Fabrication and application of multi-responsive tri-layer actuator
-
摘要: 近年来,软体致动器因其能够响应外界条件的刺激而发生形变,在生物医疗、航空航天、智能仿生等领域备受关注。然而,外界环境的刺激往往复杂多变,多数致动器只能对单一刺激进行响应,这无疑增加了软体致动器的使用局限性。因此,有必要开发能响应多种外部条件变化的致动器。本文通过先后真空抽滤氧化石墨烯(GO)和MXene形成双层复合膜,再将聚丙烯(BOPP)胶带通过切割、粘贴和组装,开发了一种基于GO-MXene-BOPP胶带的三层结构致动器。该致动器能够在湿度和光照的刺激下快速发生形变,有效的将其他形式的能量转化为机械能。响应方式的灵活性使得该致动器在仿生机器人、可穿戴设备、微机电系统等领域具有广泛的应用前景。Abstract: In recent years, soft actuators have attracted much attention in the fields of biomedical, aerospace, and intelligent bionics because of their ability to deform in response to stimuli from external conditions. However, the stimuli of the external environment are often complex and variable, and most actuators can only respond to a single stimulus, which undoubtedly increases the limitations of soft actuators. Therefore, it is necessary to develop actuators that can respond to multiple stimuli in external conditions. In this paper, we developed a tri-layer structured actuator consisting of GO-MXene-BOPP tape by successively vacuum-filtering graphene oxide (GO) and MXene to form a bilayer composite film, and then cutting, pasting, and assembling polypropylene (BOPP) tape. The actuator is capable of undergoing rapid deformation in response to humidity and light stimuli, effectively converting other energy into mechanical energy. The flexibility of the response method enables the actuator to have a wide range of applications in the fields of bionic robotics, wearable devices, and microelectromechanical systems.
-
Key words:
- soft actuator /
- multi-responsive /
- MXene /
- graphene oxide /
- tri-layer structure
-
图 1 (a)氧化石墨烯(GO)-MXene-聚丙烯(BOPP)三层薄膜的制备流程简图;(b) GO-MXene-BOPP三层薄膜的实物正反面照片;(c) GO-MXene-BOPP三层薄膜的横截面SEM图像
Figure 1. (a) Schematic illustration of the fabrication process for the graphene oxide (GO)-MXene-polypropylene (BOPP) tri-layer film; (b) Front and back photographs of the GO-MXene-BOPP tri-layer film; (c) Cross-section SEM image of the GO-MXene-BOPP tri-layer film
图 5 (a)GO-MXene-BOPP三层致动器的弯曲角度在不同湿度下的变化情况;(b)致动器在RH=15%和RH=100%切换时的响应与恢复曲线;(c)致动器在RH=100%的湿度条件下重复响应500次的稳定性;(d)致动器的弯曲角度和温度在不同光照强度下的变化情况;(e)致动器在0和200 mW/cm²的光照强度切换时的响应与恢复曲线;(f)致动器在200 mW/cm2的光照条件下重复响应500次的稳定性
Figure 5. (a) Variation of bending angle of GO-MXene-BOPP triple actuator under different humidity; (b) Response and recovery curves of the actuator when switching between RH=15% and RH=100%; (c) Stability of the actuator when repeating the response for 500 times under the condition of RH=100% humidity; (d) Variation of the bending angle and temperature of the actuator under different light intensity; (e) Response and recovery curves of the actuator when switching between light intensity of 0 and 200 mW/cm²; (f) Stability of the actuator for 500 repetitions of response under light condition of 200 mW/cm²
图 6 (a)多刺激响应智能开关的示意简图;(b)智能开关初始状态的数码照片;(c)在湿度条件下智能开关的行为照片;(d)在光照条件下智能开关的行为照片
Figure 6. (a) Schematic representation of the multi-responsive smart switch; (b) Digital photograph of the initial state of the smart switch;(c) Photograph of the behavior of the smart switch under humidity conditions; (d) Photograph of the behavior of the smart switch under light conditions
表 1 不同执行器性能比较
Table 1. Comparison of the performance of different actuators
Actuator Materials Driving method Maximum bending angle MXene/NIPAm Hydrogel Nanocomposite [30] Light 20° Bacterial Cellulose/MXene/Graphene Oxide Film [31] Humidity 120° MXene-LCE soft tubular actuator [32] Light 110° MXene/TA/PU/CNF actuator [33] Light 105° Graphene Monolayer paper [34] Light / Humidity 98°/132° TPU-GO composite membrane actuator [35] Light / Humidity 60°/108° ★This Work Light / Humidity 132°/130° Notes:LCE is liquid crystal elastomer;TA is tannic acid;PU is poly urethane;CNF is carbon nanofiber;TPU is thermoplastic polyurethane;GO is graphene oxide. -
