留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多刺激响应的三层结构致动器的制备与应用

张德民 王开 宋濮 马博 马佳楠

张德民, 王开, 宋濮, 等. 多刺激响应的三层结构致动器的制备与应用[J]. 复合材料学报, 2024, 42(0): 1-8.
引用本文: 张德民, 王开, 宋濮, 等. 多刺激响应的三层结构致动器的制备与应用[J]. 复合材料学报, 2024, 42(0): 1-8.
ZHANG Demin, WANG Kai, SONG Pu, et al. Fabrication and application of multi-responsive tri-layer actuator[J]. Acta Materiae Compositae Sinica.
Citation: ZHANG Demin, WANG Kai, SONG Pu, et al. Fabrication and application of multi-responsive tri-layer actuator[J]. Acta Materiae Compositae Sinica.

多刺激响应的三层结构致动器的制备与应用

基金项目: 国家自然科学基金 (52205599);山西省基础研究计划青年科学研究项目(202203021212203)
详细信息
    通讯作者:

    马佳楠,博士,讲师,硕士生导师,研究方向为复合材料致动器 E-mail: majianan@tyut.edu.cn

  • 中图分类号: TB381;TB34;TB332

Fabrication and application of multi-responsive tri-layer actuator

Funds: National Natural Science Foundation of China (No. 52205599); Youth Science Fund Program of Shanxi Province (No. 202203021212203)
  • 摘要: 近年来,软体致动器因其能够响应外界条件的刺激而发生形变,在生物医疗、航空航天、智能仿生等领域备受关注。然而,外界环境的刺激往往复杂多变,多数致动器只能对单一刺激进行响应,这无疑增加了软体致动器的使用局限性。因此,有必要开发能响应多种外部条件变化的致动器。本文通过先后真空抽滤氧化石墨烯(GO)和MXene形成双层复合膜,再将聚丙烯(BOPP)胶带通过切割、粘贴和组装,开发了一种基于GO-MXene-BOPP胶带的三层结构致动器。该致动器能够在湿度和光照的刺激下快速发生形变,有效的将其他形式的能量转化为机械能。响应方式的灵活性使得该致动器在仿生机器人、可穿戴设备、微机电系统等领域具有广泛的应用前景。

     

  • 图  1  (a)氧化石墨烯(GO)-MXene-聚丙烯(BOPP)三层薄膜的制备流程简图;(b) GO-MXene-BOPP三层薄膜的实物正反面照片;(c) GO-MXene-BOPP三层薄膜的横截面SEM图像

    Figure  1.  (a) Schematic illustration of the fabrication process for the graphene oxide (GO)-MXene-polypropylene (BOPP) tri-layer film; (b) Front and back photographs of the GO-MXene-BOPP tri-layer film; (c) Cross-section SEM image of the GO-MXene-BOPP tri-layer film

    图  2  (a)GO的XPS宽谱;(b)GO的C1s光谱;(c)GO的XRD谱图;(d)MXene的XPS宽谱;(e)MXene的O1s光谱;(f)MXene的XRD谱图

    Figure  2.  (a) Survey XPS spectrum of GO; (b) C1s spectra of GO; (c) XRD spectrum of GO; (d) Survey XPS spectrum of MXene; (e) O1s spectra of MXene; (f) XRD spectra of MXene

    图  3  GO(a)和BOPP胶带(b)的水接触角

    Figure  3.  Water contact angle of GO (a) and BOPP tape (b)

    图  4  GO-MXene-BOPP三层致动器在光照(左)和湿度(右)条件下的驱动原理示意图

    Figure  4.  Schematic diagram of the driving principle of GO-MXene-BOPP tri-layer actuator under light (left) and humidity (right) conditions

