物电磁屏蔽材料得到越来越多的关注。本文总结了电磁屏蔽机制及聚合物结构对电磁屏蔽性能的影响,综述了前沿碳/聚合物电磁屏蔽材料、金属/聚合物电磁屏蔽材料、新型MXene/聚合物电磁屏蔽材料的制备方法、电磁屏蔽性能及其相关机制,探讨了其优势和局限性,并对轻质聚合物电磁屏蔽材料面临的关键挑战、潜在应用和发展前景进行展望。

     

  • 图  1  电磁屏蔽机制

    Figure  1.  Electromagnetic shielding mechanism

    SER—Reflection loss efficiency; SEA—Absorption loss efficiency

    图  2  3D多层多孔结构电磁屏蔽原理

    Figure  2.  Electromagnetic shielding mechanism of 3D multilayer porous structures

    SEM—Multiple reflection loss efficiency

    图  3  3D泡孔结构电磁屏蔽原理

    Figure  3.  Electromagnetic shielding mechanism of three dimensional bubble structure

    表  1  电磁屏蔽效果

    Table  1.   Electromagnetic shielding effect

    No. EMI SE/dB Electromagnetic
    shielding effect
    Remarks
    1 <10 Bad
    2 10-30 General ≥20 dB
    Has commercialization potential
    3 30-60 Moderate ≥35 dB
    Meeting civilian needs
    4 60-90 Good ≥75 dB
    Meeting military requirements
    5 >90 Excellent
    Note: EMI SE—Electromagnetic shielding efficiency.
    下载: 导出CSV