[1] LING Y, PANG W, LI X, et al. Laser-induced gra phene for electrothermally controlled, mechanically guided, 3D assembly and human–soft actuators interaction[J]. Advanced Materials, 2020, 32(17): 1908475. doi: 10.1002/adma.201908475 [2] TACCOLA S, GRECO F, SINIBALDI E, et al. Toward a new generation of electrically controllable hygromorphic soft actuators[J]. Advanced Materials (Deerfield Beach, Fla. ), 2015, 27(10): 1668. doi: 10.1002/adma.201404772 [3] LI C, ISCEN A, SAI H, et al. Supramolecular–covalent hybrid polymers for light-activated mechanical actuation[J]. Nature materials, 2020, 19(8): 900-909. doi: 10.1038/s41563-020-0707-7 [4] KIM H, KANG J H, ZHOU Y, et al. Light-driven shape morphing, assembly, and motion of nanocomposite gel surfers[J]. Advanced Materials, 2019, 31(27): 1900932. doi: 10.1002/adma.201900932 [5] WANG W, XIANG C, ZHU Q, et al. Multistimulus responsive actuator with GO and carbon nanotube/PDMS bilayer structure for flexible and smart devices[J]. ACS applied materials & interfaces, 2018, 10(32): 27215-27223. [6] YAO Y, YIN C, HONG S, et al. Lanthanide-ion-coordinated supramolecular hydrogel inks for 3D printed full-color luminescence and opacity-tuning soft actuators[J]. Chemistry of Materials, 2020, 32(20): 8868-8876. doi: 10.1021/acs.chemmater.0c02448 [7] FENG J, XUAN S, DING L, et al. Magnetoactive elastomer/PVDF composite film based magnetically controllable actuator with real-time deformation feedback property[J]. Composites Part A: Applied Science and Manufacturing, 2017, 103: 25-34. doi: 10.1016/j.compositesa.2017.09.004 [8] PILZ DA CUNHA M, FOELEN Y, VAN RAAK R J H, et al. An untethered magnetic-and light-responsive rotary gripper: shedding light on photoresponsive liquid crystal actuators[J]. Advanced Optical Materials, 2019, 7(7): 1801643. doi: 10.1002/adom.201801643 [9] KORDE J M, KANDASUBRAMANIAN B. Naturally biomimicked smart shape memory hydrogels for biomedical functions[J]. Chemical Engineering Journal, 2020, 379: 122430. doi: 10.1016/j.cej.2019.122430 [10] THETPRAPHI K, CHAIPO S, KANLAYAKAN W, et al. Advanced plasticized electroactive polymers actuators for active optical applications: live mirror[J]. Advanced Engineering Materials, 2020, 22(5): 1901540. doi: 10.1002/adem.201901540 [11] CHEN L, WANG M, GUO L X, et al. A cut-and-paste strategy towards liquid crystal elastomers with complex shape morphing[J]. Journal of Materials Chemistry C, 2018, 6(30): 8251-8257. doi: 10.1039/C8TC01236A [12] TAGHAVI M, HELPS T, ROSSITER J. Electro-ribbon actuators and electro-origami robots[J]. Science Robotics, 2018, 3(25): eaau9795. doi: 10.1126/scirobotics.aau9795 [13] YANG Q, PENG C, REN J, et al. A near-infrared photoactuator based on shape memory semicrystalline polymers toward light-fueled crane, grasper, and walker[J]. Advanced Optical Materials, 2019, 7(21): 1900784. doi: 10.1002/adom.201900784 [14] WANG J, LIU Y, CHENG Z, et al. Highly conductive MXene film actuator based on moisture gradients[J]. Angewandte Chemie International Edition, 2020, 59(33): 14029-14033. doi: 10.1002/anie.202003737 [15] YANG L, CUI J, ZHANG L, et al. A moisture-driven actuator based on polydopamine-modified MXene/bacterial cellulose nanofiber composite film[J]. Advanced Functional Materials, 2021, 31(27): 2101378. doi: 10.1002/adfm.202101378 [16] WEI J, JIA S, MA C, et al. Nacre-inspired composite film with mechanical robustness for highly efficient actuator powered by humidity gradients[J]. Chemical Engineering Journal, 2023, 451: 138565. doi: 10.1016/j.cej.2022.138565 [17] LI P, SU N, WANG Z, et al. A Ti3C2Tx MXene-based energy-harvesting soft actuator with self-powered humidity sensing and real-time motion tracking capability[J]. ACS nano, 2021, 15(10): 16811-16818. doi: 10.1021/acsnano.1c07186 [18] XU L, XUE F, ZHENG H, et al. An insect larvae inspired MXene-based jumping actuator with controllable motion powered by light[J]. Nano Energy, 2022, 103: 107848. doi: 10.1016/j.nanoen.2022.107848 [19] TU S, XU L, EL-DEMELLAWI J K, et al. Autonomous MXene-PVDF actuator for flexible solar trackers[J]. Nano Energy, 2020, 77: 105277. doi: 10.1016/j.nanoen.2020.105277 [20] XUE P, BISOYI H K, CHEN Y, et al. Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets[J]. Angewandte Chemie International Edition, 2021, 60(7): 3390-3396. doi: 10.1002/anie.202014533 [21] MA J N, MA B, WANG Z X, et al. Multiresponsive MXene Actuators with Asymmetric Quantum-Confined Superfluidic Structures[J]. Advanced Functional Materials, 2024, 34(8): 2308317. doi: 10.1002/adfm.202308317 [22] LIANG Z, JIN B, ZHAO H, et al. Rotini-like MXene@ LCE Actuator with Diverse and Programmable Actuation Based on Dual-mode Synergy[J]. Small, 2024, 20(16): 2305371. doi: 10.1002/smll.202305371 [23] YU C, WANG Y, QIU X, et al. Ultrarobust self-healing elastomers with hydrogen bonding connected MXene network for actuator applications[J]. Chemical Engineering Journal, 2023, 475: 146079. doi: 10.1016/j.cej.2023.146079 [24] WANG J, MA H, LIU Y, et al. MXene-based humidity-responsive actuators: preparation and properties[J]. ChemPlusChem, 2021, 86(3): 406-417. doi: 10.1002/cplu.202000828 [25] NGUYEN V H, TABASSIAN R, OH S, et al. Stimuli-responsive MXene-based actuators[J]. Advanced Functional Materials, 2020, 30(47): 1909504. doi: 10.1002/adfm.201909504 [26] GAO Q, HE P P, WANG X, et al. Stimuli-responsive Ti3C2Tx MXene-based hydrogels: preparation and applications[J]. Materials Chemistry Frontiers, 2024, 8(9): 2056-2077. doi: 10.1039/D2QM01195F [27] WANG J, LIU Y, CHENG Z, et al. Highly conductive MXene film actuator based on moisture gradients[J]. Angewandte Chemie International Edition, 2020, 59(33): 14029-14033. doi: 10.1002/anie.202003737 [28] TU S, XU L, EL-DEMELLAWI J K, et al. Autonomous MXene-PVDF actuator for flexible solar trackers[J]. Nano Energy, 2020, 77: 105277. doi: 10.1016/j.nanoen.2020.105277 [29] PANG D, ALHABEB M, MU X, et al. Electrochemical actuators based on two-dimensional Ti3C2Tx (MXene)[J]. Nano letters, 2019, 19(10): 7443-7448. doi: 10.1021/acs.nanolett.9b03147 [30] ZAVAHIR S, SOBOLČIAK P, Krupa I, et al. Ti3C2Tx MXene-based light-responsive hydrogel composite for bendable bilayer photoactuator[J]. Nanomaterials, 2020, 10(7): 1419. doi: 10.3390/nano10071419 [31] GE Y, ZENG J, HU B, et al. Bioinspired flexible film as intelligent moisture-responsive actuators and noncontact sensors[J]. Giant, 2022, 11: 100107. doi: 10.1016/j.giant.2022.100107 [32] YANG M, XU Y, ZHANG X, et al. Bioinspired photo tropic MXene-reinforced soft tubular actuators for omnidirectional light-tracking and adaptive photovoltaics[J]. Advanced Functional Materials, 2022, 32(26): 2201884. doi: 10.1002/adfm.202201884 [33] YU C, WANG Y, QIU X, et al. Ultrarobust self-healing elastomers with hydrogen bonding connected MXene network for actuator applications[J]. Chemical Engineering Journal, 2023, 475: 146079. doi: 10.1016/j.cej.2023.146079 [34] MU J, HOU C, ZHU B, et al. A multi-responsive water-driven actuator with instant and powerful performance for versatile applications[J]. Scientific Reports, 2015, 5(1): 9503. doi: 10.1038/srep09503 [35] ZHONG T, JIANG Z, XU C, et al. Thermoplastic pol- yurethane/graphene oxide composite membrane actuatable by infrared irradiation or humidity change[J]. Materials Chemistry and Physics, 2024, 320: 129478. doi: 10.1016/j.matchemphys.2024.129478
计量
- 文章访问数: 32
- HTML全文浏览量: 20
- 被引次数: 0