    图  5  (a)GO-MXene-BOPP三层致动器的弯曲角度在不同湿度下的变化情况;(b)致动器在RH=15%和RH=100%切换时的响应与恢复曲线;(c)致动器在RH=100%的湿度条件下重复响应500次的稳定性;(d)致动器的弯曲角度和温度在不同光照强度下的变化情况;(e)致动器在0和200 mW/cm²的光照强度切换时的响应与恢复曲线;(f)致动器在200 mW/cm2的光照条件下重复响应500次的稳定性

    Figure  5.  (a) Variation of bending angle of GO-MXene-BOPP triple actuator under different humidity; (b) Response and recovery curves of the actuator when switching between RH=15% and RH=100%; (c) Stability of the actuator when repeating the response for 500 times under the condition of RH=100% humidity; (d) Variation of the bending angle and temperature of the actuator under different light intensity; (e) Response and recovery curves of the actuator when switching between light intensity of 0 and 200 mW/cm²; (f) Stability of the actuator for 500 repetitions of response under light condition of 200 mW/cm²

    图  6  (a)多刺激响应智能开关的示意简图;(b)智能开关初始状态的数码照片;(c)在湿度条件下智能开关的行为照片;(d)在光照条件下智能开关的行为照片

    Figure  6.  (a) Schematic representation of the multi-responsive smart switch; (b) Digital photograph of the initial state of the smart switch;(c) Photograph of the behavior of the smart switch under humidity conditions; (d) Photograph of the behavior of the smart switch under light conditions

    图  7  (a)仿生含羞草初始状态的照片;在光照(b)和湿度(c)下仿生含羞草的表现;(d)外界条件消失后含羞草的恢复情况

    Figure  7.  (a) Photographs of the initial state of the bionic mimosa; Performance of the bionic mimosa under light (b) and humidity (c) actuation; (d) Recovery of the mimosa after the disappearance of external conditions