    表  2  常见的填料

    Table  2.   Common filler

    Classification Example Remarks
    Carbon Carbon fiber, carbon nanotubes, graphene, etc. Enhanced material conductivity and dielectric loss
    Metal Nickel, cobalt, iron, zinc, copper, alloy, etc. Enhanced material conductivity, magnetic properties, dielectric losses and magnetic losses
    Composite filler Carbon and metals, metals and alloys, carbon and
    MXene, etc.
    Packing composition can be designed according to material requirements
    下载: 导出CSV
  • [1] GUPTA S, TAI N. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band[J]. Carbon,2019,152:159-187. doi: 10.1016/j.carbon.2019.06.002
    [2] DU S, CHEN H, HONG R. Preparation and electromagnetic properties characterization of reduced graphene oxide/strontium hexaferrite nanocomposites[J]. Nanotechnology Reviews (Berlin),2020,9(1):105-114. doi: 10.1515/ntrev-2020-0010
    [3] FAISAL M, KHASIM S. Polyaniline-antimony oxide composites for effective broadband EMI shielding[J]. Iranian Polymer Journal,2013,22(7):473-480. doi: 10.1007/s13726-013-0149-z
    [4] LI D, YANG N, TAO Y, et al. Induced electric field intensification of acid hydrolysis of polysaccharides: Roles of thermal and non-thermal effects[J]. Food Hydrocolloids,2020,101:105484. doi: 10.1016/j.foodhyd.2019.105484
    [5] WANG H, TENG K, CHEN C, et al. Conductivity and electromagnetic interference shielding of graphene-based architectures using MWCNTs as free radical scavenger in gamma-irradiation[J]. Materials Letters,2017,186:78-81. doi: 10.1016/j.matlet.2016.09.086
    [6] LU M, CAO M, CHEN Y, et al. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune Intensities[J]. ACS Applied Materials & Interfaces,2015,7(34):19408-19415. doi: 10.1021/acsami.5b05595
    [7] HE J, WANG X, ZHANG Y, et al. Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity[J]. Journal of Materials Chemistry C,2016,4(29):7130-7140. doi: 10.1039/C6TC02020H
    [8] WANG G, WANG L, MARK L H, et al. Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications[J]. ACS Applied Materials & Interfaces,2018,10(1):1195-1203.
    [9] SACHDEV V K, SHARMA S K, TOMAR M, et al. EMI shielding of MWCNT/ABS nanocomposites in contrast to graphite/ABS composites and MWCNT/PS nanocomposites[J]. RSC Advances,2016,6(51):4549-4558.
    [10] LIU H, WU S, YOU C, et al. Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding[J]. Carbon,2021,172:569-596. doi: 10.1016/j.carbon.2020.10.067
    [11] WANASINGHE D, ASLANI F, MA G, et al. Advancements in electromagnetic interference shielding cementitious composites[J]. Construction and Building Materials,2020,231:117116. doi: 10.1016/j.conbuildmat.2019.117116
    [12] YUAN Y, SUN X, YANG M, et al. Stiff, thermally stable and highly anisotropic wood-derived carbon composite monoliths for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2017,9(25):21371-21381. doi: 10.1021/acsami.7b04523
    [13] QIN L, LIU S, QIN S, et al. MOF derived porous Ni/Co@C nanocomposite as electromagnetic wave absorber with optimized impedance matching[J]. Composites Communications,2022,33:101196. doi: 10.1016/j.coco.2022.101196
    [14] LIU S, QIN S, JIANG Y, et al. Lightweight high-performance carbon-polymer nanocomposites for electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing,2021,145:106376. doi: 10.1016/j.compositesa.2021.106376
    [15] LIU H, XU Y, ZHAO X, et al. Lightweight leaf-structured carbon nanotubes/graphene foam and the composites with polydimethylsiloxane for electromagnetic interference shielding[J]. Carbon,2022,191:183-194. doi: 10.1016/j.carbon.2022.01.051
    [16] DOGAN S, KAYACAN O, GOREN A. A lightweight, strength and electromagnetic shielding polymer composite structure for infant carrier strollers[J]. Polymer Composites,2019,40(12):4559-4572. doi: 10.1002/pc.25324
    [17] ZHANG K, GU X, DAI Q, et al. Flexible polyaniline-coated poplar fiber composite membranes with effective electromagnetic shielding performance[J]. Vacuum,2019,170:108990. doi: 10.1016/j.vacuum.2019.108990
    [18] WANG H, LI S, LIU M, et al. Review on shielding mechanism and structural design of electromagnetic interference shielding composites[J]. Macromolecular Materials and Engineering,2021,306(6):2100032. doi: 10.1002/mame.202100032
    [19] YUAN D, GUO H, KE K, et al. Recyclable conductive epoxy composites with segregated filler network structure for EMI shielding and strain sensing[J]. Composites Part A: Applied Science and Manufacturing,2020,132:105837. doi: 10.1016/j.compositesa.2020.105837
    [20] QI Q, MA L, ZHAO B, et al. An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness[J]. ACS Applied Materials & Interfaces,2020,12(32):36568-36577. doi: 10.1021/acsami.0c10600
    [21] WANG G, LIAO X, YANG J, et al. Frequency-selective and tunable electromagnetic shielding effectiveness via the sandwich structure of silicone rubber/graphene composite[J]. Composites Science and Technology,2019,184:107847. doi: 10.1016/j.compscitech.2019.107847
    [22] SONG W, GONG C, LI H, et al. Graphene-based sandwich structures for frequency selectable electromagnetic shielding[J]. ACS Applied Materials & Interfaces,2017,9(41):36119-36129. doi: 10.1021/acsami.7b08229
    [23] LIU J, ZHANG H, SUN R, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials,2017,29(38):1702367. doi: 10.1002/adma.201702367