    表  1  不同执行器性能比较

    Table  1.   Comparison of the performance of different actuators

    Actuator MaterialsDriving methodMaximum bending angle
    MXene/NIPAm Hydrogel Nanocomposite [30]Light20°
    Bacterial Cellulose/MXene/Graphene Oxide Film [31]Humidity120°
    MXene-LCE soft tubular actuator [32]Light110°
    MXene/TA/PU/CNF actuator [33]Light105°
    Graphene Monolayer paper [34]Light / Humidity98°/132°
    TPU-GO composite membrane actuator [35]Light / Humidity60°/108°
    ★This WorkLight / Humidity132°/130°
    Notes:LCE is liquid crystal elastomer;TA is tannic acid;PU is poly urethane;CNF is carbon nanofiber;TPU is thermoplastic polyurethane;GO is graphene oxide.
    下载: 导出CSV
  • [1] LING Y, PANG W, LI X, et al. Laser-induced gra phene for electrothermally controlled, mechanically guided, 3D assembly and human–soft actuators interaction[J]. Advanced Materials, 2020, 32(17): 1908475. doi: 10.1002/adma.201908475
    [2] TACCOLA S, GRECO F, SINIBALDI E, et al. Toward a new generation of electrically controllable hygromorphic soft actuators[J]. Advanced Materials (Deerfield Beach, Fla. ), 2015, 27(10): 1668. doi: 10.1002/adma.201404772
    [3] LI C, ISCEN A, SAI H, et al. Supramolecular–covalent hybrid polymers for light-activated mechanical actuation[J]. Nature materials, 2020, 19(8): 900-909. doi: 10.1038/s41563-020-0707-7
    [4] KIM H, KANG J H, ZHOU Y, et al. Light-driven shape morphing, assembly, and motion of nanocomposite gel surfers[J]. Advanced Materials, 2019, 31(27): 1900932. doi: 10.1002/adma.201900932
    [5] WANG W, XIANG C, ZHU Q, et al. Multistimulus responsive actuator with GO and carbon nanotube/PDMS bilayer structure for flexible and smart devices[J]. ACS applied materials & interfaces, 2018, 10(32): 27215-27223.
    [6] YAO Y, YIN C, HONG S, et al. Lanthanide-ion-coordinated supramolecular hydrogel inks for 3D printed full-color luminescence and opacity-tuning soft actuators[J]. Chemistry of Materials, 2020, 32(20): 8868-8876. doi: 10.1021/acs.chemmater.0c02448
    [7] FENG J, XUAN S, DING L, et al. Magnetoactive elastomer/PVDF composite film based magnetically controllable actuator with real-time deformation feedback property[J]. Composites Part A: Applied Science and Manufacturing, 2017, 103: 25-34. doi: 10.1016/j.compositesa.2017.09.004
    [8] PILZ DA CUNHA M, FOELEN Y, VAN RAAK R J H, et al. An untethered magnetic-and light-responsive rotary gripper: shedding light on photoresponsive liquid crystal actuators[J]. Advanced Optical Materials, 2019, 7(7): 1801643. doi: 10.1002/adom.201801643
    [9] KORDE J M, KANDASUBRAMANIAN B. Naturally biomimicked smart shape memory hydrogels for biomedical functions[J]. Chemical Engineering Journal, 2020, 379: 122430. doi: 10.1016/j.cej.2019.122430
    [10] THETPRAPHI K, CHAIPO S, KANLAYAKAN W, et al. Advanced plasticized electroactive polymers actuators for active optical applications: live mirror[J]. Advanced Engineering Materials, 2020, 22(5): 1901540. doi: 10.1002/adem.201901540
    [11] CHEN L, WANG M, GUO L X, et al. A cut-and-paste strategy towards liquid crystal elastomers with complex shape morphing[J]. Journal of Materials Chemistry C, 2018, 6(30): 8251-8257. doi: 10.1039/C8TC01236A
    [12] TAGHAVI M, HELPS T, ROSSITER J. Electro-ribbon actuators and electro-origami robots[J]. Science Robotics, 2018, 3(25): eaau9795. doi: 10.1126/scirobotics.aau9795
    [13] YANG Q, PENG C, REN J, et al. A near-infrared photoactuator based on shape memory semicrystalline polymers toward light-fueled crane, grasper, and walker[J]. Advanced Optical Materials, 2019, 7(21): 1900784. doi: 10.1002/adom.201900784
    [14] WANG J, LIU Y, CHENG Z, et al. Highly conductive MXene film actuator based on moisture gradients[J]. Angewandte Chemie International Edition, 2020, 59(33): 14029-14033. doi: 10.1002/anie.202003737
    [15] YANG L, CUI J, ZHANG L, et al. A moisture-driven actuator based on polydopamine-modified MXene/bacterial cellulose nanofiber composite film[J]. Advanced Functional Materials, 2021, 31(27): 2101378. doi: 10.1002/adfm.202101378