    [24] ZHANG H, ZHANG G, GAO Q, et al. Multifunctional microcellular PVDF/Ni-chains composite foams with enhanced electromagnetic interference shielding and superior thermal insulation performance[J]. Chemical Engineering Journal,2020,379:122304. doi: 10.1016/j.cej.2019.122304
    [25] LIANG C, LIU Y, RUAN Y, et al. Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing,2020,139:106143. doi: 10.1016/j.compositesa.2020.106143
    [26] WU N, LIU C, XU D, et al. Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers[J]. ACS Sustainable Chemistry & Engineering,2018,6(9):12471-12480. doi: 10.1021/acssuschemeng.8b03097
    [27] WU N, LIU C, XU D, et al. Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples[J]. Journal of Materials Chemistry C,2019,7(6):1659-1669. doi: 10.1039/C8TC04984J
    [28] KAUSHAL A, SINGH V. Excellent electromagnetic interference shielding performance of polypropylene/carbon fiber/multiwalled carbon nanotube nanocomposites[J]. Polymer Composites,2022,43(6):3708-3715. doi: 10.1002/pc.26649
    [29] TUNAKOVA V, TUNAK M. Carbon-fiber reinforcements for epoxy composites with electromagnetic radiation protection-prediction of electromagnetic shielding ability[J]. Composites Science and Technology,2021,215:109029. doi: 10.1016/j.compscitech.2021.109029
    [30] CULICA M E, BILIUTA G, ROTARU R, et al. New electromagnetic shielding materials based on viscose-carbon nanotubes composites[J]. Polymer Engineering & Science,2019,59(7):1499-1506.
    [31] FORMELA K. Waste tire rubber-based materials: Processing, performance properties and development strategies[J]. Advanced Industrial and Engineering Polymer Research,2022,5(4):234-247. doi: 10.1016/j.aiepr.2022.06.003
    [32] FU L, LI K, QIN H, et al. Sandwich structured iPP/CNTs nanocomposite foams with high electromagnetic interference shielding performance[J]. Composites Science and Technology,2022,220:109297. doi: 10.1016/j.compscitech.2022.109297
    [33] KUANG T R, JU J J, CHEN F, et al. Coupled effect of self-assembled nucleating agent, Ni-CNTs and pressure-driven flow on the electrical, electromagnetic interference shielding and thermal conductive properties of poly(lactic acid) composite foams[J]. Composites Science and Technology,2022,230:109736. doi: 10.1016/j.compscitech.2022.109736
    [34] PEI X, ZHAO M, LI R, et al. Porous network carbon nanotubes/chitosan 3D printed composites based on ball milling for electromagnetic shielding[J]. Composites Part A: Applied Science and Manufacturing,2021,145:106363. doi: 10.1016/j.compositesa.2021.106363
    [35] MANNA K, SRIVASTAVA S K. Contrasting role of defect-induced carbon nanotubes in electromagnetic interference shielding[J]. The Journal of Physical Chemistry C,2018,122(34):19913-19920. doi: 10.1021/acs.jpcc.8b04813
    [36] WANG W, CUI R, ZHANG P, et al. High electromagnetic interference shielding effectiveness in MgO composites reinforced by aligned graphene platelets[J]. Journal of the American Ceramic Society,2021,104(6):2868-2878. doi: 10.1111/jace.17667
    [37] BARANI Z, KARGAR F, MOHAMMADZADEH A, et al. Multifunctional graphene composites for electromagnetic shielding and thermal management at elevated temperatures[J]. Advanced Electronic Materials,2020,6(11):2000520. doi: 10.1002/aelm.202000520
    [38] SIM H J, LEE D W, KIM H, et al. Self-healing graphene oxide-based composite for electromagnetic interference shielding[J]. Carbon,2019,155:499-505. doi: 10.1016/j.carbon.2019.08.073
    [39] GILL N, GUPTA V, TOMAR M, et al. Improved electromagnetic shielding behaviour of graphene encapsulated polypyrrole-graphene nanocomposite in X-band[J]. Composites Science and Technology,2020,192:108113. doi: 10.1016/j.compscitech.2020.108113
    [40] LI M, YANG K, ZHU W, et al. Copper-coated reduced graphene oxide fiber mesh-polymer composite films for electromagnetic interference shielding[J]. ACS Applied Nano Materials,2020,3(6):5565-5574. doi: 10.1021/acsanm.0c00843
    [41] ZENG Y, LUO X, YU K, et al. EMI shielding performance of phenolic-based carbon foam modified with GO/SiO2 hybrid nanomaterials[J]. Chemical Physics Letters,2019,715:166-172. doi: 10.1016/j.cplett.2018.11.040
    [42] LIU H, WU S, YOU C, et al. Fe3O4 nanoparticles decorated flexible carbon foam for efficient electromagnetic interference shielding[J]. Ceramics International,2022,48(13):19452-19459. doi: 10.1016/j.ceramint.2022.03.246
    [43] TANG R, XU P, DONG J, et al. Carbon foams derived from emulsion-templated porous polymeric composites for electromagnetic interference shielding[J]. Carbon,2022,188:492-502. doi: 10.1016/j.carbon.2021.12.026
    [44] GUO F, JIANG Y, XU Z, et al. Highly stretchable carbon aerogels[J]. Nature Communications, 2018, 9(1): 881.
    [45] ZHU E, PANG K, CHEN Y, et al. Ultra-stable graphene aerogels for electromagnetic interference shielding[J]. Science China Materials, 2023, 66(3): 1106-1113.
    [46] YU Z, DAI T, YUAN S, et al. Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels[J]. ACS Applied Materials & Interfaces,2020,12(27):30990-31001. doi: 10.1021/acsami.0c07122
    [47] QUAN L, WANG C, XU Y, et al. Electromagnetic properties of graphene aerogels made by freeze-casting[J]. Chemical Engineering Journal,2022,428:131337. doi: 10.1016/j.cej.2021.131337