    [16] WEI J, JIA S, MA C, et al. Nacre-inspired composite film with mechanical robustness for highly efficient actuator powered by humidity gradients[J]. Chemical Engineering Journal, 2023, 451: 138565. doi: 10.1016/j.cej.2022.138565
    [17] LI P, SU N, WANG Z, et al. A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability[J]. ACS nano, 2021, 15(10): 16811-16818. doi: 10.1021/acsnano.1c07186
    [18] XU L, XUE F, ZHENG H, et al. An insect larvae inspired MXene-based jumping actuator with controllable motion powered by light[J]. Nano Energy, 2022, 103: 107848. doi: 10.1016/j.nanoen.2022.107848
    [19] TU S, XU L, EL-DEMELLAWI J K, et al. Autonomous MXene-PVDF actuator for flexible solar trackers[J]. Nano Energy, 2020, 77: 105277. doi: 10.1016/j.nanoen.2020.105277
    [20] XUE P, BISOYI H K, CHEN Y, et al. Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets[J]. Angewandte Chemie International Edition, 2021, 60(7): 3390-3396. doi: 10.1002/anie.202014533
    [21] MA J N, MA B, WANG Z X, et al. Multiresponsive MXene Actuators with Asymmetric Quantum-Confined Superfluidic Structures[J]. Advanced Functional Materials, 2024, 34(8): 2308317. doi: 10.1002/adfm.202308317
    [22] LIANG Z, JIN B, ZHAO H, et al. Rotini-like MXene@ LCE Actuator with Diverse and Programmable Actuation Based on Dual-mode Synergy[J]. Small, 2024, 20(16): 2305371. doi: 10.1002/smll.202305371
    [23] YU C, WANG Y, QIU X, et al. Ultrarobust self-healing elastomers with hydrogen bonding connected MXene network for actuator applications[J]. Chemical Engineering Journal, 2023, 475: 146079. doi: 10.1016/j.cej.2023.146079
    [24] WANG J, MA H, LIU Y, et al. MXene-based humidity-responsive actuators: preparation and properties[J]. ChemPlusChem, 2021, 86(3): 406-417. doi: 10.1002/cplu.202000828
    [25] NGUYEN V H, TABASSIAN R, OH S, et al. Stimuli-responsive MXene-based actuators[J]. Advanced Functional Materials, 2020, 30(47): 1909504. doi: 10.1002/adfm.201909504
    [26] GAO Q, HE P P, WANG X, et al. Stimuli-responsive Ti3C2Tx MXene-based hydrogels: preparation and applications[J]. Materials Chemistry Frontiers, 2024, 8(9): 2056-2077. doi: 10.1039/D2QM01195F
    [27] WANG J, LIU Y, CHENG Z, et al. Highly conductive MXene film actuator based on moisture gradients[J]. Angewandte Chemie International Edition, 2020, 59(33): 14029-14033. doi: 10.1002/anie.202003737
    [28] TU S, XU L, EL-DEMELLAWI J K, et al. Autonomous MXene-PVDF actuator for flexible solar trackers[J]. Nano Energy, 2020, 77: 105277. doi: 10.1016/j.nanoen.2020.105277
    [29] PANG D, ALHABEB M, MU X, et al. Electrochemical actuators based on two-dimensional Ti3C2Tx (MXene)[J]. Nano letters, 2019, 19(10): 7443-7448. doi: 10.1021/acs.nanolett.9b03147
    [30] ZAVAHIR S, SOBOLČIAK P, Krupa I, et al. Ti3C2Tx MXene-based light-responsive hydrogel composite for bendable bilayer photoactuator[J]. Nanomaterials, 2020, 10(7): 1419. doi: 10.3390/nano10071419
    [31] GE Y, ZENG J, HU B, et al. Bioinspired flexible film as intelligent moisture-responsive actuators and noncontact sensors[J]. Giant, 2022, 11: 100107. doi: 10.1016/j.giant.2022.100107
    [32] YANG M, XU Y, ZHANG X, et al. Bioinspired photo tropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics[J]. Advanced Functional Materials, 2022, 32(26): 2201884. doi: 10.1002/adfm.202201884
    [33] YU C, WANG Y, QIU X, et al. Ultrarobust self-healing elastomers with hydrogen bonding connected MXene network for actuator applications[J]. Chemical Engineering Journal, 2023, 475: 146079. doi: 10.1016/j.cej.2023.146079
    [34] MU J, HOU C, ZHU B, et al. A multi-responsive water-driven actuator with instant and powerful performance for versatile applications[J]. Scientific Reports, 2015, 5(1): 9503. doi: 10.1038/srep09503
    [35] ZHONG T, JIANG Z, XU C, et al. Thermoplastic pol- yurethane/graphene oxide composite membrane actuatable by infrared irradiation or humidity change[J]. Materials Chemistry and Physics, 2024, 320: 129478. doi: 10.1016/j.matchemphys.2024.129478
  • 加载中
计量
  • 文章访问数:  21
  • HTML全文浏览量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-16
  • 修回日期:  2024-09-06
  • 录用日期:  2024-09-08
  • 网络出版日期:  2024-10-08

目录

    /

    返回文章
    返回