    [48] FAN X, GAO Q, ZHANG Y, et al. Anisotropic microcellular epoxy/rGO-SCF aerogel foam with excellent compressibility and superior electromagnetic interference shielding performance[J]. Composites Science and Technology,2022,230:109718. doi: 10.1016/j.compscitech.2022.109718
    [49] CHANG H, GAO J, LAI S, et al. Prediction of the electromagnetic shielding effectiveness of metal grid using neural network algorithm[J]. IEEE Photonics Journal,2021,13(4):1-6.
    [50] YAO Y, JIN S, ZOU H, et al. Polymer-based lightweight materials for electromagnetic interference shielding: A review[J]. Journal of Materials Science,2021,56(11):6549-6580. doi: 10.1007/s10853-020-05635-x
    [51] ZHANG J, LI J, TAN G, et al. Thin and flexible Fe-Si-B/Ni-Cu-P metallic glass multilayer composites for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2017,9(48):42192-42199. doi: 10.1021/acsami.7b12504
    [52] QIN F, YAN Z, FAN J, et al. Highly uniform and stable transparent electromagnetic interference shielding film based on silver nanowire-PEDOT:PSS composite for high power microwave shielding[J]. Macromolecular Materials and Engineering,2021,306(2):2000607. doi: 10.1002/mame.202000607
    [53] WANG G, HAO L, ZHANG X, et al. Flexible and transparent silver nanowires/biopolymer film for high-efficient electromagnetic interference shielding[J]. Journal of Colloid and Interface Science,2022,607:89-99. doi: 10.1016/j.jcis.2021.08.190
    [54] ZHU X, XU J, QIN F, et al. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires[J]. Nanoscale,2020,12(27):14589-14597. doi: 10.1039/D0NR03790G
    [55] YE J, CHEN X, LUO Z, et al. Improving strength and electromagnetic shielding effectiveness of Mg-Sn-Zn-Ca-Ce alloy by Sn addition[J]. Advanced Engineering Materials,2021,23(9):2100166. doi: 10.1002/adem.202100166
    [56] WANG Y, WANG W, DING X, et al. Multilayer-structured Ni-Co-Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic[J]. Chemical Engineering Journal,2020,380:122553. doi: 10.1016/j.cej.2019.122553
    [57] ZHANG N, ZHAO R, HE D, et al. Lightweight and flexible Ni-Co alloy nanoparticle-coated electrospun polymer nanofiber hybrid membranes for high-performance electromagnetic interference shielding[J]. Journal of Alloys and Compounds,2019,784:244-255. doi: 10.1016/j.jallcom.2018.12.341
    [58] WANG Q, XU Y, BI S, et al. Enhanced electromagnetic-interference shielding effectiveness and mechanical strength of Co-Ni coated aramid-carbon blended fabric[J]. Chinese Journal of Aeronautics,2021,34(10):103-114. doi: 10.1016/j.cja.2021.03.011
    [59] OH K, HONG S M, SEO Y. Effect of crosslinking reaction on the electromagnetic interference shielding of a Fe-Si-Al alloy (Sendust)/polymer composite at high frequency[J]. Polymers for Advanced Technologies,2014,25(11):1366-1370. doi: 10.1002/pat.3393
    [60] PANDEY R, TEKUMALLA S, GUPTA M. Effect of defects on electromagnetic interference shielding effectiveness of magnesium[J]. Journal of Materials Science: Materials in Electronics,2018,29(11):9728-9739. doi: 10.1007/s10854-018-9010-7
    [61] HU M, ZHANG H, HU T, et al. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects[J]. Chemical Society Reviews,2020,49(18):6666-6693. doi: 10.1039/D0CS00175A
    [62] JIANG Y, RU X, CHE W, et al. Flexible, mechanically robust and self-extinguishing MXene/wood composite for efficient electromagnetic interference shielding[J]. Composites Part B: Engineering,2022,229:109460. doi: 10.1016/j.compositesb.2021.109460
    [63] KIM E, ZHANG H, LEE J, et al. MXene/polyurethane auxetic composite foam for electromagnetic interference shielding and impact attenuation[J]. Composites Part A: Applied Science and Manufacturing,2021,147:106430. doi: 10.1016/j.compositesa.2021.106430
    [64] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: A review[J]. Advanced Functional Materials,2020,30(47):2000883. doi: 10.1002/adfm.202000883
    [65] ZENG Z H, WU N, WEI J J, et al. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding[J]. Nano-Micro Letters,2022,14(1):59. doi: 10.1007/s40820-022-00800-0
    [66] CHENG Y, LU Y, XIA M, et al. Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion[J]. Composites Science and Technology,2021,215:109023. doi: 10.1016/j.compscitech.2021.109023
    [67] YIN H, BI L, WU Z, et al. 2D foaming of ultrathin MXene sheets with highly conductive silver nanowires for wearable electromagnetic interference shielding applications owing to multiple reflections within created free space[J]. Nano Futures,2020,4(3):35002. doi: 10.1088/2399-1984/ab92f5
    [68] LI R, DING L, GAO Q, et al. Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene[J]. Chemical Engineering Journal,2021,415:128930. doi: 10.1016/j.cej.2021.128930
    [69] YIN L, KANG H, MA H, et al. Sunshine foaming of compact Ti3C2T MXene film for highly efficient electromagnetic interference shielding and energy storage[J]. Carbon,2021,182:124-133. doi: 10.1016/j.carbon.2021.05.048
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  639
  • HTML全文浏览量:  383
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-15
  • 修回日期:  2022-12-13
  • 录用日期:  2022-12-15
  • 网络出版日期:  2023-01-20
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回